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SYMMETRIC RANK-DISTANCE CODES

» An Fg-linear symmetric rank-distance code is a subspace C' < Sy, (F,)
equipped with the rank-distance metric:

d(A,B) =rank(A— B), forA,BeC.
» The minimum distance of C'is:

d=d(C)=min{d(X,Y): X, Y € C, X #Y}.

F,-linear CSRD codes:

» [,-linear SRD codes.

» An FFy-linear code of min. distance d is complete if not contained in a larger
F4-linear code with the same d.



BOUNDS ON ADDITIVE SRD CODES

» [Schmidt, 2015]:

nln—d+2) if n — d is even,

. 2
dim(C) < {(n+1><;—d+1> ifn — dis odd. M

» Constructions of additive SRD codes can be found in [Schmidt, 2015, 2020].
» Bound achieved = MSRD code (maximum symmetric rank distance).

P Sphere-packing bound is achieved: SRD perfect codes <= n odd andd = 3
[Mushrraf and Zullo, 2025].

o~

?
To characterize F4-linear CSRD codes in M., x» (FF4) that are not MSRD codes.

To classify and characterize Fq-linear CSRD codes in M3y 3(FFy).



GEOMETRIC INTERPRETATION

» An F,-linear SRD code in M, xn(F,) <= asubspace of the projective
space PG(N — 1,¢); N = 2t

» The set of symmetric rank-one matrices in My, xn» (F,) <= the set of points
of the Veronese variety V,,(Fy) in PG(N — 1, q).

» V,(F,) is the image of the Veronese embedding:

vn : PG(n,q) - PG(N —1,9q)

((T0y oy 1) > (2l 2y @, o @ T, Ty CT1T2, e T ).

> Yy (F;) <= the set of symmetric matrices in My, xr (Fq) of rank at most
d.

» A k-dimensional CSRD code in My, xn (Fq) of minimum distance d <= a
(k — 1)-dimensional subspace of PG(N — 1, ¢) that is disjoint from

iy (Fy) (minimum rank d) and maximal for this property.
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EQUIVALENCE

» C is linear equivalent to C' <= 3 (A, B) € GL(n, q) x GL(n, q) such that
C' = ACB.

» ( is linear equivalent to ' <= W is G-equivalent to W’ in PG(n? — 1,q);
G < PGL(n?, q) stabilising Sy, (F,) the image of the Segre embedding:

Onm : PG(n—1,q) x PG(n —1,q) — PG(n® — 1,q)

(o, -+ s Tn=1), (Y0, - - - s Yn—1)) = (T0Y0, TOY1, - - - Tiljs - - s Tn—1Yn—1) -

Symmetric rank-distance codes:

» C'is symmetric equivalent to C' <= 3 X € GL(n,q) x GL(n, q) such that
C'=XCX".

» (' is symmetric equivalent to C' <= W is K-equivalent to W';
K < PGL(2H) ) stabilising Vi (Fy).
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EQUIVALENCE CLASSES OF CSRD CODES: 3 x 3 CASE
d=2:

» Theorem 1:
There are 3 equivalence classes of F4-linear CSRD codes in M3y 3(FFq) of
minimum distance 2 for ¢ odd. Moreover, each F,-linear CSRD code in
M3y 3(Fy), g odd, of minimum distance 2 is an MSRD code.

» Theorem 2:
There are 6 equivalence classes of F,-linear CSRD codes in M3x3(FF,) of
minimum distance 2 for ¢ > 4 even, 3 of which are MSRD codes.

d=3:

» MSRD codes in M3y 3(F,) with d = 3 have dimension 3 — MRD codes:
Equivalence classes of MRD codes in M3x3(F,) withd =3 <= the
isotopism classes of 3-dimensional semifields.

» A 3-dimensional semifield is either a field or isotopic to a twisted field
[Menichetti, 1977].

» Lemma: An Fy-linear CSRD code in M3y 3(F4) with d = 3 is an MSRD

code.
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APPROACH
A k-dimensional CSRD code in M3x3(F,) of minimum distance d < a
(k — 1)-dimensional subspace of PG (5, q) that is disjoint from V=) (F,)
(minimum rank d) and maximal for this property.

