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Basic Concepts

▶ A code is a subset of An where A is some non-empty set (the alphabet A).
▶ A linear code is a subspace of Fn

q (alphabet A = Fq).
▶ The parameters of a code are its length n, dimension k, and minimum

distance d .
▶ Used for all kinds of data transmission: detect and correct errors.



The GUAVA package

gap> LoadPackage("guava");

___________________________________________________________________________
/ ___

|| / \ /\ Version 2.9.6
|| || || |\ | / \ /\ Erhard Aichinger
\___ || || |\\ | /____\_____________/__\ Franz Binder

\ || || | \\ | / \ || / \ Juergen Ecker
|| \___/ | \\ | / \ || / \ Peter Mayr
|| | \\| / \ || Christof Noebauer

\___/ | \| ||

System Of Nearrings And Their Applications
Info: https://gap-packages.github.io/sonata/

____ |
/ \ / --+-- Version 3.19

/ | | |\ \ / /| |
| __ | | | \ \ / / | the GUAVA Group
| | | | |--\ \ / /--|
\ | | | | \ \ / / |
\___/ \___/ | \ \/ / |

Homepage: https://gap-packages.github.io/guava
Report issues at https://github.com/gap-packages/guava/issues
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The GUAVA package

GUAVA: © The GUAVA Group: 1992-2003 Jasper Cramwinckel, Erik
Roijackers,Reinald Baart, Eric Minkes, Lea Ruscio (for the tex version), Jeffrey
Leon © 2004 David Joyner, Cen Tjhai, Jasper Cramwinckel, Erik Roijackers,
Reinald Baart, Eric Minkes, Lea Ruscio. © 2007 Robert L Miller, Tom
Boothby © 2009, 2012, 2016, 2018, 2022, 2025 Joe Fields

The functions in GUAVA can be divided into three subcategories:

1. Construction of codes: GUAVA can construct three types of codes:
unrestricted, linear and cyclic codes. Information about the code, is stored
in a record-like data structure.

2. Manipulations of codes: to construct a new code from (a) given code(s).

3. Computations of information about codes.



Creating a Code
The first code one might think of is the "repetition code".

The alphabet is

A:=GF(2);

and the lenght is

n:=3;

The list of codewords is

list:=["000","111"];

The code is defined from this list using ElementsCode

gap> C:=ElementsCode(list,A);
a (3,2,1..3)1 user defined unrestricted code over GF(2)

GUAVA calls this an "unrestricted code" (the other types of codes are "linear
code" and "cyclic code")



Codewords, distance, weight
Note !

gap> IsCodeword("000");
false
gap> IsCodeword(Codeword("000"));
true

Distance between codewords is the Hamming distance.

c1:=Codeword("000"); c2:=Codeword("111");
DistanceCodeword(c1,c2); MinimumDistance(C);

The number of nonzero symbols in a codeword (the alphabet A always contain
some "zero") is called the "Hamming weight" of the codeword:

Weight(c1);Weight(c2);

We can also immediatlely ask for all the weights in the code C

WeightDistribution(C);
CodeWeightEnumerator(C);



Linear codes: generator matrix, check matrix, dual code

Parameters of a code C

Length(C);
Dimension(C);
MinimumDistance(C);
CoveringRadius(C);

Generator matrix: rows are a basis C

G:=GeneratorMat(C);

and partity check matrix of C

H:=CheckMat(C);

whose rows are a basis for the C⊥, the dual code

DualCode(C);



Example Code, distance, weight

gap> G:=List([1..4],i->Random(GF(2)^7));;
gap> Display(G);
. 1 . . 1 1 1
1 1 . . . . .
1 . 1 . . . .
1 1 . 1 1 1 1

gap> C:=GeneratorMatCode(G,GF(2));
a linear [7,4,1..3]1..3 code defined by generator matrix over GF(2)
gap> CodeWeightEnumerator(C);
4*x_1^6+5*x_1^4+6*x_1^2+1
gap> WeightDistribution(C);
[ 1, 0, 6, 0, 5, 0, 4, 0 ]
gap> Display(CheckMat(C));
1 1 1 1 1 . .
1 1 1 1 . 1 .
1 1 1 1 . . 1

gap> DualCode(C)=GeneratorMatCode(CheckMat(C),GF(2));
true



Intermezzo: Coding theory and Galois geometry



Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).



Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).



Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).



Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).



Geometry Behind the Code: Twisted Cubic over PG(3, 5).

