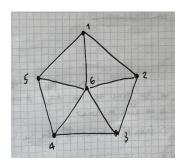
## Codes, geometries and entangled quantum states associated with stabiliser codes

Simeon Ball



This is a regular hyperoval in PG(2,4).

$$H = \left( \begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{array} \right).$$

Let H be a  $(n-k) \times 2n$  matrix over  $\mathbb{F}_q$  of rank n-k.

Let  $\ell_i$  be the line of PG(n-k-1,q) spanned by the *i*-th and (i+n)-th column, for  $i=1,\ldots,n$ .

The wheel graph gives a set of 6 lines in PG(5,2) which are obtained from the regular hyperoval of PG(2,4) by field reduction.

Let

$$\Lambda = \left( \frac{0_n \parallel I_n}{-I_n \parallel 0_n} \right).$$

Then

$$H\Lambda H^T = 0.$$

iff row space of H is totally isotropic wrt the symplectic form

$$(x,y) = x \Lambda y^T = \sum_{i=1}^n x_i y_{i+n} - y_i x_{i+n}.$$

Mapping

$$(a_i,b_i)\mapsto (-b_i,a_i)$$

preserves the symplectic product since

$$a_i b'_i - a'_i b_i = (-b_i)a'_i - (-b'_i)a_i.$$

So we can change basis for the lines  $\ell_i$  and reorder them so that

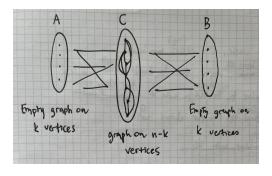
$$\mathbf{H} = \left( \mathbf{I}_{n-k} \mid \mathbf{A} \parallel \mathbf{C} + \mathbf{A} \mathbf{B}^{T} \mid \mathbf{B} \right).$$

[Ball-Vilar 2025] [Adv Math.Comm.]

$$H\Lambda H^T = 0.$$

iff  $C = C^T$ .

So any symplectic self-orthogonal subspace of PG(n-k-1,q) is equivalent to a graph on n+k vertices.



$$\mathbf{H} = \left( \mathbf{I}_{n-k} \mid \mathbf{A} \parallel \mathbf{C} + \mathbf{A} \mathbf{B}^T \mid \mathbf{B} \right)$$

Let  $\mathcal{X}$  be a quantum set of n lines in PG(n-1,p) and let  $\pi$  be a (k-1)-dimensional subspace skew to the lines of  $\mathcal{X}$ .

[Ball-Vilar 2025] The projection of  $\mathcal{X}$  from  $\pi$  is a quantum set of n lines  $\mathcal{X}_{\text{proj}}$  in PG(n-k-1,p).

lf

$$\mathbf{H} = \left(\begin{array}{c|c|c} \mathbf{I}_{n-k} & \mathbf{0} & \mathbf{A}_1 & \mathbf{A}_2 \\ \hline \mathbf{0} & \mathbf{I}_k & \mathbf{A}_2^T & \mathbf{A}_4 \end{array}\right)$$

is the matrix associated to  $\mathcal{X},$  then the matrix associated by  $\mathcal{X}_{\mathrm{proj}}$  is

$$\mathbf{H}_{\text{proj}} = \left( \mathbf{I}_{n-k} \mid \mathbf{D}_{1} \parallel \mathbf{A}_{1} + \mathbf{D}_{1} \mathbf{A}_{2}^{T} \mid \mathbf{A}_{2} + \mathbf{D}_{1} \mathbf{A}_{4} \right)$$

for some  $(n-k) \times k$  matrix  $D_1$ , determined by  $\pi$ .

Let  $\{|x\rangle \mid x \in \mathbb{Z}/D\mathbb{Z}\}$  be a basis for  $\mathbb{C}^D$ .

Let  $\eta$  be a primitive D-th root of unity in  $\mathbb{C}$ .

For  $a, b \in \mathbb{Z}/D\mathbb{Z}$ , define Weyl linear operators X(a) and Z(b) as

$$X(a)|x\rangle = |x+a\rangle$$

and

$$Z(b)|x\rangle = \eta^{bx}|x\rangle$$

X(a)Z(b) form a basis for the endomorphisms of  $\mathbb{C}^D$ .