Representation:

The solid in PG(5, ¢) spanned by the 1st four points of the standard frame is

T Yy =z a5
ly t -1:—{{@

d=2:
To determine solids (MSRD), planes, and lines of minimum rank 2 that are disjoint
from V(F,) and maximal for this property.

O+
I\

01 (z,y,2,t) € ]Fg; (z,y,2,t) # (0,0,0,0)}.
0

d=3:
To determine planes (MSRD) and lines of minimum rank 3 that are disjoint from
V@) (F,) and maximal for this property.



ORBITS INVARIANTS:
» The rank distribution of W is
[r1,72,73],
where
r; = #F of rank ¢ points in W.
C < W:
The rank distribution of C'is (1,71(¢ — 1),72(¢ — 1),73(q — 1)).
» The r-space orbit-distribution of W is
OD, (W) = [u1,ug, ..., Un],
where

u; = # of r-spaces incident with W which belong to the orbit U;
Uy, Us,...,Uy, are the distinct K -orbits of r-spaces in PG(5, ¢)).
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POINTS AND HYPERPLANES OF PG(5, q)

K-orbits of points; ¢ odd / even:

» P; := Rank-one points.

» Ps . := Exterior rank-two points / P2 ,, := Rank-two points in the nucleus
plane.

» Py ; := Interior rank-two points / P2 s := Rank-two points outside the nucleus
plane.

» P3 := Rank-three points.

K-orbits of Hyperplanes:

‘H.:={ Hyperplanes <= repeated lines in PG(2, q)}.
Ho,r:= { Hyperplanes <> pairs of real lines in PG(2, ¢)}.

>
>
» 7 ;:={ Hyperplanes <= pairs of conjugate imaginary lines in PG(2, ¢*)}.
» Has:={ Hyperplanes <= non-singular conics in PG(2, ¢)}.
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SOLIDS OF MINIMUM RANK 2
K -orbits of solids in PG(5, q)

» For g odd: there are 15 K -orbits of solids corresponding to the K -orbits of
lines in PG(5, ¢) ([Lavrauw and Popiel, 2020]).
(MSRD <= solids in 28,2 U Q14,2 U Q15,2).

» For g even: there are 15 K -orbits of solids as determined in [A., Lavrauw and
Popiel, 2022].

sk Representatives ODgy(S) ODy4(S)
x y z
Q7 y Tty ot 0,g+1,¢*+q,¢>—q [1,0,1,¢—1]
z t Yy
x Yy z
Q13 y vty t [0,1, 4% + 3q, ¢® — 2q] [0,1,2,9 — 2]
z t Yy + 2z
T Y Yy +y+ vt 5 3
Q14 y vT +y z [0,1,¢% +q,¢”] [0,0,1,4]
Yy +y+ vt z t

Table: Geometric interpretation of the 3 equivalence classes of Fg-linear MSRD codes in
M3x3(Fy) for g even, where Tr(y~1) = 1in Q7 and Tr(y) = 1in Q13 and Q14.
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PLANES OF MINIMUM RANK 2

Theorem:

» For g odd, a plane in PG(5, ¢) of minimum rank 2 is contained in a solid in
Qg2 U Qg2 U Qys2.

» For g > 4 even, a plane in PG(5, ¢) of minimum rank 2 with at least one
rank-2 point outside the nucleus plane 7/ is contained in a solid in
Q7 U Q13 U Q4.

Proof.

Let 7 be such a plane and P € 7= N V® (IF,). The number of solids through 7 in
PG(5, g) is equal to the number of points on V(IF,), it follows that there must be at
least one solid through 7 which does not meet V(Fy), unless all solids of the form
(m, Q), with Q € V(F,) are distinct. To see that this is not the case, consider the
conic C(P) and a secant line (@, Q') of C(P) through P. Then (7, Q) = (7, Q).

For g even, the existence of a secant line through P is guaranteed, as 7 contains at
least one rank-2 point outside mas.



T NVA(F,) C my

> r=mn, TN =L E 01210t TNTN =P
(— 3 distinct K -orbits: s, X and 3).
Theorem:
For a plane 7 in PG(5, g) with ¢ > 4 even, we have 72 () = hi(7); that is, the
number of hyperplanes in 71 containing 7 equals |7 N war|.
» Lemma: For 7 € ¥, ODy(7) = [¢ + 1,0,0, ¢*].
» Lemma: For 7 € ¥/, ODy(n) = [1,0,0,¢*> + q].

