
Lecture 2: Coding Theory with GUAVA

Michel Lavrauw
University of Primorska

GAP Days Spring 2025, VUB

Overview

Introduction to Coding Theory

Using the GUAVA package

Available code constructions in GUAVA

Code manipulations

Bounds on codes

Basic Concepts

▶ A code is a subset of An where A is some non-empty set (the alphabet A).
▶ A linear code is a subspace of Fn

q (alphabet A = Fq).
▶ The parameters of a code are its length n, dimension k, and minimum

distance d .
▶ Used for all kinds of data transmission: detect and correct errors.

The GUAVA package

gap> LoadPackage("guava");

/ ___

|| / \ /\ Version 2.9.6
|| || || |\ | / \ /\ Erhard Aichinger
___ || || |\\ | /_________________/__\ Franz Binder

\ || || | \\ | / \ || / \ Juergen Ecker
|| ___/ | \\ | / \ || / \ Peter Mayr
|| | \\| / \ || Christof Noebauer

___/ | \| ||

System Of Nearrings And Their Applications
Info: https://gap-packages.github.io/sonata/

____ |
/ \ / --+-- Version 3.19

/ | | |\ \ / /| |
| __ | | | \ \ / / | the GUAVA Group
| | | | |--\ \ / /--|
\ | | | | \ \ / / |
___/ ___/ | \ \/ / |

Homepage: https://gap-packages.github.io/guava
Report issues at https://github.com/gap-packages/guava/issues

true

The GUAVA package

GUAVA: © The GUAVA Group: 1992-2003 Jasper Cramwinckel, Erik
Roijackers,Reinald Baart, Eric Minkes, Lea Ruscio (for the tex version), Jeffrey
Leon © 2004 David Joyner, Cen Tjhai, Jasper Cramwinckel, Erik Roijackers,
Reinald Baart, Eric Minkes, Lea Ruscio. © 2007 Robert L Miller, Tom
Boothby © 2009, 2012, 2016, 2018, 2022, 2025 Joe Fields

The functions in GUAVA can be divided into three subcategories:

1. Construction of codes: GUAVA can construct three types of codes:
unrestricted, linear and cyclic codes. Information about the code, is stored
in a record-like data structure.

2. Manipulations of codes: to construct a new code from (a) given code(s).

3. Computations of information about codes.

Creating a Code
The first code one might think of is the "repetition code".

The alphabet is

A:=GF(2);

and the lenght is

n:=3;

The list of codewords is

list:=["000","111"];

The code is defined from this list using ElementsCode

gap> C:=ElementsCode(list,A);
a (3,2,1..3)1 user defined unrestricted code over GF(2)

GUAVA calls this an "unrestricted code" (the other types of codes are "linear
code" and "cyclic code")

Codewords, distance, weight
Note !

gap> IsCodeword("000");
false
gap> IsCodeword(Codeword("000"));
true

Distance between codewords is the Hamming distance.

c1:=Codeword("000"); c2:=Codeword("111");
DistanceCodeword(c1,c2); MinimumDistance(C);

The number of nonzero symbols in a codeword (the alphabet A always contain
some "zero") is called the "Hamming weight" of the codeword:

Weight(c1);Weight(c2);

We can also immediatlely ask for all the weights in the code C

WeightDistribution(C);
CodeWeightEnumerator(C);

Linear codes: generator matrix, check matrix, dual code

Parameters of a code C

Length(C);
Dimension(C);
MinimumDistance(C);
CoveringRadius(C);

Generator matrix: rows are a basis C

G:=GeneratorMat(C);

and partity check matrix of C

H:=CheckMat(C);

whose rows are a basis for the C⊥, the dual code

DualCode(C);

Example Code, distance, weight

gap> G:=List([1..4],i->Random(GF(2)^7));;
gap> Display(G);
. 1 . . 1 1 1
1 1
1 . 1
1 1 . 1 1 1 1

gap> C:=GeneratorMatCode(G,GF(2));
a linear [7,4,1..3]1..3 code defined by generator matrix over GF(2)
gap> CodeWeightEnumerator(C);
4*x_1^6+5*x_1^4+6*x_1^2+1
gap> WeightDistribution(C);
[1, 0, 6, 0, 5, 0, 4, 0]
gap> Display(CheckMat(C));
1 1 1 1 1 . .
1 1 1 1 . 1 .
1 1 1 1 . . 1

gap> DualCode(C)=GeneratorMatCode(CheckMat(C),GF(2));
true

Intermezzo: Coding theory and Galois geometry

Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).

Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).

Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).

