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Introduction

Definition
A set S of points of a projective plane Π is an even set iff all
lines of Π intersect S in an even number of points.

A set S of points of a projective plane Π is an odd set iff all
lines of Π intersect S in an odd number of points.

Notation: wS(ℓ)
def
= |S ∩ ℓ| is the weight of the line ℓ w.r.t. S.

Non-trivial odd and even sets only exist when the order q of Π
is even.

When q is even, the complement of an even set is an odd set,
and conversely.
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Linear codes

Let Π be a plane of even order.

Let C denote the binary projective code of Π, i.e., the vector
space over the field F2 generated by the rows of the incidence
matrix of Π.

Then, the code words of the dual code C⊥ (of code words
orthogonal to C), correspond to the even sets of Π.

Extending the code C⊥ with the all-1-vector then yields a code
whose code words correspond to all odd and even sets.
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Linear codes — cntd.

Properties
A line is an odd set.

The symmetric difference (sum) of even sets is an even set.

Theorem (Graham-MacWiliams)
In PG(2,q), q = ph.

• dim C =
(p+1
2
)h

+ 1

• dim C⊥ = q2 + q+ 1−
(p+1
2
)h

Corollary
In PG(2,8) there are 245 ≈ 3.5·1013 even sets.
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The field of order 8

Elements: 0, 1, α, . . . , α6,

with α3 = α+ 1, α4 = α2 + α, α5 = α2 + α+ 1, α6 = α2 + 1.

Field automorphism (Frobenius): x 7→ x2.

Trace:

• T(x) = x+ x2 + x4.
• T(0) = T(α) = T(α2) = T(α4) = 0,
• T(1) = T(α3) = T(α6) = T(α5) = 1.
• T(x+ y) = T(x) + T(y).
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Research goals

1. Generate a list of all odd and even sets in PG(2,8), up to
equivalence.
Two sets S, S′ are equivalent if there exists a collineation
of PG(2,8) that maps S onto S′.

2. Give a geometric description of the sets with an
automorphism group of reasonable order, and provide
computer-free proofs.
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Generation algorithm — classical

Classical technique for isomorph-free generation of all point
sets that satisfy a given property (arc, blocking set, …)

• (Recursively) generate larger sets from smaller sets
• At each step extend a set in all possible ways with a single
point, while preserving the property

• Make sure that you do not generate more than one set of
the same equivalence class

• Orderly generation
• Canonical path method

Works only when the property is/can be made hereditary. Not
for even/odd sets.
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Irreducible odd/even sets

In a projective plane of even order q :

Lemma
Let S denote an even (resp. odd) set. Let ℓ be a line. Then
S′ = S4ℓ is an odd (resp. even) set, and

|S′| = |S|+ q+ 1− 2wℓ(S).

Definition
A set S is called irreducible iff wℓ(S) ≤ q/2, for all lines ℓ

A set can be reduced by taking the symmetric difference with a
line of large enough weight.
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Generation algorithm — actual

1. Generate, up to isomorphism, all sets S satisfying

wS(ℓ) ≤ 4, for all lines ℓ

Result: 75 227 336 sets
2. Filter out the odd and even sets.
Result: 78 sets, of size 0, 10, 12, 14, 16, 18, 20, 22, 24, 28.
These are all the irreducible odd and even sets.

3. Extend the irreducible sets step by step, at each step
taking the symmetric difference with a line of weight ≤ 4
(= ‘inverse’ of reduction).
Result: 1 437 256 sets.

(Canonical path method to ensure isomorph-free generation.)
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Results