Twisted Cubic in P3(GF(5)):

[s : t] 7→ [s3 : s2t : st2 : t3] for [s : t] ∈ P1(GF(5))

Points on the curve:

[1 : 0] 7→ [1 : 0 : 0 : 0]

[1 : 1] 7→ [1 : 1 : 1 : 1]

[1 : 2] 7→ [1 : 2 : 4 : 3]

[1 : 3] 7→ [1 : 3 : 4 : 2]

[1 : 4] 7→ [1 : 4 : 1 : 4]

[0 : 1] 7→ [0 : 0 : 0 : 1]

Generator matrix G :

G =


1 1 1 1 1 0
0 1 4 4 1 0
0 1 3 2 4 0
0 1 2 2 4 1



Encoding a message:

m = (1, 0, 3, 2) ⇒ c = m · G

This is a [6, 4, 3]-Reed–Solomon code
from a classical algebraic curve!
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Reed–Solomon Codes in the CD Player

CDs use a two-level RS code: For the CD player:

[n, k]q = [28, 24]256, d = 5

(i.e., 24 data bytes, 4 parity bytes, q = 256)

▶ CIRC = Cross-Interleaved Reed–Solomon Code
▶ Combines two RS codes with interleaving
▶ Spreads burst errors (e.g., scratches) across multiple codewords
▶ Allows accurate reconstruction even when parts are unreadable

Result: Up to 3500 erroneous bits per second can be corrected!



The Interleaving Technique in CD Error Correction

Correcting errors caused by a scratch (burst error) on a CD.

[0 1 0] [0 0 1] [0 1 1]

[0 0 0] [1 0 1] [1 1 1]

Original Codewords (before interleaving)

Interleaved Codewords (spread out)

Idea:
Interleaving spreads
each codeword across
multiple positions.
A burst error (e.g. scratch)
affects only parts of each
codeword, allowing
error-correction.



Reed–Solomon Codes in QR Codes

A QR code stores information (text, URL, etc.) as
a 2D array of black and white squares.

The data is converted to byte sequences, and then:

▶ Divided into blocks (number depends on QR version and error level)
▶ Each block is encoded with a RS code in PG(222, 28)

▶ The encoded bytes are interleaved and placed in the QR grid
following a specific pattern.

Each QR code block secretly carries
the geometry of a NRC in a 222-

dimensional projective space over GF(28)

https://gap-packages.github.io/FinInG/
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Encoding and Decoding

A message

m := [1,0,1];

the encoded message: a codeword

codeword := EncodeWord(C, m); (or codeword := m*C;)

a(received) word

received := [1,1,1,1,0];
DecodeWord(C, received);

the decoded received word

DecodeWord(C, received);



Decoding

gap> m:="1010";
gap> c := m*C; # encoding
[ 1 0 1 1 0 1 0 ]
gap> Decode(C, c); # decoding
[ 1 0 1 0 ]
gap> w:=c+"1000000"; # introduce one error
[ 0 0 0 1 0 1 0 ]
gap> Decode(C,w); # the correct message
[ 1 0 1 0 ]
gap> Decodeword(C,w); # the correct codeword
[ 1 0 1 1 0 1 0 ]

NOTE: If the code record has a field "SpecialDecoder", this special algorithm
is used to decode the vector, otherwise: Syndrome Decoding.



Syndrome Decoding

sa:=StandardArray(C);;
sa[1]; # these are all the codewords in C
sa[2]; # this is the first coset of C,
# where l1=sa[2][1] is the coset leader

SyndromeTable returns a syndrome table of a linear code C, consisting of two
columns. The first column consists of the coset leaders that correspond to the
syndrome vectors in the second column.

gap> st:=SyndromeTable(C);

[ [ [ 0 0 0 0 0 0 0 ], [ 0 0 0 ] ], [ [ 1 0 0 0 0 0 0 ], [ 0 0 1 ] ],
[ [ 0 1 0 0 0 0 0 ], [ 0 1 0 ] ], [ [ 0 0 1 0 0 0 0 ], [ 0 1 1 ] ],
[ [ 0 0 0 1 0 0 0 ], [ 1 0 0 ] ], [ [ 0 0 0 0 1 0 0 ], [ 1 0 1 ] ],

[ [ 0 0 0 0 0 1 0 ], [ 1 1 0 ] ], [ [ 0 0 0 0 0 0 1 ], [ 1 1 1 ] ] ]



