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Introduction



Classical (Algebraic) Geometry: A Starting Point

▶ Conics in the Plane: The first nontrivial algebraic curves.
▶ Quadrics in Projective Space: Including ellipsoids, hyperboloids,

cones.
▶ Twisted Cubic: The simplest non-degenerate rational space curve.
▶ Normal Rational Curves (NRC): Embedding P1 into Pd .
▶ Veronese Varieties: Embedding Pn into PN .
▶ Segre Varieties: Product embeddings Pm × Pn ↪→ P(m+1)(n+1)−1.
▶ Plane Cubics: Groups from curves.
▶ Cubic Surfaces: 27 lines, a historical gem of 19th century geometry.

These classical objects are still being studied today in many different
settings.



Timeline: From Classical Geometry to Modern Algebraic
Geometry

Ancient 1600s 1700s 1800s 1900s Today

Conics
Greek geometry

Analytic geometry
Descartes
Fermat

Euler
Curves
surfaces

19th century
Projective geometry
Quadrics, twisted cubic
(European schools)

French & German
Grassmann, Chasles
Picard, Poincaré
Clebsch, Gordan
Klein, Erchardt
Max Noether
Cubic surfaces,
27 lines, invariants

Hilbert
Grundlagen

der Geometrie
(1899)

Italian School
Veronese, Segre
Del Pezzo
Castelnuovo
Enriques, Severi

20th century shift
Zariski, Weil
Grothendieck
Deligne



Twisted Cubic in P3(R)

P1 → P3 : [s : t] 7→ [s3 : s2t : st2 : t3]

x

y

z

(affine part)

IMPORTANT! No 4 points in a plane → an arc in P3
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Timeline: Foundations and Geometry over Finite Fields

1901 1910 1930s 1950s 1960s 1970s 1990s Today

A. Young
Gaussian coefficients
Counting subspaces

of a GF(q)n

Veblen & Young
Projective Geometry

over GF(q)

Steinitz, Albert, André, Marshall Hall Jr.,
Field-based foundations, Coordinatisation,
Planary Ternary Ring, Translation planes,

Quasifields, Nearfields, Semifields, Spreads

Segre
Geometria di Galois,
arcs and caps,
algebraic curves,

polarities

André/Bruck-Bose
The construction
of translation
planes from

projective spaces

Tits
Buildings,
Polar spaces,
Groups & Geometries,

Incidence structures

Modern era
Galois Geometry,
Incidence Geometry,
Design Theory,

+ Applications

Hilbert
(1899)

Moulton
(1902)

Hessenberg
(1905)

Early
foundational
figures



Breakdown of Classical Intuition

× No notion of distance
Concepts like length, angle, and orthogonality are undefined.

× No continuity or topology
There is no smooth structure or notion of limits — everything is
discrete.

× No curvature or differential geometry
Curvature, tangents, inflection points lose their analytic meaning.

× Curves have finitely many points
A conic or cubic over Fq has only a finite number of points.

× Lines do not always intersect curves
Over finite fields, we do not know how curves intersect
(Bézout’s theorem holds over algebraically closed fields)

WARNING! Finite Fields detected. Classical intuition disabled.
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Twisted Cubic in P3(R)
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Twisted Cubic in P3(GF(5))

x = t

y = t2

z = t3

(0, 0, 0)

(1, 1, 1)

(2, 4, 3)

(3, 4, 2)

(4, 1, 4)



Twisted Cubic in P3(GF(997))

x = t

y = t2

z
=

t3



Projective spaces in FinInG



Using FinInG to Construct PG(n, q)

▶ Load the package: LoadPackage("fining");
▶ Create the projective space:

pg := PG(2, 3);
▶ Create subspaces: VectorSpaceToElement
▶ Random point: Random(Points(pg));
▶ Random line: Random(Lines(pg));
▶ The span of subspaces: l := Span(p1, p2);
▶ Incidence check: p in l;
▶ All k-dimensional subspaces:

ElementsOfIncidenceStructure(pg, k+1);



A first example

gap> pg:=PG(2,2);
ProjectiveSpace(2, 2)
gap> Points(pg);
<points of ProjectiveSpace(2, 2)>
gap> List(Points(pg),x->Coordinates(x));
[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), Z(2)^0 ],

[ Z(2)^0, Z(2)^0, 0*Z(2) ], [ Z(2)^0, Z(2)^0, Z(2)^0 ],
[ 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, Z(2)^0 ],
[ 0*Z(2), 0*Z(2), Z(2)^0 ] ]

gap> Display(last);
1 . .
1 . 1
1 1 .
1 1 1
. 1 .
. 1 1
. . 1



gap> Lines(pg);
<lines of ProjectiveSpace(2, 2)>
gap> Size(last);
7
gap> line:=Random(Lines(pg));
<a line in ProjectiveSpace(2, 2)>
gap> ProjectiveDimension(line);
1
gap>
gap> UnderlyingObject(line);
<immutable cmat 2x3 over GF(2,1)>
gap> Display(last);
[[1..]
[.11]

]



Affine spaces

AG(8, 5)
gap> Random(Planes(ag));
<a plane in AG(8, 5)>
gap> Display(last);
Affine plane:
Coset representative:
NewVector(IsCVecRep,GF(5,1),[0*Z(5),0*Z(5),Z(5)^0,
0*Z(5),Z(5)^2,Z(5)^3,Z(5)^2,Z(5),])
Coset (direction): NewMatrix(IsCMatRep,GF(5,1),8,[
[ Z(5)^0, 0*Z(5), Z(5)^0, 0*Z(5), Z(5), Z(5)^2, Z(5), Z(5)^0 ],
[ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), Z(5)^3, Z(5), Z(5)^3, 0*Z(5) ],])
gap>



More Examples

See file 1_gapcode_ML.g.



Summary

▶ FinInG allows easy construction and manipulation of objects in
projective spaces over finite fields.

▶ We can explore geometric properties of points, lines, subspaces,
incidence, groups actions, ...



Discussion Questions

▶ How are projective spaces used in applications (coding theory)?
▶ What other geometries can be built in FinInG?
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