Reed–Solomon Code from a Normal Rational Curve

A NRC A is the image of νk−1 : PG(1, q) → PG(k − 1, q):

[s : t] 7→ [sk−1 : sk−2t : · · · : tk−1]

It consists of q+1 points in PG(k−1, q), no k contained in a hyperplane (arc).

Matrix G with columns: vectors representing the points of A.

The code generated by the rows of G is a Reed-Solomon code

C = {mG | m ∈ GF(q)k} ⇒ [n, k, n − k + 1]

Reed Solomon codes reach the Singleton bound!

They are Maximum Distance Separable Codes (MDS).

Geometry Behind the Code: Twisted Cubic over PG(3, 5).

Twisted Cubic in P3(GF(5)):

[s : t] 7→ [s3 : s2t : st2 : t3] for [s : t] ∈ P1(GF(5))

Points on the curve:

[1 : 0] 7→ [1 : 0 : 0 : 0]

[1 : 1] 7→ [1 : 1 : 1 : 1]

[1 : 2] 7→ [1 : 2 : 4 : 3]

[1 : 3] 7→ [1 : 3 : 4 : 2]

[1 : 4] 7→ [1 : 4 : 1 : 4]

[0 : 1] 7→ [0 : 0 : 0 : 1]

Generator matrix G :

G =

1 1 1 1 1 0
0 1 4 4 1 0
0 1 3 2 4 0
0 1 2 2 4 1

Encoding a message:

m = (1, 0, 3, 2) ⇒ c = m · G

This is a [6, 4, 3]-Reed–Solomon code
from a classical algebraic curve!

Geometry Behind the Code: Twisted Cubic over PG(3, 5).

Twisted Cubic in P3(GF(5)):

[s : t] 7→ [s3 : s2t : st2 : t3] for [s : t] ∈ P1(GF(5))

Points on the curve:

[1 : 0] 7→ [1 : 0 : 0 : 0]

[1 : 1] 7→ [1 : 1 : 1 : 1]

[1 : 2] 7→ [1 : 2 : 4 : 3]

[1 : 3] 7→ [1 : 3 : 4 : 2]

[1 : 4] 7→ [1 : 4 : 1 : 4]

[0 : 1] 7→ [0 : 0 : 0 : 1]

Generator matrix G :

G =

1 1 1 1 1 0
0 1 4 4 1 0
0 1 3 2 4 0
0 1 2 2 4 1

Encoding a message:

m = (1, 0, 3, 2) ⇒ c = m · G

This is a [6, 4, 3]-Reed–Solomon code
from a classical algebraic curve!

Geometry Behind the Code: Twisted Cubic over PG(3, 5).

Twisted Cubic in P3(GF(5)):

[s : t] 7→ [s3 : s2t : st2 : t3] for [s : t] ∈ P1(GF(5))

Points on the curve:

[1 : 0] 7→ [1 : 0 : 0 : 0]

[1 : 1] 7→ [1 : 1 : 1 : 1]

[1 : 2] 7→ [1 : 2 : 4 : 3]

[1 : 3] 7→ [1 : 3 : 4 : 2]

[1 : 4] 7→ [1 : 4 : 1 : 4]

[0 : 1] 7→ [0 : 0 : 0 : 1]

Generator matrix G :

G =

1 1 1 1 1 0
0 1 4 4 1 0
0 1 3 2 4 0
0 1 2 2 4 1

Encoding a message:

m = (1, 0, 3, 2) ⇒ c = m · G

This is a [6, 4, 3]-Reed–Solomon code
from a classical algebraic curve!

Geometry Behind the Code: Twisted Cubic over PG(3, 5).

Twisted Cubic in P3(GF(5)):

[s : t] 7→ [s3 : s2t : st2 : t3] for [s : t] ∈ P1(GF(5))

Points on the curve:

[1 : 0] 7→ [1 : 0 : 0 : 0]

[1 : 1] 7→ [1 : 1 : 1 : 1]

[1 : 2] 7→ [1 : 2 : 4 : 3]

[1 : 3] 7→ [1 : 3 : 4 : 2]

[1 : 4] 7→ [1 : 4 : 1 : 4]

[0 : 1] 7→ [0 : 0 : 0 : 1]

Generator matrix G :

G =

1 1 1 1 1 0
0 1 4 4 1 0
0 1 3 2 4 0
0 1 2 2 4 1

Encoding a message:

m = (1, 0, 3, 2) ⇒ c = m · G

This is a [6, 4, 3]-Reed–Solomon code
from a classical algebraic curve!