Syndrome Decoding Example

gap> m:="1010";
"1010"
gap> c := m*C; # encoding
[ 1 0 1 1 0 1 0 ]
gap> w:=c+"1000000";
[ 0 0 1 1 0 1 0 ]
gap> H:=CheckMat(C);;
gap> s:=H*w; # compute the syndrome w
[ 0 0 1 ]
gap>
gap> coset:=First(st,r->r[2]=s); # # according to the syndrome table, the word belongs to this coset
[ [ 1 0 0 0 0 0 0 ], [ 0 0 1 ] ]
gap> ev:=coset[1]; # the coset leader, which is the error vector
[ 1 0 0 0 0 0 0 ]
gap> c:=w-ev; # the corrected codeword
[ 1 0 1 1 0 1 0 ]
gap> c=Decodeword(C,w);
true



Available code constructions in GUAVA

EC := ElementsCode( ["1000", "1101", "0011" ], GF(2) );
C := HammingCode(r,GF(q));
RS := ReedSolomonCode(q-1, n-k+1); # ExtendedReedSolomonCode
GRS := GeneralizedReedSolomonCode( [a_1,..,a_n] , k , GF(q)[X] );
RM := ReedMullerCode( r, k ); # r-th order binary of length 2^k
GRM := GeneralizedReedMullerCode( pts, r, GF(q) );

# evaluate poly’s in GF(q)[X_1,.., X_d] of degree \leq r at pts
x := Indeterminate(GF(q),"x");
GC := GoppaCode(x^2+x+1,Elements(GF(q)));
BG := BinaryGolayCode(); # ExtendedBinaryGolayCode();)
TG := TernaryGolayCode(); # ExtendedTernaryGolayCode();
EVC := EvaluationCode(elems,pol_list,pol_ring);



Cyclic codes in GUAVA

Cyclic codes are linear codes satisfying c ∈ C ⇒ σ(c) ∈ C where
σ = (1, .., n) ∈ Sym(n). They correspond to ideals in GF(q)[X ]/(X n − 1).

gap> x:= Indeterminate( GF(2), "x" );; P:= x^2+1;
x^2+Z(2)^0
gap> C1 := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol( C1 );
x+Z(2)^0
gap> x := Indeterminate( GF(3), "x" );; P:= x^2+2;
x^2-Z(3)^0
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
x-Z(3)^0
gap> Gcd(P, X(GF(3))^7-1);
x-Z(3)^0



Cyclic codes defined by its "roots"

gap> C2;
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> f:=GeneratorPol(C2);
x^6+x^5+x^4+x^3+x^2+x+Z(3)^0
gap> roots:=RootsOfCode(C2);
[ Z(3^6)^104, Z(3^6)^208, Z(3^6)^312, Z(3^6)^416, Z(3^6)^520, Z(3^6)^624 ]
gap> Set(roots,a->f(a));
[ 0*Z(3) ]

gap> a := PrimitiveUnityRoot( 3, 14 );
Z(3^6)^52
gap> C1 := RootsCode( 14, [ a^0, a, a^3 ] );
a cyclic [14,7,2..6]3..7 code defined by roots over GF(3)
gap> GeneratorPol(C1);
x^7+x^6-x^5+x^4-x^3+x^2-x-Z(3)^0
gap> RootsOfCode(C1);
[ Z(3)^0, Z(3^6)^52, Z(3^6)^156, Z(3^6)^260, Z(3^6)^468, Z(3^6)^572,

Z(3^6)^676 ]
gap> ForAll([a^0,a,a^3],y->y in RootsOfCode(C1));
true



BCHCode (Bose-Chaudhuri-Hockenghem)

Let min(α,Fq) ∈ Fq[X ] denote the minimal polynomial of an element α ∈ Fqm .
A BCH code over Fq of length n and designed minimal distance δ is a cyclic
code with generator polynomial

g(X ) = lcm{min(β i ,Fq) : a ≤ i ≤ a+ δ − 2}

where β ∈ Fqm is a primitive n-th root of unity and a is some integer such that

βa, . . . , βa+δ−2

are δ − 1 distinct elements of Fqm .



