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"Coordinate-free" presentations of
@ Hyperovals
@ Segre arcs
@ Maximal arcs
@ Ovoids
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Ovals

An k-arc in an n-dimensional projective space is a set of k
points with the property that any n+ 1 of them span the whole
space. An arc in a projective plane is called a planar arc.

An oval in projective plane PG(2,q) is an a (q + 1)-arc.

Hyperoval is a (g + 2)-arc.
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O-polynomials

q=2"
A hyperoval in PG(2,2™) can be presented as
D(f) = {(17t7f(t)) ’ tngm}U(0,1,0)U(0,0,1),

where f(t) is an o-polynomial.
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Polar coordinate representation

K /F field extension of degree 2, K = Fon, F = Fom, n=2m.
The conjugate of x € K over F is
x = x9.
Norm and Trace maps from K to F are
N(x)=xx, T=x+X.
The unit circle of K is the set of elements of norm 1:
S={ueK:Nkx) =1}

S is the multiplicative group of (g + 1)st roots of unity in K.
Each element x of K* has a unique representation

X=\U

with A € F and u € S (polar coordinate representation).

Kanat Abdukhalikov Extended field presentations of arcs and ovoids



Polar coordinate representation

Consider K as AG(2,q), g =2™.
Any hyperoval in K can be represented as a set

{g(uu): ueS}UO CK

for some functiong: S — F.

Regular (hyperconic): g(u) = 1.
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Adelaide hyperovals

Adelaide hyperoval in K:

glu)=1+ ula-173 4 gla-1/3,

Subiaco hyperovals:

glv) = 1+°+0°,
g91(u) = 14+60u°+00° (form=2 (mod 4)),

where () = S.

For g = 16, Adelaide and Subiaco hyperovals coinside to
became Lunelli-Sce hyperoval.
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O-polynomials

Adelaide o-polynomials:

_ T(bY)

k
()= Fpy (+ 1)+ N+ o))

T(b)(t+ T(b)t"/2 + 1)k-

-+ 112

where meven, be S, b# 1and k = £ 9.
Subiaco o-polynomials:

AP+ dP(1 4+ d+ d?)B + d?(1 + d + d?) 2 + d?t e

) (2 +dt+1)2

where d € F, tr(1/d) =1,and d ¢ F4 for m =2 (mod 4). This
o-polynomial gives rise to two inequivalent hyperovals when

m =2 (mod 4) and to a unique hyperoval when m # 2

(mod 4).
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Segre arcs

Any (g + 1)-arcin PG(3, q) is equivalent to one of the Segre
arcs:

Le = {(1,7%:7*",7%"") | v € F}u{(0,0,0,1)},
where ged(e, m) = 1.

Segre arc is cyclic.
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Segre arcs

F=Fq q=2", K=Fp, F*~K?

S={ucK|Nx)=1} ={ue K| x93 =1}.

Letgcd(e,m) =1 and

Me = {(u* ", u®**")c K?|ueS).

Then M, is a Segre arc in PG(3, F).

The (g + 1)-arc M, is clearly cyclic.
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Maximal Arcs

A {k; t}-arcin PG(2, q) is a set K of k points such that t is the
maximum number of points in K that are collinear.

k<(q+1)(t—1)+1
A {k; t}-arcin PG(2,q) with k = (q+1)(t — 1) + 1 is called a
maximal arc.

If K is a maximal {k; t}-arc in PG(2,q) and 1 < t < gthen qis
even, t is a divisor of g, and every line in PG(2, q) intersects K
in 0 or t points.

The {q + 2;2}-arcs in PG(2, q) are hyperovals.
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Denniston Maximal Arcs

Choose ¢ € F = F, such that the polynomial X2 + §X + 1 is
irreducible over F. For each A € F consider the quadratic curve
D, in AG(2, q) defined by the equation X2 + XY + Y2 = \.

If A # 0 then D, is a conic and its nucleus is the point (0, 0).
If A = 0 then D, consists of the single point (0, 0).

Let A C F. Then the set
D= D, (1)

AEA

is @ maximal arc in AG(2, q) if and only if A is a subgroup of the
additive group of F.
In this case D is a maximal {qt — g + t; t}-arc with t = |A|.

Kanat Abdukhalikov Extended field presentations of arcs and ovoids



Denniston Maximal Arcs

The next theorem shows that in terms of polar coordinates the
Denniston maximal arcs can be expressed in a very simple way.

Theorem

The Denniston maximal arcs can be expressed as

D= U)\SCK,
AEN

where N\ is a subgroup of the additive group of the field F
and S is the unit circle of K.
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In the projective space PG(3, g) with g > 2, an ovoid is a set of
g° + 1 points meeting every line in at most 2 points.

There are two known ovoids in PG(3,q), g =2™:

elliptic quadric and Suzuki-Tits ovoid.

Suzuki-Tits ovoids were first described by Tits and they are
stabilized by the Suzuki groups Sz(q).

Suzuki groups Sz(q) also known as the twisted Chevalley
groups of type 2B5(q).
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Let Q be a non-degenerate quadratic form on 4-dimensional
vector space V over F.

The set of singular points of Q defines either hyperbolic or
elliptic quadric in PG(3, q).

The elliptic quadric in PG(3, q) is an ovoid
(contains g° + 1 points).
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Ovoids

The next theorem provides a coordinate-free presentation of
the elliptic quadric in PG(3, q).

Theorem

Let E > K D F be a chain of finite fields, |E| = g*, |K| = ¢?,
|FI=q,q9g=2". Then

Q(x) = Trx/r(Ng/k(X))

is a non-degenerate quadratic form on 4-dimensional vector
space E over F. Moreover, the set

O={ueE|Ng(uy=1}={uecE|uF+ =1}

determines an elliptic quadric in PG(3, q).

K. A., D. Ho
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Suzuki-Tits ovoids

Let g = 2™, where m > 3 is odd.
Let o = 2(m+1)/2,

Suzuki-Tits ovoids:

{(1aX’y7Xy+XU+2+yU) | XaYEFq}U{(OaO»071)}-
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Suzuki-Tits ovoids

Let g = 2™, where m > 3 is odd.
Lets=q—+/2g9+1,t=q++/29+1. Theng® + 1 = st.

Os:={xe E|x*=1},
Or:={xe€ E|x'=1},
O={ucE|Ngy(u)y=1}={ueE|uT* =1}.

Then
O = 004
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Suzuki-Tits ovoids

Let

1\
76::(%U{<vq‘1+vq_1> UV|U€OSvV€O’\{1}}’

1) The set Ty is a Suzuki-Tits ovoid.
2) The set Ty is the set of solutions of the equation Qy(x) = 0,
where

Qo(x) = x4 xS(V2aH) 4 x5 4 1,

K. A., S. Ball, D. Ho, T. Popatia
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Suzuki-Tits ovoids
Let

q—1
ﬂ;:@tu{<uq—1+uq11> uv\ue(’)s\{1},ve0t},

Theorem

1) The set Ty is a Suzuki-Tits ovoid.

2) The set Ty is the set of solutions of the equation Q¢(x) = 0,
where

O1(x) = xFH1 41 4 x! <1 + xV2atly q/2”>

1+ xV2at
log \/q/2—1 ‘
+xt S XPWEeR + xV2aty2-1,
j=0

K. A., S. Ball, D. Ho, T. Popatia
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Thank you very much for your attention!
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