A Hilbert space is a complex vector space

$$\mathbb{H} = \mathbb{C}^{D_1} \otimes \mathbb{C}^{D_2} \otimes \cdots \otimes \mathbb{C}^{D_n}$$

the elements of which are

$$|\psi\rangle = \sum_{\mathbf{x} \in \prod_{i=1}^n \mathbb{Z}/D_i \mathbb{Z}} c_{\mathbf{x}} |x_1 x_2 \cdots x_n\rangle$$

The real number  $c_x \overline{c_x}$  is the probability of finding the unit vector  $|\psi\rangle$  in the quantum state in  $|x_1x_2\cdots x_n\rangle$ .

## **Example**

The Bell state

$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$

The linear maps on  $\mathbb{H}$ 

$$\sigma_1 \otimes \cdots \otimes \sigma_n$$
,

where the Weyl operator  $\sigma_i = X(a_i)Z(b_i)$ , form a basis for the linear maps on this space.

Let Q be a subspace of  $\mathbb{H}$ . The set of Weyl operators  $\mathcal E$  is a correctable set of errors for Q if for all  $E, E' \in \mathcal E$  and orthogonal  $|\phi\rangle\,, |\phi'\rangle \in Q$ ,

 $E | \phi \rangle$  and  $E' | \phi' \rangle$  are orthogonal.

Let  $a=(a_1,\ldots,a_n)$  and  $b=(b_1,\ldots,b_n)$ . The "commuting" relation is

$$X(a)Z(b)X(a')Z(b') = \eta^{a \cdot b' - b \cdot a'}X(a')Z(b')X(a)Z(b)$$

The (multiplicative) subgroup

$$S = \{X(a)Z(b) \mid (a,b) \in C\}$$

is commutative iff  $C \subseteq \mathbb{F}_p^{2n}$  is a totally isotropic subspace w.r.t the symplectic form.

Let

$$Q(S) = \{ |\phi\rangle \in (\mathbb{C}^p)^{\otimes n} \mid M |\phi\rangle = |\phi\rangle, \forall M \in S \}$$

Q(S) can correct Weyl all errors of weight at most (d-1)/2 (weight=non-identity components) where d is minimal such that there are d dependent points on distinct lines of  $\mathcal{X}$ .

## **Entanglement**

The Bell state

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

is absolutely maximally entangled state of  $\mathbb{C}^2 \otimes \mathbb{C}^2$ . Taking the partial trace of the rank 1 matrix on either component

$$\frac{1}{2}(|00\rangle+|11\rangle)(\langle00|+\langle11|)$$

we get

$$\frac{1}{2}(|0\rangle\!\langle 0|+|1\rangle\!\langle 1|)=\frac{1}{2}I_2.$$

If k = 0 and  $d = \lfloor \frac{1}{2}(n+2) \rfloor$  then a unit vector in the one-dim subspace Q(S) is an absolutely maximally entangled state.

From the regular hyperoval n=6, d=4 (no three dependent points on the distinct lines since any three lines span PG(5,2), gives an absolutely maximally entangled state of

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2.$$

The partial trace on any three subsystems gives the identity on

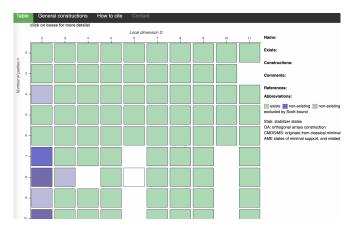
$$\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2.$$

This is a regular hyperoval in PG(2,4).

$$|\phi\rangle = \frac{1}{\sqrt{8}}(|000000\rangle + |100000\rangle + |010000\rangle - |110000\rangle +$$

60 other terms.

Huber's table on existence of absolutely max. entangled states on  $(\mathbb{C}^D)^{\otimes n}$ 



[Ball, Moreno, Simoens (2025)] [IEEE Trans.] There is no stabilised absolutely maximally entangled state in  $(\mathbb{C}^4)^{\otimes 8}$ .

Some additional results on existence of absolutely maximally entangled states.

[Higuchi, Sudbery 2000] [Phys. Lett. A] 
$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$
, no.

(A stabilised state is equivalent to partial spread of 4 lines  $\mathcal X$  in PG(3,2) for which C is symmetric matrix.)

[F. Huber, C. Eltschka, J. Siewert and O. Gühne 2018] [J. Phys. A] 
$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^3$$
, no.  $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ , no.

$$\mathbb{C}^2\otimes\mathbb{C}^3\otimes\mathbb{C}^3\otimes\mathbb{C}^3$$
, yes.

[Ball, Zhang 2025] [arxiv next week maybe]  $\mathbb{C}^r \otimes \mathbb{C}^q \otimes \mathbb{C}^q \otimes \mathbb{C}^q$ , yes. for all  $r \leqslant q-1$  and q a prime power.