The even and odd sets of PG(2,8)

Kris Coolsaet — Ghent University

with Silvia Pagani, Arne Botteldoorn

Irsee, September 1–5, 2025

Introduction

Definition

A set S of points of a projective plane Π is an **even set** iff all lines of Π intersect S in an *even* number of points.

A set S of points of a projective plane Π is an **odd set** iff all lines of Π intersect S in an *odd* number of points.

1

Introduction

Definition

A set S of points of a projective plane Π is an **even set** iff all lines of Π intersect S in an *even* number of points.

A set S of points of a projective plane Π is an **odd set** iff all lines of Π intersect S in an **odd** number of points.

Notation: $w_S(\ell) \stackrel{\text{def}}{=} |S \cap \ell|$ is the **weight** of the line ℓ w.r.t. S.

Non-trivial odd and even sets only exist when the order q of Π is even.

When *q* is even, the *complement* of an even set is an odd set, and conversely.

1

Linear codes

Let Π be a plane of even order.

Let C denote the *binary projective code* of Π , i.e., the vector space over the field \mathbb{F}_2 generated by the rows of the incidence matrix of Π .

Then, the code words of the *dual code* C^{\perp} (of code words orthogonal to C), correspond to the *even* sets of Π .

Extending the code \mathcal{C}^{\perp} with the all-1-vector then yields a code whose code words correspond to all odd and even sets.

Linear codes — cntd.

Properties

A line is an odd set.

The symmetric difference (sum) of even sets is an even set.

3

Linear codes — cntd.

Properties

A line is an odd set.

The symmetric difference (sum) of even sets is an even set.

Theorem (Graham-MacWiliams)

In PG(2,q), $q = p^h$.

- $\cdot \dim \mathcal{C} = \binom{p+1}{2}^h + 1$
- · dim $C^{\perp} = q^2 + q + 1 {p+1 \choose 2}^h$

Corollary

In PG(2,8) there are $2^{45} \approx 3.5 \cdot 10^{13}$ even sets.

3

The field of order 8

Elements: $0, 1, \alpha, \ldots, \alpha^6$,

with
$$\alpha^3 = \alpha + 1$$
, $\alpha^4 = \alpha^2 + \alpha$, $\alpha^5 = \alpha^2 + \alpha + 1$, $\alpha^6 = \alpha^2 + 1$.

Field automorphism (Frobenius): $x \mapsto x^2$.

Trace:

- $T(x) = x + x^2 + x^4$.
- $T(0) = T(\alpha) = T(\alpha^2) = T(\alpha^4) = 0,$
- $T(1) = T(\alpha^3) = T(\alpha^6) = T(\alpha^5) = 1.$
- $\cdot T(x+y) = T(x) + T(y).$

Research goals

1. Generate a list of **all** odd and even sets in PG(2,8), **up to equivalence**.

Two sets S, S' are **equivalent** if there exists a *collineation* of PG(2,8) that maps S onto S'.

Research goals

- 1. Generate a list of **all** odd and even sets in PG(2,8), **up to equivalence**.
 - Two sets S, S' are **equivalent** if there exists a *collineation* of PG(2,8) that maps S onto S'.
- 2. Give a **geometric description** of the sets with an automorphism group of reasonable order, and provide computer-free proofs.

Generation algorithm — classical

Classical technique for isomorph-free generation of all point sets that satisfy a given property (arc, blocking set, ...)

- · (Recursively) generate larger sets from smaller sets
- At each step extend a set in all possible ways with a single point, while preserving the property
- Make sure that you do not generate more than one set of the same equivalence class
 - Orderly generation
 - Canonical path method

Generation algorithm — classical

Classical technique for isomorph-free generation of all point sets that satisfy a given property (arc, blocking set, ...)

- · (Recursively) generate larger sets from smaller sets
- At each step extend a set in all possible ways with a single point, while preserving the property
- Make sure that you do not generate more than one set of the same equivalence class
 - · Orderly generation
 - · Canonical path method

Works only when the property is/can be made hereditary. Not for even/odd sets.