After ± 1
2 hour of computer time, we find …

9



%0%4%11%17%20%48%50%58%72
%0%3%4%10%11%16%17%19%20%47%48%49%50%57%58%71
%0%2%3%4%9%10%11%15%16%17%18%19%20%46%47%49%50%56%57%58%70
%0%1%2%3%4%8%9%10%11%14%15%16%18%19%20%45%46%49%50%55%56%57%58%69
%1%2%3%4%7%8%9%10%11%13%14%15%18%19%20%44%45%49%50%54%55%56%57%58%68
%1%2%3%4%6%7%8%9%10%11%12%13%14%18%19%20%43%44%49%50%53%54%55%56%57%58%67%72
%1%2%3%4%6%7%8%9%10%11%12%13%14%18%19%20%23%25%33%43%44%47%48%49%50%52%53%54%55%
56%57%58%59%65%67%68%72
%1%2%3%4%6%7%8%9%10%11%12%13%14%18%19%20%22%24%32%43%44%46%47%49%50%51%53%54%55%
56%57%64%72
%0%1%2%3%4%6%7%8%10%11%13%14%15%18%19%20%37%39%44%45%47%49%50%54%55%56%57%58%61%
62%66%68
%1%2%3%4%6%7%8%10%11%13%14%15%18%19%20%28%30%37%38%39%44%45%47%49%50%52%53%54%55
%56%58%61%62%64%66%68%70
%0%1%2%3%4%6%8%10%11%13%14%15%18%19%20%21%22%26%33%37%42%44%45%47%49%50%54%55%56
%57%58%61%62%66%68%70%72
%1%2%3%4%5%7%9%10%11%13%14%15%18%19%20%36%38%44%45%46%49%50%54%55%56%57%58%60%61
%65%68%72
%0%1%2%3%4%5%6%7%10%11%13%14%15%18%19%20%36%37%38%39%44%45%46%47%49%50%54%55%56%
57%58%60%62%65%66%68%72
%0%1%2%3%4%5%7%8%10%11%13%14%15%16%18%19%20%30%31%35%36%37%38%39%42%44%45%46%47%
48%49%50%51%54%55%56%57%58%60%62%65%66%68%72
%0%1%2%3%4%5%7%8%9%10%11%13%14%15%18%19%20%22%23%27%34%36%38%40%43%44%45%46%49%5
0%54%55%56%57%58%60%61%65%68%71%72
%1%3%4%5%7%8%9%10%11%13%14%15%18%19%20%33%35%43%44%45%49%50%54%55%56%62%68%69
%0%1%3%4%5%6%7%8%10%11%13%14%15%18%19%20%33%35%37%39%43%44%45%47%49%50%54%55%56%
61%66%68%69
%1%3%4%5%6%7%8%10%11%13%14%15%18%19%20%28%30%33%35%37%38%39%43%44%45%47%49%50%52
%53%54%55%56%57%61%64%66%68%69%70
%0%1%3%4%5%6%7%8%10%11%13%14%15%18%19%20%27%29%33%35%39%43%44%45%47%49%50%51%52%
54%55%61%63%66%68%72
%0%1%2%3%4%5%6%7%8%10%11%13%14%15%16%17%18%19%20%21%27%28%29%33%34%35%37%39%43%4
4%45%47%49%50%51%52%54%55%61%63%65%66%67%68%72
%0%1%3%4%5%6%7%8%10%12%13%14%15%16%18%19%20%23%29%32%33%35%37%39%43%44%45%47%49%
50%54%55%56%60%61%62%66%68%69%70
%0%1%3%4%5%7%8%9%10%11%13%14%15%18%19%20%28%30%33%35%38%43%44%45%49%50%52%53%54%
55%56%57%62%64%68%69%70
%0%1%2%3%4%5%7%8%9%10%11%13%14%15%16%17%18%19%20%21%30%33%34%35%37%38%43%44%45%4
9%50%52%53%54%55%56%57%62%64%65%67%68%69%70
%0%1%2%3%4%6%8%9%10%11%12%14%16%18%19%20%43%46%49%50%53%55%56%57%58%67%68%69%72
%0%1%2%3%6%7%8%9%10%11%12%14%16%18%19%20%35%37%43%45%46%49%50%53%55%56%57%58%59%
60%64%67%68%69%71%72
%0%2%3%4%6%8%10%11%12%14%16%18%19%20%23%24%28%35%41%43%44%46%49%50%53%55%56%57%5
8%67%68%69
%0%2%3%4%6%7%8%10%11%12%14%16%18%19%20%21%22%23%24%26%28%33%35%39%41%42%43%44%46
%49%50%53%55%56%57%58%67%68%69%70%72
%0%1%2%3%4%6%7%8%9%10%11%12%14%16%18%19%20%21%22%26%33%39%42%43%46%49%50%53%55%5
6%57%58%67%68%69%70
%0%1%2%3%4%8%9%10%11%14%15%16%18%19%20%23%25%33%45%46%47%48%49%50%52%55%56%57%58
%59%65%68%69
%0%1%2%3%4%7%8%9%10%11%14%15%16%18%19%20%21%22%23%25%26%39%42%45%46%47%48%49%50%
52%55%56%57%58%59%65%68%69%70%72
%0%1%2%3%4%7%8%9%10%11%12%13%14%15%16%17%18%19%20%21%22%23%24%25%26%30%33%39%42%
45%46%47%48%49%50%52%55%56%57%58%59%61%63%65%68%69%70%71%72
%0%2%3%4%6%9%10%11%12%16%17%18%19%20%43%45%46%47%49%50%53%56%57%58%67%68%70%72
%0%2%3%4%5%6%8%9%10%11%12%16%17%18%19%20%36%38%43%45%47%49%50%53%56%57%58%60%61%
65%67%68%70
%0%3%4%5%6%8%9%10%11%12%16%17%18%19%20%30%32%36%38%40%43%45%47%49%50%53%54%55%56
%57%58%59%60%61%65%66%67%68%70%72
%0%3%4%6%10%11%12%15%16%17%19%20%43%45%47%48%49%50%53%57%58%67%68%71%72
%0%3%4%5%6%8%10%11%12%15%16%17%19%20%36%38%43%45%46%47%48%49%50%53%57%58%60%61%6
5%67%68%71
%0%2%3%4%5%6%8%10%11%12%15%16%17%19%20%30%32%36%38%40%43%45%46%47%48%49%50%53%54



