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Ovals

An k -arc in an n-dimensional projective space is a set of k
points with the property that any n + 1 of them span the whole
space. An arc in a projective plane is called a planar arc.

An oval in projective plane PG(2,q) is an a (q + 1)-arc.

Hyperoval is a (q + 2)-arc.
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O-polynomials

q = 2m

A hyperoval in PG(2,2m) can be presented as

D(f ) = {(1, t , f (t)) | t ∈ F2m} ∪ (0,1,0) ∪ (0,0,1),

where f (t) is an o-polynomial.
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Polar coordinate representation
K/F field extension of degree 2, K = F2n , F = F2m , n = 2m.

The conjugate of x ∈ K over F is

x̄ = xq.

Norm and Trace maps from K to F are

N(x) = xx̄ , T = x + x̄ .

The unit circle of K is the set of elements of norm 1:

S = {u ∈ K : N(x) = 1}.

S is the multiplicative group of (q + 1)st roots of unity in K .
Each element x of K ∗ has a unique representation

x = λu

with λ ∈ F and u ∈ S (polar coordinate representation).
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Polar coordinate representation

Consider K as AG(2,q), q = 2m.

Any hyperoval in K can be represented as a set{
u

g(u)
: u ∈ S

}
∪ 0 ⊂ K

for some function g : S → F .

Regular (hyperconic): g(u) = 1.
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Adelaide hyperovals

Adelaide hyperoval in K :

g(u) = 1 + u(q−1)/3 + ū(q−1)/3.

Subiaco hyperovals:

g(u) = 1 + u5 + ū5,

g1(u) = 1 + θu5 + θ̄ū5 (for m ≡ 2 (mod 4)),

where 〈θ〉 = S.

For q = 16, Adelaide and Subiaco hyperovals coinside to
became Lunelli-Sce hyperoval.
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O-polynomials

Adelaide o-polynomials:

f (t) =
T (bk )

T (b)
(t + 1) +

T ((bt + bq)k )

T (b)(t + T (b)t1/2 + 1)k−1 + t1/2,

where m even, b ∈ S, b 6= 1 and k = ±q−1
3 .

Subiaco o-polynomials:

f (t) =
d2t4 + d2(1 + d + d2)t3 + d2(1 + d + d2)t2 + d2t

(t2 + dt + 1)2 + t1/2

where d ∈ F , tr(1/d) = 1, and d 6∈ F4 for m ≡ 2 (mod 4). This
o-polynomial gives rise to two inequivalent hyperovals when
m ≡ 2 (mod 4) and to a unique hyperoval when m 6≡ 2
(mod 4).
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Segre arcs

F = Fq, q = 2m

Any (q + 1)-arc in PG(3,q) is equivalent to one of the Segre
arcs:

Le = {(1, γ, γ2e
, γ2e+1) | γ ∈ F} ∪ {(0,0,0,1)},

where gcd(e,m) = 1.

Segre arc is cyclic.
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Segre arcs

F = Fq, q = 2m , K = Fq2 , F 4 ≈ K 2

S = {u ∈ K | N(x) = 1} = {u ∈ K | xq+1 = 1}.

Theorem
Let gcd(e,m) = 1 and

Me = {(u2e−1,u2e+1) ⊂ K 2 | u ∈ S}.

Then Me is a Segre arc in PG(3,F ).

The (q + 1)-arc Me is clearly cyclic.
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Maximal Arcs

A {k ; t}-arc in PG(2,q) is a set K of k points such that t is the
maximum number of points in K that are collinear.

k ≤ (q + 1)(t − 1) + 1

A {k ; t}-arc in PG(2,q) with k = (q + 1)(t − 1) + 1 is called a
maximal arc.

If K is a maximal {k ; t}-arc in PG(2,q) and 1 < t < q then q is
even, t is a divisor of q, and every line in PG(2,q) intersects K
in 0 or t points.

The {q + 2; 2}-arcs in PG(2,q) are hyperovals.
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Denniston Maximal Arcs

Choose δ ∈ F = Fq such that the polynomial X 2 + δX + 1 is
irreducible over F . For each λ ∈ F consider the quadratic curve
Dλ in AG(2,q) defined by the equation X 2 + δXY + Y 2 = λ.