Irreducible odd/even sets

In a projective plane of even order q:

Lemma

Let S denote an even (resp. odd) set. Let ℓ be a line. Then $S' = S \triangle \ell$ is an odd (resp. even) set, and

$$|S'| = |S| + q + 1 - 2w_{\ell}(S).$$

Irreducible odd/even sets

In a projective plane of even order q:

Lemma

Let S denote an even (resp. odd) set. Let ℓ be a line. Then $S' = S \triangle \ell$ is an odd (resp. even) set, and

$$|S'| = |S| + q + 1 - 2w_{\ell}(S).$$

Definition

A set S is called **irreducible** iff $w_{\ell}(S) \leq q/2$, for all lines ℓ

A set can be reduced by taking the symmetric difference with a line of large enough weight.

7

Generation algorithm — actual

1. Generate, up to isomorphism, all sets S satisfying

$$w_S(\ell) \leq 4$$
, for all lines ℓ

Result: 75 227 336 sets

- 2. Filter out the odd and even sets.

 Result: 78 sets, of size 0, 10, 12, 14, 16, 18, 20, 22, 24, 28.

 These are all the *irreducible* odd and even sets.
- Extend the irreducible sets step by step, at each step taking the symmetric difference with a line of weight ≤ 4 (= 'inverse' of reduction).
 Result: 1437256 sets.

(Canonical path method to ensure isomorph-free generation.)

Results

After $\pm \frac{1}{2}$ hour of computer time, we find ...

```
%0%4%11%17%20%48%50%58%72
%0%3%4%10%11%16%17%19%20%47%48%49%50%57%58%71
```

%0%2%3%4%9%10%11%15%16%17%18%19%20%46%47%49%50%56%57%58%70

%0%1%2%3%4%8%9%10%11%14%15%16%18%19%20%45%46%49%50%55%56%57%58%69 %1%2%3%4%7%8%9%10%11%13%14%15%18%19%20%44%45%49%50%54%55%56%57%58%68

%1%2%3%4%6%7%8%9%10%11%13%14%15%18%19%20%44%49%50%54%55%56%57%58%68 %1%2%3%4%6%7%8%9%10%11%12%13%14%18%19%20%43%44%49%50%53%54%55%56%57%58%67%72

%11%2%3%4%6%7%8%9%10%111%12%13%14%18%19%20%43%44%49%50%53%54%55%50%57%50%67/2 %11%2%3%4%6%7%89%10%111%12%13%14%18%19%20%23%25%33%43%44%47%48%49%50%52%53%54%55% 56%57%58%59%65%67%66%72

50%57%58%59%65%67%68%72 %1%2%3%4%6%7%8%9%10%11%12%13%14%18%19%20%22%24%32%43%44%46%47%49%50%51%53%54%55%

56%57%64%72 %0%1%2%3%4%6%7%8%10%11%13%14%15%18%19%20%37%39%44%45%47%49%50%54%55%56%57%58%61%

62%65%68 %182%344%6%7%8%10%11%13%14%15%18%19%20%28%30%37%38%39%44%45%47%49%50%52%53%54%55 %56%58%61%67%64%66%68%70

%50%55%61%62%64%64%6770 %0%1%2%3%4%6%8%10%11%13%14%15%18%19%20%21%22%26%33%37%42%44%45%47%49%50%54%55%56 %57%59%61%67%66%68%70%72

%1%2%3%4%5%7%9%10%11%13%14%15%18%19%20%36%38%44%45%46%49%50%54%55%56%57%58%60%61 %65%68%72

%0%1%2%3%4%5%6%7%10%11%13%14%15%18%19%20%36%37%38%39%44%45%46%47%49%50%54%55%56% 57%58%60%62%65%66%68%72

%0%1%2%3%4%5%7%8%10%11%13%14%15%16%18%19%20%30%31%35%36%37%38%39%42%44%45%46%47%48%49%50%51%54%55%56%57%58%60%62%65%66%68%72

0%54%55%56%57%59%66%61%65%68%71%72 %1%3%4%55%7%8%9%10%113%13%14%15%18%19%20%33%35%43%44%45%49%50%54%55%56%62%68%69 %0%1%2%44%56%7%8%10%11%13%14%15%18%19%20%33%35%43%40%43%444%45%47%40%50%54%55%56

%0%1%3%4%5%6%7%6%10%11%13%14%15%18%19%20%33%35%37%39%43%44%45%47%49%50%54%55%56% 61%66%65%69 %1%374%57667%87%10%11%13%14%15%18%19%20%28%33%35%37%38%39%43%44%45%47%49%50%52