Blad1

Pagina 1

Odd/even sets up to size 36 Complements of sets in first columns Actual count (not isomorph free)
(Groups are full collineation groups, including semi-linear maps.)

count set size group size count per size Actual count/per size

1 0 49448448 1 73 49448448 1 1 1
1 9 677376 1 64 677376 1 73 73
1 10 1512 1 63 1512 1 32704 32704
1 12 288 1 61 288 1 171696 171696
1 13 288 1 60 288 1 171696 171696
1 14 14 1 59 14 1 3532032 3532032
1 15 168 1 58 168 294336
1 15 42 1 58 42 1177344
1 15 6 1 58 6 3 8241408 9713088
1 16 18816 1 57 18816 2628
1 16 288 1 57 288 171696
1 16 24 1 57 24 2060352
1 16 18 1 57 18 2747136
1 16 12 1 57 12 4120704
1 16 6 1 57 6 8241408
1 16 2 1 57 2 7 24724224 42068148
1 17 96 1 56 96 515088
1 17 24 1 56 24 2060352
1 17 12 1 56 12 4120704
1 17 6 1 56 6 8241408
1 17 3 1 56 3 16482816
2 17 2 2 56 2 49448448
1 17 1 1 56 1 8 49448448 130317264
1 18 18 1 55 18 2747136
1 18 12 1 55 12 4120704
1 18 9 1 55 9 5494272
4 18 6 4 55 6 32965632
2 18 4 2 55 4 24724224
1 18 3 1 55 3 16482816
7 18 2 7 55 2 173069568
3 18 1 3 55 1 20 148345344 407949696
1 19 54 1 54 54 915712
1 19 6 1 54 6 8241408
4 19 3 4 54 3 65931264

13 19 2 13 54 2 321414912
16 19 1 16 54 1 35 791175168 1187678464

1 20 48 1 53 48 1030176
2 20 12 2 53 12 8241408
3 20 8 3 53 8 18543168
4 20 6 4 53 6 32965632
5 20 4 5 53 4 61810560
3 20 3 3 53 3 49448448

24 20 2 24 53 2 593381376
49 20 1 49 53 1 91 2422973952 3188394720

1 21 882 1 52 882 56064
1 21 48 1 52 48 1030176
2 21 18 2 52 18 5494272
2 21 12 2 52 12 8241408
3 21 8 3 52 8 18543168
4 21 6 4 52 6 32965632
5 21 4 5 52 4 61810560

10 21 3 10 52 3 164828160
23 21 2 23 52 2 568657152

147 21 1 147 52 1 198 7268921856 8130548448
1 22 42 1 51 42 1177344
1 22 21 1 51 21 2354688
1 22 18 1 51 18 2747136
6 22 6 6 51 6 49448448