Reed–Solomon Codes in the CD Player

CDs use a two-level RS code: For the CD player:

[n, k]q = [28, 24]256, d = 5

(i.e., 24 data bytes, 4 parity bytes, q = 256)

▶ CIRC = Cross-Interleaved Reed–Solomon Code
▶ Combines two RS codes with interleaving
▶ Spreads burst errors (e.g., scratches) across multiple codewords
▶ Allows accurate reconstruction even when parts are unreadable

Result: Up to 3500 erroneous bits per second can be corrected!

The Interleaving Technique in CD Error Correction

Correcting errors caused by a scratch (burst error) on a CD.

[0 1 0] [0 0 1] [0 1 1]

[0 0 0] [1 0 1] [1 1 1]

Original Codewords (before interleaving)

Interleaved Codewords (spread out)

Idea:
Interleaving spreads
each codeword across
multiple positions.
A burst error (e.g. scratch)
affects only parts of each
codeword, allowing
error-correction.

Reed–Solomon Codes in QR Codes

A QR code stores information (text, URL, etc.) as
a 2D array of black and white squares.

The data is converted to byte sequences, and then:

▶ Divided into blocks (number depends on QR version and error level)
▶ Each block is encoded with a RS code in PG(222, 28)

▶ The encoded bytes are interleaved and placed in the QR grid
following a specific pattern.

Each QR code block secretly carries
the geometry of a NRC in a 222-

dimensional projective space over GF(28)

https://gap-packages.github.io/FinInG/

Reed–Solomon Codes in QR Codes

A QR code stores information (text, URL, etc.) as
a 2D array of black and white squares.

The data is converted to byte sequences, and then:

▶ Divided into blocks (number depends on QR version and error level)
▶ Each block is encoded with a RS code in PG(222, 28)

▶ The encoded bytes are interleaved and placed in the QR grid
following a specific pattern.

Each QR code block secretly carries
the geometry of a NRC in a 222-

dimensional projective space over GF(28)

https://gap-packages.github.io/FinInG/

Reed–Solomon Codes in QR Codes

A QR code stores information (text, URL, etc.) as
a 2D array of black and white squares.

The data is converted to byte sequences, and then:

▶ Divided into blocks (number depends on QR version and error level)
▶ Each block is encoded with a RS code in PG(222, 28)

▶ The encoded bytes are interleaved and placed in the QR grid
following a specific pattern.

Each QR code block secretly carries
the geometry of a NRC in a 222-

dimensional projective space over GF(28)

https://gap-packages.github.io/FinInG/

Encoding and Decoding

A message

m := [1,0,1];

the encoded message: a codeword

codeword := EncodeWord(C, m); (or codeword := m*C;)

a(received) word

received := [1,1,1,1,0];
DecodeWord(C, received);

the decoded received word

DecodeWord(C, received);

Decoding

gap> m:="1010";
gap> c := m*C; # encoding
[1 0 1 1 0 1 0]
gap> Decode(C, c); # decoding
[1 0 1 0]
gap> w:=c+"1000000"; # introduce one error
[0 0 0 1 0 1 0]
gap> Decode(C,w); # the correct message
[1 0 1 0]
gap> Decodeword(C,w); # the correct codeword
[1 0 1 1 0 1 0]

NOTE: If the code record has a field "SpecialDecoder", this special algorithm
is used to decode the vector, otherwise: Syndrome Decoding.

Syndrome Decoding

sa:=StandardArray(C);;
sa[1]; # these are all the codewords in C
sa[2]; # this is the first coset of C,
where l1=sa[2][1] is the coset leader

SyndromeTable returns a syndrome table of a linear code C, consisting of two
columns. The first column consists of the coset leaders that correspond to the
syndrome vectors in the second column.

gap> st:=SyndromeTable(C);

[[[0 0 0 0 0 0 0], [0 0 0]], [[1 0 0 0 0 0 0], [0 0 1]],
[[0 1 0 0 0 0 0], [0 1 0]], [[0 0 1 0 0 0 0], [0 1 1]],
[[0 0 0 1 0 0 0], [1 0 0]], [[0 0 0 0 1 0 0], [1 0 1]],

[[0 0 0 0 0 1 0], [1 1 0]], [[0 0 0 0 0 0 1], [1 1 1]]]