%53%54%55%56%57%61%64%66%68%69%70 %0%1%3%4%5%6%7%8%10%11%13%14%15%18%19%20%27%29%33%35%39%43%44%45%47%49%50%51%52%

54%55%61%63%66%68%72 %0%1%2%3%4%5%6%7%0%10%11%13%14%15%16%17%18%19%20%21%27%28%29%33%34%35%37%39%43%4

59%54%55%56%60%61%62%66%69%970
%0%13%34%55%76%9%9%10%11%13%14%15%18%19%20%28%30%33%35%38%43%44%45%49%50%52%53%54%
55%56%57%63%64%68%69%70

%9%1%2%3%4%5%7%8%9%1.9%11.9%13%14%15%16%17%1.8%19%20%21%30%33%34%35%37%38%43%44%45%4 9%50%52%53%54%55%56%55%60%57%62%64%65%67%68%69%70 %0%1%2%342%6%8%90%1.9%111%12%14.13%19%10%20%43%46%40%59%53%55%56%57%58%57%58%60%72

%0%1%2%3%4%6%8%9%10%11%12%14%16%18%19%20%43%46%49%50%53%55%56%57%58%67%68%69%72

Blad1

	sets up to s			Complements of sets in first columns				Actual count (not isomorph free)		
(Groups are full collineation groups, including semi-linear maps.)										
count	set size	g	roup size			count per size		Actual count/per :		
	1	0	49448448	1	73	49448448	1	1	1	
	1	9	677376	1	64	677376	1	73	73	
	1	10	1512	1	63	1512	1	32704	32704	
	1	12	288	1	61	288	1	171696	171696	
	1	13	288	1	60	288	1	171696	171696	
	1	14	14	1	59	14	1	3532032	3532032	
	1	15	168	1	58	168		294336		
	1	15	42	1	58	42		1177344		
	1	15	6	1	58	6	3	8241408	9713088	
	1	16	18816	1	57	18816		2628		
	1	16	288	1	57	288		171696		
	1	16 16	24 18	1	57 57	24 18		2060352 2747136		
	1	16	18	1	57 57	18		4120704		
	1	16	6	1	57	6		8241408		
	1	16	2	1	57	2	7	24724224	42068148	
	1	17	96	1	56	96	,	515088	42000140	
	1	17	24	1	56	24		2060352		
	ī	17	12	ī	56	12		4120704		
	1	17	6	1	56	6		8241408		
	1	17	3	1	56	3		16482816		
	2	17	2	2	56	2		49448448		
	1	17	1	1	56	1	8	49448448	130317264	
	1	18	18	1	55	18		2747136		
	1	18	12	1	55	12		4120704		
	1	18	9	1	55	9		5494272		
	4	18	6	4	55	6		32965632		
	2	18	4	2	55	4		24724224		
	1	18	3	1	55	3		16482816		
	7	18	2	7	55	2		173069568		
	3	18	1 54	3	55	1 54	20	148345344	407949696	
	1	19 19	6	1	54	6		915712		
	4	19	3	4	54 54	3		8241408 65931264		
	13	19	2	13	54 54	2		321414912		
	16	19	1	16	54 54	1	35	791175168	1187678464	
	1	20	48	1	53	48	35	1030176	110/0/0404	
	2	20	12	2	53	12		8241408		
	3	20	8	3	53	8		18543168		
	4	20	6	4	53	6		32965632		
	5	20	4	5	53	4		61810560		
	3	20	3	3	53	3		49448448		
	24	20	2	24	53	2		593381376		
	49	20	1	49	53	1	91	2422973952	3188394720	
	1	21	882	1	52	882		56064		