10 22 3 10 51 3 164828160
91 22 2 91 51 2 2249904384

335 22 1 335 51 1 445 16565230080 19035690240
1 23 14 1 50 14 3532032
1 23 12 1 50 12 4120704
1 23 7 1 50 7 7064064
4 23 6 4 50 6 32965632
2 23 4 2 50 4 24724224

10 23 3 10 50 3 164828160
89 23 2 89 50 2 2200455936

806 23 1 806 50 1 914 39855449088 42293139840
1 24 504 1 49 504 98112
1 24 96 1 49 96 515088



|S| |Γ| |G|
10i 1 512 504 Hyperoval
12i 288 96 Theorem 1
13 288 96 Theorem 2. Projective triad. Linear set
14i 14 14 Sum of two hyperovals. Theorem 3
15 168 56 Linear set. Hyperoval + bisecant through nucleus.
15 42 14 Hyperoval + bisecant not through nucleus.
15 6 6 Theorem 11.
16 18 816 6 272 Sum of two lines
16i 288 96 Theorem 12. Linear set with line removed.
16i 24 8 Sum of two hyperovals. Theorem 4.
17 96 32 Theorem 13
18 18 18 Sum of two hyperovals. Theorem 5.
19 54 18 Hyperoval + external line. Theorem 5 (complement).
20 48 16 Projective triad + line of weight 1
21 882 294 Sum of the sides of a triangle
24i 504 168 Complement of linear set. External points to subplane. Theorem 9
24 96 32 Section 9
24 72 24 Sum of a dual 4-arc. Section 5. Theorem 9.
24i 42 14 Sum of three hyperovals. Theorem 3.
24i 24 24 Theorem 10
24 14 14 Sum of three hyperovals. Theorem 3
25 8 064 2 688 Sum of 3 concurrent lines. Linear set. Section 7
25 288 96 Linear set. Section 7
25 36 12 Sum of a dual 5-arc. Section 5
25 24 24 Theorem 10.
25 24 8 Complement of sum of 6 hyperovals. Theorem 4.
26 24 8 Sum of three hyperovals. Theorem 4.
27 18 18 Complement of sum of 5 hyperovals. Theorem 5.
28i 1 512 504 External points of a dual hyperoval. Ree unital. Theorem 6.
28 126 42 Sum of 4 lines (3 concurrent lines + secant). Section 5
28 63 21 Four Fano planes. Theorem 8
28 54 18 Sum of three hyperovals. Theorem 5
28 42 14 Sum of four hyperovals. Theorem 3
28 18 18 Sum of three hyperovals. Theorem 5
28 14 14 Sum of four hyperovals. Theorem 3

Table 8: Selected odd and even sets of PG(2,8) with a large automorphism group (part
1). Those marked with an i are irreducible.
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The small cases

• The empty set. |S| = 0, |G| = 49 448 448
• None with 1 ≤ |S| ≤ 8
• The line. |S| = 9, |G| = 677 376
• The regular hyperoval. |S| = 10, |G| = 1 512.

• Weights : 0 or 2
• Conic + nucleus

• None with |S| = 11.
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The small cases — cntd.

• |S| = 12, |G| = 288. Unique!

(1, 0, z), (0, 1, z), (1, 1, z) with T(z) = 1

• |S| = 13, |G| = 288. Projective triad — linear set. Unique!

(0, 0, 1); (1, 0, z), (0, 1, z), (1, 1, z) with T(z) = 0
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The small cases — cntd.

• |S| = 14, |G| = 14. Unique!
Symmetric difference of two regular
hyperovals = union of two 7-arcs from
conics.

• |S| = 15. Three cases.
• Hyperoval + bisecant through nucleus
• Hyperoval + bisecant
• S14 + 4-secant. |G| = 6.
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The small cases — cntd.

• |S| = 16, |G| = 288. (Example)

(1, y, z) with T(y) = T(z) = 0

• |S| = 17, |G| = 96 (Example)
= S16 + 4-secant.
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The small cases — cntd.