Theorem:

For ¢ > 4 even, a plane in PG(5, g) disjoint from V(FF,) and intersecting V) (F,)
in a nonempty subspace of 7 s is maximal with respect to that property, i.e., it is not
contained in any solid of minimum rank 2.



K-ORBITS OF LINES IN PG(5, q)

Orbits  [r1,72,¢,72,4, T3] Orbits ~ [r1,72,n,72,s,73]
05 2, 55, T10] o5 [2,0,q — 1,0]
06 [1,4,0,0] 06 [1,1,9 —1,0]
08,1 [1,1,0,q7 1} 08,1 [1,0,1,(]7 1]
08,2 [1,0,1,q—1] 08,3 [1,1,0,(]— 1]
09 [1,0,0,q] 09 [1,0,0,q]

010 [0, <L, <L 0] 010 [0,0,q +1,0]
012,1 [O,q—i— 1,0,0} 012,1 [O,q—l— 1,0, 0]
013,1 [O,2,0,q — 1} 012,3 [0, 1,q, 0]
013,2 [0,1,1,(]— 1} 013,1 [O,l,l,qf 1]
014,1 [0, 370,q — 2} 013,3 [0,0,2,(] — 1]
014,2 [0,1,2,q — 2] 014,1 [0,0,3,q9 — 2]
015,1 [0,1,0,(]] 015,1 [0,0, 1,q]
o152 [0,0,1,¢] o161 [0,1,0,q]
016,1 [O, 1,0,q] 016,3 [0,07 1,q]

017 [0,0,0,q + 1] 017 [0,0,0,q + 1]

Table: K -orbits of lines in PG(5, ¢) for ¢ odd (left) and g even (right) [Lavrauw,
Popiel, 2020]
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LINES OF MINIMUM RANK 2:

Lemma:

A line in PG(5, ¢) of minimum rank 2 extends to a solid in Qg2 U Q14,2 U Q15,2 for
q odd and Q7 U Q13 U 214 for ¢ even.

Sketch of the proof:

1. £is contained in at least ¢ planes of minimum rank 2.
2. godd — £ € Qg2 U Qa2 UQis50.

3. q even: If/nN VQ(Fq) ¢ T —— €€ Q7 U3 U4, Else, £ € 012,1 U 016,1.
A solid S € Q7 contains a line in 012,1 and 016,1.
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IMPLICATIONS ON NETS OF CONICS IN PG(2, q)

>

>

K-orbits of subspaces in PG(5,q) <= PGL(3, g)-orbits of linear systems
of conics in PG(2, q).

Open problem: Classifying nets of conics in PG(2, ¢) with empty bases
<= Classifying planes in PG(5, q) disjoint from V(F,).

There is a unique PGL(3, ¢)-orbit of nets of conics in PG(2, ¢) with conic
distribution [1,0, 0, ¢*> + ¢] for ¢ > 2 even, represented by

Nig = a(cXo X2 + X12) + B(XS + XoXo + X1 X2) + ’7X22;
c is a non-admissible element of F, satisfying Tr(c™') = Tr(1)

Non-trivial perfect Fq-linear CSRD codes in M3y 3(IF4) correspond to nets of
conics in PG(2, q) that exclude singular conics.

A net of conics with an empty base and at least one pair of lines (real or
imaginary) contains a pencil of conics with an empty base:
\ __><_

- ~
- ~

15718



FINAL REMARKS

» For g odd: All F,-linear SRD codes in M3y 3(F,) are extendable to MSRD
codes.

» For g even: The only F,-linear SRD codes in M3y 3(FF;) that cannot extend to
an MSRD code are the 3-dimensional CSRD codes with rank distributions
(1,0,¢* — 1,0), (1,0,¢* — 1,¢* — ¢*) and (1,0, — 1,¢> — q).

» While every MSRD code is a CSRD code, obtaining the conditions under
which the converse fails remains an open question, particularly for n > 3.

» [F,-linear CSRD codes in M, xn(F;) <= Linear systems of quadrics in
PG(n—1,q).
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Thank you for your attention!
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