Exercise Sheet: Lecture 3 Incidence Structures in FinInG

Michel Lavrauw

GAP Days Spring 2025, VUB

Exercises

- 1. Consider a conic C in the projective plane PG(2,5).
 - (a) Embed the projective plane as a hyperplane H in a 3-dimensional projective space $\Sigma \cong PG(3,5)$.
 - (b) Define the incidence structure S with points \mathcal{P} and lines \mathcal{L} consisting of the following types of "points" and "lines":

"points": (a) the points of Σ which are not in H, (b) the planes of Σ which meet H in a tangent line to \mathcal{C} , (c) a special point (∞) ;

"lines": (i) lines of Σ meeting H in a point of C, (ii) the points of C.

The incidence relation relation is defined as the natural incidence relation in the projective space Σ , and the point (∞) is incident with all the lines of type (b), and not incident with any points of type (a).

- (c) Show that the incidence structure S is a generalised quadrangle of order (s,t) = (5,5).
- (d) Show that S is isomorphic to the generalised quadrangle Q(4,5).
- 2. Consider a 3-dimensional space $\Omega \cong PG(3,7)$.
 - (a) Define the Field Reduction map ϕ from PG(1,7²) to Ω (NaturalEmbeddingByFieldReduction).
 - (b) Show that the image of the set of points of $PG(1, 7^2)$ under ϕ defines a set S of pairwise disjoint lines in PG(3, 7) which form a partition of the set of points of PG(3, 7).
 - (c) Embed the Ω as a hyperplane H in a 4-dimensional projective space $\Sigma \cong \mathrm{PG}(4,7).$

(d) Define the following incidence geometry Δ with points \mathcal{P} and lines \mathcal{L} consisting of the following "points" and "lines":

"points": the points of Σ which are not in H,

"lines": planes of Σ which meet H in an element of S.

The incidence relation is the natural incidence in Σ . The type function sends points to 1 and lines to 2.

(e) Which classical geometry is Δ isomorphic to?