If λ 6= 0 then Dλ is a conic and its nucleus is the point (0,0).
If λ = 0 then Dλ consists of the single point (0,0).

Let ∆ ⊆ F . Then the set

D =
⋃
λ∈∆

Dλ (1)

is a maximal arc in AG(2,q) if and only if ∆ is a subgroup of the
additive group of F .
In this case D is a maximal {qt − q + t ; t}-arc with t = |∆|.
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Denniston Maximal Arcs

The next theorem shows that in terms of polar coordinates the
Denniston maximal arcs can be expressed in a very simple way.

Theorem
The Denniston maximal arcs can be expressed as

D =
⋃
λ∈Λ

λS ⊂ K ,

where Λ is a subgroup of the additive group of the field F
and S is the unit circle of K .
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Ovoids

In the projective space PG(3,q) with q > 2, an ovoid is a set of
q2 + 1 points meeting every line in at most 2 points.

There are two known ovoids in PG(3,q), q = 2m:

elliptic quadric and Suzuki-Tits ovoid.

Suzuki-Tits ovoids were first described by Tits and they are
stabilized by the Suzuki groups Sz(q).

Suzuki groups Sz(q) also known as the twisted Chevalley
groups of type 2B2(q).
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Ovoids

Let Q be a non-degenerate quadratic form on 4-dimensional
vector space V over F .

The set of singular points of Q defines either hyperbolic or
elliptic quadric in PG(3,q).

The elliptic quadric in PG(3,q) is an ovoid
(contains q2 + 1 points).
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Ovoids

The next theorem provides a coordinate-free presentation of
the elliptic quadric in PG(3,q).

Theorem

Let E ⊃ K ⊃ F be a chain of finite fields, |E | = q4, |K | = q2,
|F | = q, q = 2m. Then

Q(x) = TrK/F (NE/K (x))

is a non-degenerate quadratic form on 4-dimensional vector
space E over F . Moreover, the set

O = {u ∈ E | NE/K (u) = 1} = {u ∈ E | uq2+1 = 1}

determines an elliptic quadric in PG(3,q).

K. A., D. Ho
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Suzuki-Tits ovoids

Let q = 2m, where m ≥ 3 is odd.

Let σ = 2(m+1)/2.

Suzuki-Tits ovoids:

{(1, x , y , xy + xσ+2 + yσ) | x , y ∈ Fq} ∪ {(0,0,0,1)}.
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Suzuki-Tits ovoids

Let q = 2m, where m ≥ 3 is odd.

Let s = q −
√

2q + 1, t = q +
√

2q + 1. Then q2 + 1 = st .

Os := {x ∈ E | xs = 1},

Ot := {x ∈ E | x t = 1},

O = {u ∈ E | NE/K (u) = 1} = {u ∈ E | uq2+1 = 1}.

Then
O = OsOt

Kanat Abdukhalikov Extended field presentations of arcs and ovoids



Suzuki-Tits ovoids

Let

T0 := Os ∪

{(
vq−1 +

1
vq−1

)q−1

uv | u ∈ Os, v ∈ Ot\{1}

}
,

Theorem
1) The set T0 is a Suzuki-Tits ovoid.
2) The set T0 is the set of solutions of the equation Q0(x) = 0,
where

Q0(x) = xq2+1 + xs(
√

2q+1) + xs + 1.

K. A., S. Ball, D. Ho, T. Popatia
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Suzuki-Tits ovoids
Let

T1 := Ot ∪

{(
uq−1 +

1
uq−1

)q−1

uv | u ∈ Os\{1}, v ∈ Ot

}
,

Theorem
1) The set T1 is a Suzuki-Tits ovoid.
2) The set T1 is the set of solutions of the equation Q1(x) = 0,
where

Q1(x) = xq2+1 + 1 + x t

(
1 + x

√
2qt(
√

q/2−1)

1 + x
√

2qt

)
+

+ x t
log
√

q/2−1∑
j=0

x2j (
√

2q−2)t (1 + x
√

2qt )2j−1.

K. A., S. Ball, D. Ho, T. Popatia
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Thank you very much for your attention!
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