Lecture 1. Projective Spaces over Finite Fields (FinInG package)

Michel Lavrauw University of Primorska

GAP Days Spring 2025, VUB

Outline

Introduction

Constructing Projective Spaces in FinInG

Examples

Summary and Discussion

If you want to find out more about the University of Primorska: https://conferences.famnit.upr.si/event/33/overview Introduction

Classical (Algebraic) Geometry: A Starting Point

- **Conics in the Plane**: The first nontrivial algebraic curves.
- Quadrics in Projective Space: Including ellipsoids, hyperboloids, cones.
- **Twisted Cubic**: The simplest non-degenerate rational space curve.
- ▶ Normal Rational Curves (NRC): Embedding \mathbb{P}^1 into \mathbb{P}^d .
- Veronese Varieties: Embedding \mathbb{P}^n into \mathbb{P}^N .
- **Segre Varieties**: Product embeddings $\mathbb{P}^m \times \mathbb{P}^n \hookrightarrow \mathbb{P}^{(m+1)(n+1)-1}$.
- ▶ Plane Cubics: Groups from curves.
- **Cubic Surfaces**: 27 lines, a historical gem of 19th century geometry.

These classical objects are still being studied today in many different settings.

Timeline: From Classical Geometry to Modern Algebraic Geometry

			French & German Grassmann, Chasles Picard, Poincaré	Italian Caba	-1
			Klein Erchardt	Veronese Segre	
Conics Greek geometry		Euler Curves surfaces	Max Noether Cubic surfaces, 27 lines, invariants	Del Pezzo Castelnuovo Enriques, Se	veri
H					
Ancient	1600s	1700s	1800s	1900s	Today
Analytic geome		tic geometry	19th century		20th century shift
Descartes Fermat			Projective geometry Quadrics, twisted cubic		Zariski, Weil
					Grothendieck
			(European schools)		Deligne
			Hilbert		
			Grundlagen		
			der Geometrie		
			(1899)		

Twisted Cubic in $\mathbb{P}^3(\mathbb{R})$

(affine part)

Twisted Cubic in $\mathbb{P}^3(\mathbb{R})$

(affine part)

IMPORTANT! No 4 points in a plane \rightarrow an arc in \mathbb{P}^3

Timeline: Foundations and Geometry over Finite Fields

\times No notion of distance

Concepts like length, angle, and orthogonality are undefined.

\times No notion of distance

Concepts like length, angle, and orthogonality are undefined.

\times No continuity or topology

There is no smooth structure or notion of limits — everything is discrete.

\times No notion of distance

Concepts like length, angle, and orthogonality are undefined.

\times No continuity or topology

There is no smooth structure or notion of limits — everything is discrete.

\times No curvature or differential geometry

Curvature, tangents, inflection points lose their analytic meaning.

\times No notion of distance

Concepts like length, angle, and orthogonality are undefined.

\times No continuity or topology

There is no smooth structure or notion of limits — everything is discrete.

× No curvature or differential geometry

Curvature, tangents, inflection points lose their analytic meaning.

\times Curves have finitely many points

A conic or cubic over \mathbb{F}_q has only a finite number of points.

\times No notion of distance

Concepts like length, angle, and orthogonality are undefined.

\times No continuity or topology

There is no smooth structure or notion of limits — everything is discrete.

imes No curvature or differential geometry

Curvature, tangents, inflection points lose their analytic meaning.

× Curves have finitely many points A conic or cubic over \mathbb{F}_q has only a finite number of points.

Lines do not always intersect curves Over finite fields, we do not know how curves intersect (Bézout's theorem holds over algebraically closed fields)

WARNING! Finite Fields detected. Classical intuition disabled.

Twisted Cubic in $\mathbb{P}^3(\mathbb{R})$

Twisted Cubic in $\mathbb{P}^3(GF(5))$

Twisted Cubic in $\mathbb{P}^3(GF(997))$

Projective spaces in FinInG

Using FinlnG to Construct PG(n, q)

Load the package: LoadPackage("fining");

- Create the projective space: pg := PG(2, 3);
- Create subspaces: VectorSpaceToElement

```
Random point: Random(Points(pg));
```

- Random line: Random(Lines(pg));
- The span of subspaces: 1 := Span(p1, p2);
- Incidence check: p in 1;
- All k-dimensional subspaces:
 ElementsOfIncidenceStructure(pg, k+1);

A first example

```
gap> pg:=PG(2,2);
ProjectiveSpace(2, 2)
gap> Points(pg);
<points of ProjectiveSpace(2, 2)>
gap> List(Points(pg),x->Coordinates(x));
[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), Z(2)^0 ],
  [Z(2)^{0}, Z(2)^{0}, 0*Z(2)], [Z(2)^{0}, Z(2)^{0}, Z(2)^{0}],
  [0*Z(2), Z(2)^{0}, 0*Z(2)], [0*Z(2), Z(2)^{0}, Z(2)^{0}],
  [ 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> Display(last);
1...
1.1
11.
1 1 1
 . 1 .
 . 1 1
 . . 1
```

```
gap> Lines(pg);
<lines of ProjectiveSpace(2, 2)>
gap> Size(last);
7
gap> line:=Random(Lines(pg));
<a line in ProjectiveSpace(2, 2)>
gap> ProjectiveDimension(line);
1
gap>
gap> UnderlyingObject(line);
<immutable cmat 2x3 over GF(2,1)>
gap> Display(last);
[[1..]
 [.11]
]
```

Affine spaces

```
AG(8, 5)

gap> Random(Planes(ag));

<a plane in AG(8, 5)>

gap> Display(last);

Affine plane:

Coset representative:

NewVector(IsCVecRep,GF(5,1),[0*Z(5),0*Z(5),Z(5)^0,

0*Z(5),Z(5)^2,Z(5)^3,Z(5)^2,Z(5),])

Coset (direction): NewMatrix(IsCMatRep,GF(5,1),8,[

[ Z(5)^0, 0*Z(5), Z(5)^0, 0*Z(5), Z(5), Z(5)^2, Z(5), Z(5)^0],

[ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), Z(5)^3, Z(5), Z(5)^3, 0*Z(5)],])

gap>
```

More Examples

See file 1_gapcode_ML.g.

Summary

- FinInG allows easy construction and manipulation of objects in projective spaces over finite fields.
- We can explore geometric properties of points, lines, subspaces, incidence, groups actions, ...

Discussion Questions

- How are projective spaces used in applications (coding theory)?
- What other geometries can be built in FinInG?