Example of BCHCode

Aim: Construct a [15, k, d ≥ 7]-code over F2.

gap> a:=Z(16); # primitive 15-th root of unity
Z(2^4)
gap> CyclotomicCosets(2,15);
[ [ 0 ], [ 1, 2, 4, 8 ], [ 3, 6, 12, 9 ], [ 5, 10 ], [ 7, 14, 13, 11 ] ]
gap> Union(List([2,3,4],i->last[i])); # contains 6 consecutive integers
[ 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 ]
gap> roots:=List([1..6],i->a^i);
[ Z(2^4), Z(2^4)^2, Z(2^4)^3, Z(2^4)^4, Z(2^2), Z(2^4)^6 ]
gap> C:=RootsCode(15,roots);
a cyclic [15,5,2..7]5 code defined by roots over GF(2)
gap> MinimumDistance(C); # by construction at least 7
7
gap> BCHCode(15,7,GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C=last;
true



Code manipulations in GUAVA

▶ ExtendedCode( C[, i] )
▶ EvenWeightSubcode( C )
▶ PuncturedCode( C ) or PuncturedCode( C , L )
▶ ExpurgatedCode( C, L )
▶ AugmentedCode( C, L )
▶ ShortenedCode( C[, L] )
▶ LengthenedCode( C[, i] )
▶ SubCode( C[, s] )
▶ ResidueCode( C[, c] )
▶ ConversionFieldCode( C )



Example 1 of code manipulations

gap> C1 := HammingCode( 3, GF(2) );
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> C2 := ExtendedCode( C1 );
a linear [8,4,4]2 extended code
gap> CodeWeightEnumerator(C2);
x_1^8+14*x_1^4+1
gap> C3 := EvenWeightSubcode( C1 );
a linear [7,3,4]2..3 even weight subcode
gap> CodeWeightEnumerator(C3);
7*x_1^4+1
gap> PuncturedCode(C2);
a linear [7,4,3]1 punctured code
gap> PuncturedCode(C2,[1,2]); # the minimum distance might decrease
a linear [6,4,2]1 punctured code



Example 2 of code manipulations

gap> G:=[ [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
> [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
> [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
> [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ];;
gap> Display(G);
1 1 1 1 1 1 1 1
. . . . 1 1 1 1
. . 1 1 . . 1 1
. 1 . 1 . 1 . 1

gap> C1:=GeneratorMatCode(G,GF(2));
a linear [8,4,1..4]2 code defined by generator matrix over GF(2)
gap> MinimumDistance(C1);
4
gap> C2:=AugmentedCode(C1,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> MinimumDistance(C2);
2



Example 3 of code manipulations

ShortenedCode( C ): this is done by removing all codewords that start with a
non-zero entry, after which the first column is cut off. If C was a linear [n, k, d ]
code, the shortened code is a [n − 1,≤ k,≥ d ] code.

gap> C3 := ElementsCode( ["1000", "1101", "0011" ], GF(2) );
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap> C4 := ShortenedCode( C3 );
a (3,2,1..3)1..2 shortened code
gap> AsSSortedList( C4 );
[ [ 0 0 0 ], [ 1 0 1 ] ]
gap> C5 := HammingCode( 5, GF(2) );
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C6 := ShortenedCode( C5, [ 1, 2, 3 ] );
a linear [28,23,3]2 shortened code



Bounds on codes in GUAVA
Upper bounds on the size (dimension) of a code of length n and minimum
distance d over GF(q)

▶ UpperBoundSingleton( n, d, q )
▶ UpperBoundHamming( n, d, q ) (sphere-packing bound)
▶ UpperBoundJohnson( n, d )
▶ UpperBoundPlotkin( n, d, q )
▶ UpperBoundElias
▶ UpperBoundGriesmer( n, d, q )
▶ UpperBound( n, d, q ) (best known upper bound A(n, d))

Lower bounds on the size

▶ LowerBoundGilbertVarshamov( n, d, q )
▶ LowerBoundSpherePacking( n, d, q )

Upper and lower bounds on the minimum distance and the covering radius

▶ BoundsMinimumDistance( n, k, F )
▶ BoundsCoveringRadius( C )



Example of bounds on codes in GUAVA

gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true
gap> UpperBoundHamming( 15, 3, 2 );
2048
gap> C := HammingCode( 4, GF(2) );
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size( C );
2048
gap> IsPerfectCode(C);
true
gap> Filtered([1..10],i->IsGriesmerCode( HammingCode( i, GF(2) ) ));
[ 2, 3 ]



Summary

▶ GUAVA provides tools for constructing and analysing codes.
▶ Basic operations: define codes, encode/decode, compute parameters.
▶ Advanced constructions: Reed–Solomon codes, cyclic codes, etc.
▶ Tools for manipulating codes: puncture, shorten, etc.
▶ Testing existence of codes with given parameters: bounds on codes.
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