Syndrome Decoding Example

gap> m:="1010";
"1010"
gap> c := m*C; # encoding
[1 0 1 1 0 1 0]
gap> w:=c+"1000000";
[0 0 1 1 0 1 0]
gap> H:=CheckMat(C);;
gap> s:=H*w; # compute the syndrome w
[0 0 1]
gap>
gap> coset:=First(st,r->r[2]=s); # # according to the syndrome table, the word belongs to this coset
[[1 0 0 0 0 0 0], [0 0 1]]
gap> ev:=coset[1]; # the coset leader, which is the error vector
[1 0 0 0 0 0 0]
gap> c:=w-ev; # the corrected codeword
[1 0 1 1 0 1 0]
gap> c=Decodeword(C,w);
true

Available code constructions in GUAVA

EC := ElementsCode(["1000", "1101", "0011"], GF(2));
C := HammingCode(r,GF(q));
RS := ReedSolomonCode(q-1, n-k+1); # ExtendedReedSolomonCode
GRS := GeneralizedReedSolomonCode([a_1,..,a_n] , k , GF(q)[X]);
RM := ReedMullerCode(r, k); # r-th order binary of length 2^k
GRM := GeneralizedReedMullerCode(pts, r, GF(q));

evaluate poly’s in GF(q)[X_1,.., X_d] of degree \leq r at pts
x := Indeterminate(GF(q),"x");
GC := GoppaCode(x^2+x+1,Elements(GF(q)));
BG := BinaryGolayCode(); # ExtendedBinaryGolayCode();)
TG := TernaryGolayCode(); # ExtendedTernaryGolayCode();
EVC := EvaluationCode(elems,pol_list,pol_ring);

Cyclic codes in GUAVA

Cyclic codes are linear codes satisfying c ∈ C ⇒ σ(c) ∈ C where
σ = (1, .., n) ∈ Sym(n). They correspond to ideals in GF(q)[X]/(X n − 1).

gap> x:= Indeterminate(GF(2), "x");; P:= x^2+1;
x^2+Z(2)^0
gap> C1 := GeneratorPolCode(P, 7, GF(2));
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
gap> GeneratorPol(C1);
x+Z(2)^0
gap> x := Indeterminate(GF(3), "x");; P:= x^2+2;
x^2-Z(3)^0
gap> H := CheckPolCode(P, 7, GF(3));
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> CheckPol(H);
x-Z(3)^0
gap> Gcd(P, X(GF(3))^7-1);
x-Z(3)^0

Cyclic codes defined by its "roots"

gap> C2;
a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
gap> f:=GeneratorPol(C2);
x^6+x^5+x^4+x^3+x^2+x+Z(3)^0
gap> roots:=RootsOfCode(C2);
[Z(3^6)^104, Z(3^6)^208, Z(3^6)^312, Z(3^6)^416, Z(3^6)^520, Z(3^6)^624]
gap> Set(roots,a->f(a));
[0*Z(3)]

gap> a := PrimitiveUnityRoot(3, 14);
Z(3^6)^52
gap> C1 := RootsCode(14, [a^0, a, a^3]);
a cyclic [14,7,2..6]3..7 code defined by roots over GF(3)
gap> GeneratorPol(C1);
x^7+x^6-x^5+x^4-x^3+x^2-x-Z(3)^0
gap> RootsOfCode(C1);
[Z(3)^0, Z(3^6)^52, Z(3^6)^156, Z(3^6)^260, Z(3^6)^468, Z(3^6)^572,

Z(3^6)^676]
gap> ForAll([a^0,a,a^3],y->y in RootsOfCode(C1));
true

BCHCode (Bose-Chaudhuri-Hockenghem)

Let min(α,Fq) ∈ Fq[X] denote the minimal polynomial of an element α ∈ Fqm .
A BCH code over Fq of length n and designed minimal distance δ is a cyclic
code with generator polynomial

g(X) = lcm{min(β i ,Fq) : a ≤ i ≤ a+ δ − 2}

where β ∈ Fqm is a primitive n-th root of unity and a is some integer such that

βa, . . . , βa+δ−2

are δ − 1 distinct elements of Fqm .

Example of BCHCode

Aim: Construct a [15, k, d ≥ 7]-code over F2.

gap> a:=Z(16); # primitive 15-th root of unity
Z(2^4)
gap> CyclotomicCosets(2,15);
[[0], [1, 2, 4, 8], [3, 6, 12, 9], [5, 10], [7, 14, 13, 11]]
gap> Union(List([2,3,4],i->last[i])); # contains 6 consecutive integers
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12]
gap> roots:=List([1..6],i->a^i);
[Z(2^4), Z(2^4)^2, Z(2^4)^3, Z(2^4)^4, Z(2^2), Z(2^4)^6]
gap> C:=RootsCode(15,roots);
a cyclic [15,5,2..7]5 code defined by roots over GF(2)
gap> MinimumDistance(C); # by construction at least 7
7
gap> BCHCode(15,7,GF(2));
a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
gap> C=last;
true