• |S| = 16, |G| = 288. (Example)

(1, y, z) with T(y) = T(z) = 0

• |S| = 17, |G| = 96 (Example)
= S16 + 4-secant.
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Sums of odd/even sets

Sums of lines

• One line. |S| = 9, |G| = 677 676,
• Two lines. |S| = 16, |G| = 18 816,
• Triangle. |S| = 21, |G| = 886,
• Dual 4-arc. |S| = 24, |G| = 72,
• Dual 5-arc. |S| = 25, |G| = 36.

Sum of two hyperovals H, H′

• |H ∩ H′| = 5. |S| = 10. Unique
• |H ∩ H′| = 4. |S| = 12. Unique
• |H ∩ H′| = 3. |S| = 14. Unique
• |H ∩ H′| = 2, 1, 0. |S| = 16, 18, 20. Many examples.
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Bundles of hyperovals

H from conic with equation ϕ(x, y, z) = 0, + nucleus.

H′ from conic with equation ϕ′(x, y, z) = 0, + nucleus.

H(k, l) from conic with equation kϕ(x, y, z) + lϕ′(x, y, z), +
nucleus (except degenerate cases).

Sums of several hyperovals in the same bundle:

• Intersect in 2 points and nucleus:
|S| = 14, 24, 28, 38, 42, 52, |G| ≥ 14.

• Intersect in 1 point and nucleus:
|S| = 16, 26, 32, 42, 48, 58, 64, |G| ≥ 8.

• Intersect in nucleus:
|S| = 18, 28, 36, 46, 54, 64, |G| ≥ 18.

Special cases with larger group. In particular …
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Ree unital

Theorem
There is a unique irreducible even set R of size 28. R contains
precisely the external points of a dual hyperoval. Lines
intersect R in 0 or 4 points.

The automorphism group is that of the (dual) hyperoval.

Can be constructed as sums of 3 or 4 hyperovals in several
ways.
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Subfield related

Linear sets of rank ≥ 4 are odd sets.

= points (x, y, z) satisfying conditions:

Size Rank |Γ| |G| x y z
13 4 288 96 x ∈ F2 y ∈ F2 T(z) = 0
15 4 168 56 x ∈ F2 y ∈ F8 z = y2

25 5 8064 2688 x ∈ F2 y ∈ F2 z ∈ F8
25 5 288 96 x ∈ F2 T(y) = 0 T(z) = 0
29 5 168 56 T(x) = 0 y ∈ F8 z = y2

41 6 5376 1792 x ∈ F2 T(y) = 0 z ∈ F8
49 6 504 168 T(x) = 0 T(y) = 0 T(z) = 0

17



Subfield related (cntd.)

The points of PG(2,8) can be partitioned into a triangle and 7
Fano subplanes F(b), b 6= 0 :

F(b) = {(y, y2,by4) | y ∈ F8, y 6= 0}

Some unions of Fano planes provide even sets

F(1) ∪ F(α3) ∪ F(α5) ∪ F(α6),

|S| = 28, |G| = 63

F(α) ∪ F(α2) ∪ F(α4) ∪ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

|S| = 24, |G| = 504.

= external points to F(1) = complement of linear set.
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Even/odd sets from Sym(4)

PGL(3,8) has two conjugacy classes of groups isomorphic to
Sym(4):

• Acting as permutations of the coordinates
(x, y, z; x+ y+ z). Fixes point (1, 1, 1; 1).

• Dual of the above. Fixes line x+ y+ z = 0.

Some units of orbits of Sym(4) provide even sets with
automorphism group (at least) Sym(4) :

• |S| = 12 (see earlier)
• |S| = 24 (external points of subplane)
• |S| = 24 (sum of dual 4-arc)
• |S| = 48 (sum of 6 concurrent lines)

• |S| = 24, |G| = 24,
irreducible

• |S| = 48, |G| = 24

19



Other examples

Dual even set: bisecants of hyperoval H that do not contain a
fixed point P ∈ H:

• |S| = 36, |G| = 1 512 (P = nucleus)
• |S| = 36, |G| = 168 (P 6= nucleus)

Weights of lines: 0, 4, 8.
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Other examples (cntd.)

Points (1, y, z) with

y = 0 1 α α3 α2 α6 α3 α5

z = 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

α ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

α3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

α2 ⋆ ⋆

α6 ⋆ ⋆

α4 ⋆ ⋆

α5 ⋆ ⋆

|S| = 32, |G| = 96. 21



Thank you for your attention