S	$ \Gamma $	G	
10^i	1 512	504	Hyperoval
12^i	288	96	Theorem 1
13	288	96	Theorem 2. Projective triad. Linear set
14^i	14	14	Sum of two hyperovals. Theorem 3
15	168	56	Linear set. Hyperoval + bisecant through nucleus.
15	42	14	Hyperoval + bisecant not through nucleus.
15	6	6	Theorem 11.
16	$18\ 816$	6272	Sum of two lines
16^i	288	96	Theorem 12. Linear set with line removed.
16^i	24	8	Sum of two hyperovals. Theorem 4.
17	96	32	Theorem 13
18	18	18	Sum of two hyperovals. Theorem 5.
9	54	18	Hyperoval + external line. Theorem 5 (complement).
20	48	16	Projective triad + line of weight 1
21	882	294	Sum of the sides of a triangle
24^i	504	168	Complement of linear set. External points to subplane. Theorem 9
24	96	32	Section 9
4	72	24	Sum of a dual 4-arc. Section 5. Theorem 9.
24^i	42	14	Sum of three hyperovals. Theorem 3.
24^i	24	24	Theorem 10
24	14	14	Sum of three hyperovals. Theorem 3
5	8 064	2688	Sum of 3 concurrent lines. Linear set. Section 7
25	288	96	Linear set. Section 7
25	36	12	Sum of a dual 5-arc. Section 5
25	24	24	Theorem 10.
25	24	8	Complement of sum of 6 hyperovals. Theorem 4.

8 Sum of three hyperovals. Theorem 4.

 $18\,$ Complement of sum of 5 hyperovals. Theorem 5.

504 External points of a dual hyporograf Requirital Theorem 6

26 24

27

981 1 519

The small cases

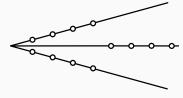
- The empty set. |S| = 0, |G| = 49448448
- None with $1 \le |S| \le 8$
- The line. |S| = 9, |G| = 677376
- The regular hyperoval. |S| = 10, |G| = 1512.
 - · Weights: 0 or 2
 - · Conic + nucleus

The small cases

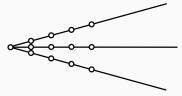
- The empty set. |S| = 0, |G| = 49448448
- None with $1 \le |S| \le 8$
- The line. |S| = 9, |G| = 677376
- The regular hyperoval. |S| = 10, |G| = 1512.
 - · Weights: 0 or 2
 - · Conic + nucleus
- None with |S| = 11.

The small cases - cntd.

• |S| = 12, |G| = 288. Unique!

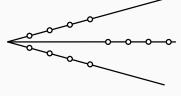


• |S| = 13, |G| = 288. Projective triad — linear set. Unique! (0,0,1); (1,0,z), (0,1,z), (1,1,z) with T(z) = 0



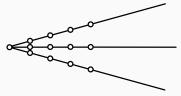
The small cases - cntd.

• |S| = 12, |G| = 288. Unique!



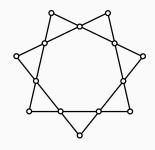
$$(1,0,z), (0,1,z), (1,1,z)$$
 with $T(z)=1$

• |S| = 13, |G| = 288. Projective triad — linear set. Unique! (0,0,1); (1,0,z), (0,1,z), (1,1,z) with T(z) = 0



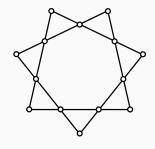
The small cases — cntd.

|S| = 14, |G| = 14. Unique!
 Symmetric difference of two regular hyperovals = union of two 7-arcs from conics.



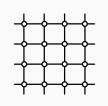
The small cases — cntd.

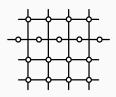
- |S| = 14, |G| = 14. Unique!
 Symmetric difference of two regular hyperovals = union of two 7-arcs from conics.
- |S| = 15. Three cases.
 - Hyperoval + bisecant through nucleus
 - · Hyperoval + bisecant
 - S_{14} + 4-secant. |G| = 6.



The small cases - cntd.

The small cases — cntd.





Sums of odd/even sets

Sums of lines

- One line. |S| = 9, |G| = 677676,
- Two lines. |S| = 16, |G| = 18816,
- Triangle. |S| = 21, |G| = 886,
- Dual 4-arc. |S| = 24, |G| = 72,
- Dual 5-arc. |S| = 25, |G| = 36.

Sum of two hyperovals H, H'

- $|H \cap H'| = 5$. |S| = 10. Unique
- $|H \cap H'| = 4$. |S| = 12. Unique
- $|H \cap H'| = 3$. |S| = 14. Unique
- $|H \cap H'| = 2, 1, 0.$ |S| = 16, 18, 20. Many examples.

Bundles of hyperovals

H from conic with equation $\phi(x, y, z) = 0$, + nucleus.

H' from conic with equation $\phi'(x, y, z) = 0$, + nucleus.

