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SYMMETRIC RANK-DISTANCE CODES

▶ An Fq-linear symmetric rank-distance code is a subspace C ≤ Sn(Fq)
equipped with the rank-distance metric:

d(A, B) = rank(A − B), for A, B ∈ C.

▶ The minimum distance of C is:

d = d(C) = min{d(X, Y ) : X, Y ∈ C, X ̸= Y }.

Fq-linear CSRD codes:

▶ Fq-linear SRD codes.

▶ An Fq-linear code of min. distance d is complete if not contained in a larger
Fq-linear code with the same d.
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BOUNDS ON ADDITIVE SRD CODES

▶ [Schmidt, 2015]:

dim(C) ≤
{

n(n−d+2)
2 if n − d is even,

(n+1)(n−d+1)
2 if n − d is odd.

(1)

▶ Constructions of additive SRD codes can be found in [Schmidt, 2015, 2020].

▶ Bound achieved ⇒ MSRD code (maximum symmetric rank distance).

▶ Sphere-packing bound is achieved: SRD perfect codes ⇐⇒ n odd and d = 3
[Mushrraf and Zullo, 2025].

??
To characterize Fq-linear CSRD codes in Mn×n(Fq) that are not MSRD codes.

To classify and characterize Fq-linear CSRD codes in M3×3(Fq).
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GEOMETRIC INTERPRETATION

▶ An Fq-linear SRD code in Mn×n(Fq) ⇐⇒ a subspace of the projective
space PG(N − 1, q); N = n(n+1)

2 .

▶ The set of symmetric rank-one matrices in Mn×n(Fq) ⇐⇒ the set of points
of the Veronese variety Vn(Fq) in PG(N − 1, q).

▶ Vn(Fq) is the image of the Veronese embedding:

νn : PG(n, q) → PG(N − 1, q)
((x0, . . . , xn−1) 7−→ (xn

0 , xn−1
0 x1, · · · , xn−1

0 xn−1, · · · , xn−2
0 x1x2, · · · , xn

n−1).

▶ V(d−1)
n (Fq) ⇐⇒ the set of symmetric matrices in Mn×n(Fq) of rank at most

d.

▶ A k-dimensional CSRD code in Mn×n(Fq) of minimum distance d ⇐⇒ a
(k − 1)-dimensional subspace of PG(N − 1, q) that is disjoint from
V(d−1)

n (Fq) (minimum rank d) and maximal for this property.
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EQUIVALENCE

▶ C is linear equivalent to C′ ⇐⇒ ∃ (A, B) ∈ GL(n, q) × GL(n, q) such that
C′ = ACB.

▶ C is linear equivalent to C′ ⇐⇒ W is G-equivalent to W ′ in PG(n2 − 1, q);
G ⩽ PGL(n2, q) stabilising Sn,n(Fq) the image of the Segre embedding:

σn,n : PG(n − 1, q) × PG(n − 1, q) −→ PG(n2 − 1, q)

((x0, . . . , xn−1), (y0, . . . , yn−1)) 7−→ (x0y0, x0y1, . . . , xiyj , . . . , xn−1yn−1) .

.

Symmetric rank-distance codes:

▶ C is symmetric equivalent to C′ ⇐⇒ ∃ X ∈ GL(n, q) × GL(n, q) such that
C′ = XCXT .

▶ C is symmetric equivalent to C′ ⇐⇒ W is K-equivalent to W ′;
K ⩽ PGL( n(n+1)

2 , q) stabilising Vn(Fq).
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EQUIVALENCE CLASSES OF CSRD CODES: 3 × 3 CASE

d = 2:
▶ Theorem 1:

There are 3 equivalence classes of Fq-linear CSRD codes in M3×3(Fq) of
minimum distance 2 for q odd. Moreover, each Fq-linear CSRD code in
M3×3(Fq), q odd, of minimum distance 2 is an MSRD code.

▶ Theorem 2:
There are 6 equivalence classes of Fq-linear CSRD codes in M3×3(Fq) of
minimum distance 2 for q ≥ 4 even, 3 of which are MSRD codes.

d = 3:
▶ MSRD codes in M3×3(Fq) with d = 3 have dimension 3 → MRD codes:

Equivalence classes of MRD codes in M3×3(Fq) with d = 3 ⇐⇒ the
isotopism classes of 3-dimensional semifields.

▶ A 3-dimensional semifield is either a field or isotopic to a twisted field
[Menichetti, 1977].

▶ Lemma: An Fq-linear CSRD code in M3×3(Fq) with d = 3 is an MSRD
code.
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APPROACH
A k-dimensional CSRD code in M3×3(Fq) of minimum distance d ⇐⇒ a
(k − 1)-dimensional subspace of PG(5, q) that is disjoint from V(d−1)(Fq)
(minimum rank d) and maximal for this property.