Code manipulations in GUAVA

▶ ExtendedCode(C[, i])
▶ EvenWeightSubcode(C)
▶ PuncturedCode(C) or PuncturedCode(C , L)
▶ ExpurgatedCode(C, L)
▶ AugmentedCode(C, L)
▶ ShortenedCode(C[, L])
▶ LengthenedCode(C[, i])
▶ SubCode(C[, s])
▶ ResidueCode(C[, c])
▶ ConversionFieldCode(C)

Example 1 of code manipulations

gap> C1 := HammingCode(3, GF(2));
a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> C2 := ExtendedCode(C1);
a linear [8,4,4]2 extended code
gap> CodeWeightEnumerator(C2);
x_1^8+14*x_1^4+1
gap> C3 := EvenWeightSubcode(C1);
a linear [7,3,4]2..3 even weight subcode
gap> CodeWeightEnumerator(C3);
7*x_1^4+1
gap> PuncturedCode(C2);
a linear [7,4,3]1 punctured code
gap> PuncturedCode(C2,[1,2]); # the minimum distance might decrease
a linear [6,4,2]1 punctured code

Example 2 of code manipulations

gap> G:=[[Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],
> [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],
> [0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0],
> [0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]];;
gap> Display(G);
1 1 1 1 1 1 1 1
. . . . 1 1 1 1
. . 1 1 . . 1 1
. 1 . 1 . 1 . 1

gap> C1:=GeneratorMatCode(G,GF(2));
a linear [8,4,1..4]2 code defined by generator matrix over GF(2)
gap> MinimumDistance(C1);
4
gap> C2:=AugmentedCode(C1,["00000011","00000101","00010001"]);
a linear [8,7,1..2]1 code, augmented with 3 word(s)
gap> MinimumDistance(C2);
2

Example 3 of code manipulations

ShortenedCode(C): this is done by removing all codewords that start with a
non-zero entry, after which the first column is cut off. If C was a linear [n, k, d]
code, the shortened code is a [n − 1,≤ k,≥ d] code.

gap> C3 := ElementsCode(["1000", "1101", "0011"], GF(2));
a (4,3,1..4)2 user defined unrestricted code over GF(2)
gap> C4 := ShortenedCode(C3);
a (3,2,1..3)1..2 shortened code
gap> AsSSortedList(C4);
[[0 0 0], [1 0 1]]
gap> C5 := HammingCode(5, GF(2));
a linear [31,26,3]1 Hamming (5,2) code over GF(2)
gap> C6 := ShortenedCode(C5, [1, 2, 3]);
a linear [28,23,3]2 shortened code

Bounds on codes in GUAVA
Upper bounds on the size (dimension) of a code of length n and minimum
distance d over GF(q)

▶ UpperBoundSingleton(n, d, q)
▶ UpperBoundHamming(n, d, q) (sphere-packing bound)
▶ UpperBoundJohnson(n, d)
▶ UpperBoundPlotkin(n, d, q)
▶ UpperBoundElias
▶ UpperBoundGriesmer(n, d, q)
▶ UpperBound(n, d, q) (best known upper bound A(n, d))

Lower bounds on the size

▶ LowerBoundGilbertVarshamov(n, d, q)
▶ LowerBoundSpherePacking(n, d, q)

Upper and lower bounds on the minimum distance and the covering radius

▶ BoundsMinimumDistance(n, k, F)
▶ BoundsCoveringRadius(C)

Example of bounds on codes in GUAVA

gap> UpperBoundSingleton(4, 3, 5);
25
gap> C := ReedSolomonCode(4,3);; Size(C);
25
gap> IsMDSCode(C);
true
gap> UpperBoundHamming(15, 3, 2);
2048
gap> C := HammingCode(4, GF(2));
a linear [15,11,3]1 Hamming (4,2) code over GF(2)
gap> Size(C);
2048
gap> IsPerfectCode(C);
true
gap> Filtered([1..10],i->IsGriesmerCode(HammingCode(i, GF(2))));
[2, 3]

Summary

▶ GUAVA provides tools for constructing and analysing codes.
▶ Basic operations: define codes, encode/decode, compute parameters.
▶ Advanced constructions: Reed–Solomon codes, cyclic codes, etc.
▶ Tools for manipulating codes: puncture, shorten, etc.
▶ Testing existence of codes with given parameters: bounds on codes.

	Introduction to Coding Theory
	Using the GUAVA package
	Available code constructions in GUAVA
	Code manipulations
	Bounds on codes