H(k,l) from conic with equation $k\phi(x,y,z) + l\phi'(x,y,z)$, + nucleus (except degenerate cases).

Bundles of hyperovals

H from conic with equation $\phi(x, y, z) = 0$, + nucleus.

H' from conic with equation $\phi'(x, y, z) = 0$, + nucleus.

H(k,l) from conic with equation $k\phi(x,y,z) + l\phi'(x,y,z)$, + nucleus (except degenerate cases).

Sums of several hyperovals in the same bundle:

- Intersect in 2 points and nucleus:
 - $|S| = 14, 24, 28, 38, 42, 52, |G| \ge 14.$
- Intersect in 1 point and nucleus:
 - $|S| = 16, 26, 32, 42, 48, 58, 64, |G| \ge 8.$
- · Intersect in nucleus:

$$|S| = 18, 28, 36, 46, 54, 64, |G| \ge 18.$$

Special cases with larger group. In particular ...

Theorem

There is a unique irreducible even set R of size 28. R contains precisely the external points of a dual hyperoval. Lines intersect R in 0 or 4 points.

The automorphism group is that of the (dual) hyperoval.

Can be constructed as sums of 3 or 4 hyperovals in several ways.

Subfield related

Linear sets of rank \geq 4 are odd sets.

= points (x, y, z) satisfying conditions:

Size	Rank	Г	G	X	У	Ζ
13	4	288	96	$x \in \mathbb{F}_2$	$y \in \mathbb{F}_2$	T(z)=0
15	4	168	56	$x \in \mathbb{F}_2$	$y \in \mathbb{F}_8$	$z = y^2$
25	5	8064	2688	$x \in \mathbb{F}_2$	$y \in \mathbb{F}_2$	$z \in \mathbb{F}_8$
25	5	288	96	$x \in \mathbb{F}_2$	T(y) = 0	T(z)=0
29	5	168	56	T(x)=0	$y \in \mathbb{F}_8$	$z = y^2$
41	6	5376	1792	$x \in \mathbb{F}_2$	T(y) = 0	$z \in \mathbb{F}_8$
49	6	504	168	T(x)=0	T(y)=0	T(z)=0

Subfield related (cntd.)

The points of PG(2,8) can be partitioned into a triangle and 7 Fano subplanes F(b), $b \neq 0$:

$$F(b) = \{(y, y^2, by^4) \mid y \in \mathbb{F}_8, y \neq 0\}$$

Some unions of Fano planes provide even sets

$$F(1) \cup F(\alpha^3) \cup F(\alpha^5) \cup F(\alpha^6),$$

 $|S| = 28, |G| = 63$

$$F(\alpha) \cup F(\alpha^2) \cup F(\alpha^4) \cup \{(1,0,0),(0,1,0),(0,0,1)\},\$$

 $|S| = 24, |G| = 504.$

= external points to F(1) = complement of linear set.

Even/odd sets from Sym(4)

PGL(3,8) has two conjugacy classes of groups isomorphic to Sym(4):

- Acting as permutations of the coordinates (x, y, z; x + y + z). Fixes point (1, 1, 1; 1).
- Dual of the above. Fixes line x + y + z = 0.

Some units of orbits of Sym(4) provide even sets with automorphism group (at least) Sym(4):

- $\cdot |S| = 12$ (see earlier)
- $\cdot |S| = 24$ (external points of subplane)
- $\cdot |S| = 24$ (sum of dual 4-arc)
- |S| = 48 (sum of 6 concurrent lines)

- |S| = 24, |G| = 24, irreducible
- |S| = 48, |G| = 24

Other examples

Dual even set: **bisecants** of hyperoval H that do **not** contain a fixed point $P \in H$:

$$|S| = 36, |G| = 1512 (P = nucleus)$$

•
$$|S| = 36$$
, $|G| = 168$ ($P \neq \text{nucleus}$)

Weights of lines: 0, 4, 8.

Other examples (cntd.)

Points (1, y, z) with

y =	0	1	α	α^3	α^2	α^6	α^3	α^5
z = 0			*	*	*	*	*	*
1			*	*	*	*	*	*
α		*			*	*	*	*
α^3	*	*			*	*	*	*
α^2					*	*		
$lpha^{6}$					*	*		
α^4							*	*
α^5							*	*

$$|S| = 32, |G| = 96.$$

Thank you for your attention