Representation:
The solid in PG(5, q) spanned by the 1st four points of the standard frame is[

x y z
y t .
z . .

]
:= {

[
x y z
y t 0
z 0 0

]
: (x, y, z, t) ∈ F4

q; (x, y, z, t) ̸= (0, 0, 0, 0)}.

d = 2 :
To determine solids (MSRD), planes, and lines of minimum rank 2 that are disjoint
from V(Fq) and maximal for this property.

d = 3 :
To determine planes (MSRD) and lines of minimum rank 3 that are disjoint from
V(2)(Fq) and maximal for this property.
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ORBITS INVARIANTS:
▶ The rank distribution of W is

[r1, r2, r3],

where

ri = # of rank i points in W .

C ⇐⇒ W :
The rank distribution of C is (1, r1(q − 1), r2(q − 1), r3(q − 1)).

▶ The r-space orbit-distribution of W is

ODr(W ) = [u1, u2, . . . , um],

where

ui = # of r-spaces incident with W which belong to the orbit Ui

(U1, U2,...,Um are the distinct K-orbits of r-spaces in PG(5, q)).
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POINTS AND HYPERPLANES OF PG(5, q)
K-orbits of points; q odd / even:

▶ P1 := Rank-one points.

▶ P2,e := Exterior rank-two points / P2,n := Rank-two points in the nucleus
plane.

▶ P2,i := Interior rank-two points / P2,s := Rank-two points outside the nucleus
plane.

▶ P3 := Rank-three points.

K-orbits of Hyperplanes:

▶ H1:={ Hyperplanes ⇐⇒ repeated lines in PG(2, q)}.

▶ H2,r:= { Hyperplanes ⇐⇒ pairs of real lines in PG(2, q)}.

▶ H2,i:= { Hyperplanes ⇐⇒ pairs of conjugate imaginary lines in PG(2, q2)}.

▶ H3:= { Hyperplanes ⇐⇒ non-singular conics in PG(2, q)}.
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SOLIDS OF MINIMUM RANK 2
K-orbits of solids in PG(5, q)

▶ For q odd: there are 15 K-orbits of solids corresponding to the K-orbits of
lines in PG(5, q) ([Lavrauw and Popiel, 2020]).
(MSRD ⇐⇒ solids in Ω8,2 ∪ Ω14,2 ∪ Ω15,2).

▶ For q even: there are 15 K-orbits of solids as determined in [A., Lavrauw and
Popiel, 2022].

SK Representatives OD0(S) OD4(S)

Ω7

[
x y z
y x + γy t
z t y

]
[0, q + 1, q2 + q, q3 − q] [1, 0, 1, q − 1]

Ω13

[
x y z
y γx + y t
z t γx + z

]
[0, 1, q2 + 3q, q3 − 2q] [0, 1, 2, q − 2]

Ω14

[
x y γx + y + γt
y γx + y z

γx + y + γt z t

]
[0, 1, q2 + q, q3] [0, 0, 1, q]

Table: Geometric interpretation of the 3 equivalence classes of Fq-linear MSRD codes in
M3×3(Fq) for q even, where Tr(γ−1) = 1 in Ω7 and Tr(γ) = 1 in Ω13 and Ω14.
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PLANES OF MINIMUM RANK 2
Theorem:

▶ For q odd, a plane in PG(5, q) of minimum rank 2 is contained in a solid in
Ω8,2 ∪ Ω14,2 ∪ Ω15,2.

▶ For q ≥ 4 even, a plane in PG(5, q) of minimum rank 2 with at least one
rank-2 point outside the nucleus plane πN is contained in a solid in
Ω7 ∪ Ω13 ∪ Ω14.

Proof.
Let π be such a plane and P ∈ π ∩ V(2)(Fq). The number of solids through π in
PG(5, q) is equal to the number of points on V(Fq), it follows that there must be at
least one solid through π which does not meet V(Fq), unless all solids of the form
⟨π, Q⟩, with Q ∈ V(Fq) are distinct. To see that this is not the case, consider the
conic C(P ) and a secant line ⟨Q, Q′⟩ of C(P ) through P . Then ⟨π, Q⟩ = ⟨π, Q′⟩.

For q even, the existence of a secant line through P is guaranteed, as π contains at
least one rank-2 point outside πN .
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π ∩ V (2)(Fq) ⊆ πN :

▶ π = πN , π ∩ πN = ℓ ∈ o12,1 or π ∩ πN = P
(→ 3 distinct K-orbits: ΣN , Σ and Σ′).

Theorem:
For a plane π in PG(5, q) with q ≥ 4 even, we have r2,n(π) = h1(π); that is, the
number of hyperplanes in H1 containing π equals |π ∩ πN |.

▶ Lemma: For π ∈ Σ, OD4(π) = [q + 1, 0, 0, q2].
▶ Lemma: For π ∈ Σ′, OD4(π) = [1, 0, 0, q2 + q].

Theorem:
For q ≥ 4 even, a plane in PG(5, q) disjoint from V(Fq) and intersecting V(2)(Fq)
in a nonempty subspace of πN is maximal with respect to that property, i.e., it is not
contained in any solid of minimum rank 2.
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K-ORBITS OF LINES IN PG(5, q)
Orbits [r1, r2,e, r2,i, r3]
o5 [2, q−1

2 , q−1
2 , 0]

o6 [1, q, 0, 0]
o8,1 [1, 1, 0, q − 1]
o8,2 [1, 0, 1, q − 1]
o9 [1, 0, 0, q]
o10 [0, q+1

2 , q+1
2 , 0]

o12,1 [0, q + 1, 0, 0]
o13,1 [0, 2, 0, q − 1]
o13,2 [0, 1, 1, q − 1]
o14,1 [0, 3, 0, q − 2]
o14,2 [0, 1, 2, q − 2]
o15,1 [0, 1, 0, q]
o15,2 [0, 0, 1, q]
o16,1 [0, 1, 0, q]
o17 [0, 0, 0, q + 1]

Orbits [r1, r2,n, r2,s, r3]
o5 [2, 0, q − 1, 0]
o6 [1, 1, q − 1, 0]
o8,1 [1, 0, 1, q − 1]
o8,3 [1, 1, 0, q − 1]
o9 [1, 0, 0, q]
o10 [0, 0, q + 1, 0]
o12,1 [0, q + 1, 0, 0]
o12,3 [0, 1, q, 0]
o13,1 [0, 1, 1, q − 1]
o13,3 [0, 0, 2, q − 1]
o14,1 [0, 0, 3, q − 2]
o15,1 [0, 0, 1, q]
o16,1 [0, 1, 0, q]
o16,3 [0, 0, 1, q]
o17 [0, 0, 0, q + 1]

Table: K-orbits of lines in PG(5, q) for q odd (left) and q even (right) [Lavrauw,
Popiel, 2020]
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LINES OF MINIMUM RANK 2:

Lemma:
A line in PG(5, q) of minimum rank 2 extends to a solid in Ω8,2 ∪ Ω14,2 ∪ Ω15,2 for
q odd and Ω7 ∪ Ω13 ∪ Ω14 for q even.

Sketch of the proof:

1. ℓ is contained in at least q3 planes of minimum rank 2.

2. q odd −→ ℓ ∈ Ω8,2 ∪ Ω14,2 ∪ Ω15,2.

3. q even: If ℓ ∩ V2(Fq) ̸⊂ πN −→ ℓ ∈ Ω7 ∪ Ω13 ∪ Ω14. Else, ℓ ∈ o12,1 ∪ o16,1.
A solid S ∈ Ω7 contains a line in o12,1 and o16,1.
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IMPLICATIONS ON NETS OF CONICS IN PG(2, q)
▶ K-orbits of subspaces in PG(5, q) ⇐⇒ PGL(3, q)-orbits of linear systems

of conics in PG(2, q).

▶ Open problem: Classifying nets of conics in PG(2, q) with empty bases
⇐⇒ Classifying planes in PG(5, q) disjoint from V(Fq).

▶ There is a unique PGL(3, q)-orbit of nets of conics in PG(2, q) with conic
distribution [1, 0, 0, q2 + q] for q > 2 even, represented by

N18 = α(cX0X2 + X2
1 ) + β(X2

0 + X0X2 + X1X2) + γX2
2 ;

c is a non-admissible element of Fq satisfying Tr(c−1) = Tr(1)
▶ Non-trivial perfect Fq-linear CSRD codes in M3×3(Fq) correspond to nets of

conics in PG(2, q) that exclude singular conics.

▶ A net of conics with an empty base and at least one pair of lines (real or
imaginary) contains a pencil of conics with an empty base:
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FINAL REMARKS

▶ For q odd: All Fq-linear SRD codes in M3×3(Fq) are extendable to MSRD
codes.

▶ For q even: The only Fq-linear SRD codes in M3×3(Fq) that cannot extend to
an MSRD code are the 3-dimensional CSRD codes with rank distributions
(1, 0, q3 − 1, 0), (1, 0, q2 − 1, q3 − q2) and (1, 0, q − 1, q3 − q).

▶ While every MSRD code is a CSRD code, obtaining the conditions under
which the converse fails remains an open question, particularly for n > 3.

▶ Fq-linear CSRD codes in Mn×n(Fq) ⇐⇒ Linear systems of quadrics in
PG(n − 1, q).
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Thank you for your attention!
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