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Introduction

▶ Hyperbolic quadric,
Q+(2n+ 1,q) : X0X1 + X2X3 + . . .+ X2nX2n+1 = 0,

▶ contains points, lines, planes, . . . , n-dimensional projective
subspaces (called generators),

▶ a finite classical polar space embedded in PG(2n+ 1,q).
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The NO+(2n+ 2,2)-graph

Consider the hyperbolic quadric Q+(2n+ 1,2). Define
▶ vertices as the points of PG(2n+ 1,2) \ Q+(2n+ 1,2);
▶ x ∼ y ⇐⇒ ⟨x, y⟩ is a tangent line to Q+(2n+ 1,q).
▶ v = 22n+1 − 2n, k = 22n − 1, λ = 22n−1 − 2, µ = 22n−1 + 2n−1.
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▶ For n = 3, this is an srg(120,63,30,36), with automorphism
group PΓO+(8,2).

▶ One example of a large class of graphs, called Fischer graphs1

1Brouwer-Van Maldeghem, Strongly Regular Graphs, chapter 5
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Orbital graphs

▶ Let G be a group acting transitively on a set Ω.
▶ The orbitals of G are its orbits on Ω× Ω.
▶ Each orbital defines a directed graph on Ω.
▶ An srg(120,63,30,36) arises from a rank 7 action of Sym(7),

listed in Brouwer/Van Maldeghem, same parameters as the
NO+(8,2)-graph.

Question: can we construct this S7-graph on the same vertex set as
the NO+(2n+ 2,2)-graph?
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A geometric description?

Joint work with: Sam Adriaensen, Robert Bailey, Morgan Rodgers.
▶ Set up NO+(8,2) in a geometric way.
▶ Find copies of S7 in Aut(NO+(8,2)).
▶ Look at orbitals of S7 on the vertices.
▶ Try out combinations of orbitals to see if we find an srg with the

same parameters.
▶ Look for a geometrical description by exploring its adjacency

relation and looking at how the group acts on the other objects.
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Ovoids and spreads of Q+(7,q)

Key observation
One orbit of S7 on the generators consists of 7 mutually skew
generators, another orbit a pair of mutually skew generators, together
making a spread of Q+(7,q).
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Ovoids and spreads of Q+(7,q)

Let P be a finite classical polar space.
▶ An ovoid of P is a set O of points such that every generator

meets O in exactly one point.
▶ A spread of P is a set S of generators of P such that every point

is contained in exactly one element of S.

Jan De Beule Graphs from hyperbolic quadrics 1 September 2025 6/11



Ovoids and spreads of Q+(7,q)

Note
The generators of Q+(7,q) come in two systems (greek and latin
generators). Two generators belonging to one system meet in
projective dimension −1, 1, or 3. Hence a spread consists of
generators all belonging to one of the systems.
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Ovoids and spreads of Q+(7,q)

The quadric Q+(7,q) allows a triality, i.e. a map or order 3, preserving
incidence, and mapping
▶ lines on lines,
▶ points on greeks,
▶ greeks on latins,
▶ latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a
spread of latins.
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The quadric Q+(7,q) allows a triality, i.e. a map or order 3, preserving
incidence, and mapping
▶ lines on lines,
▶ points on greeks,
▶ greeks on latins,
▶ latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a
spread of latins.

Corollary
Ovoids and spreads of Q+(7,q) are equivalent objects.

Existence or non-existence of ovoids (and hence spreads) is not
settled for Q+(7,q).
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Ovoids and spreads of Q+(7,q)
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More fun with spreads and ovoids

From Cameron-Praeger (1991), we know
▶ There is a unique spread, with automorphism group A9.
▶ There are 960 copies of the unique ovoid.
▶ There are 2 orbits of ovoids under A9:

▶ one orbit O1 of length 120, each ovoid having stabilizer PΓL(2,8)
▶ one orbit O2 of length 840, each ovoid having stabilizer ASL(2,3)
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The construction

▶ Fix the spread S. Choose two solids π1, π2. The setwise stabilizer
of {π1, π2} in Aut(S) is S7.
▶ Any point p ∈ PG(7,2) \Q+(7,2) determines a unique point p1 ∈ π1

and p2 ∈ π2 and vice versa.
▶ Given two points p1 ∈ π1 and p2 ∈ π2, there is a unique ovoid

O ∈ O1 meeting π1 in p1 and π2 in p2.
▶ S7 acts transitively on the points of PG(7,2) \ Q+(7,2).
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The construction

▶ A vertex v determines a unique ovoid O ∈ O1.
▶ The hyperplane v⊥ meets Q+(7,2) in a parabolic quadric Q(6,2),

meeting O in a maximal partial ovoid O’ of size 7.
▶ Each set O′′ ⊂ O′ with | O′′ | = 6 will span a 5-dimensional space

Π5, and will be a maximal partial ovoid of the elliptic quadric
Q−(5,2) = Π5 ∩ Q+(7,2).

▶ The line Π⊥
5 will contain no points of Q+(7,2).
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The construction

Let v,w be two different vertices. (Recall: v determines O′ uniquely).
Then v ∼ w if
(a) ⟨v,w⟩ is tangent to Q+(7,2) and meets Q+(7,2) in a point of

π1 ∪ π2; or
(b) ⟨v,w⟩ is tangent to Q+(7,2) and meets Q+(7,2) in a point of O′;

or
(c) ⟨v,w⟩ is a line skew to Q+(7,2) and ⟨v,w⟩⊥ does not meet O′ in 6

points.
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The construction

Let v,w be two different vertices. (Recall: v determines O′ uniquely).
Then v ∼ w if
(a) ⟨v,w⟩ is tangent to Q+(7,2) and meets Q+(7,2) in a point of

π1 ∪ π2;
This gives 14 adjacencies;

(b) ⟨v,w⟩ is tangent to Q+(7,2) and meets Q+(7,2) in a point of O′;
This gives 7 adjacencies;

(c) ⟨v,w⟩ is a line skew to Q+(7,2) and ⟨v,w⟩⊥ does not meet O′ in 6
points.
There are 28 lines on v skew to Q+(7,2). Because there are
exactly 7 sets O′′ of size 6, there are exactly 7 lines li on v skew to
Q+(7,2) such that l⊥i meets O′ in such a set O′′. So there are
exactly 21 skew lines satisfying the condition, each line contains
2 vertices adjacent to v, hence 42 adjacencies.
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The graph Gn(q)

Consider the hyperbolic quadric Q+(2n+ 1,q). Fix a generator Π.
Define
▶ vertices as the points of Q+(2n+ 1,q) \ Π;
▶ x ∼1 y ⇐⇒ ⟨x, y⟩ is a secant line to Q+(2n+ 1,q);
▶ x ∼2 y ⇐⇒ ⟨x, y⟩ ⊂ q+(2n+ 1,q) and ⟨x, y⟩ meet Π in a point.
▶ ∼=∼1 ∪ ∼2.
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The graph Gn(q)

The graph Gn(q) is a strongly regular graph with parameters
v = (qn+1)(qn+1−1)

q−1 − qn+1−1
q−1 = qn(qn+1−1)

q−1 , k = q2n − 1,
λ = q2n−1(q− 1)− 2 and µ = (q2n−1 + qn−1)(q− 1).
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The graph Gn(q)

The graphs Gn(2) and NO+(2n+ 2,2) have the same parameters.
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The graph Gn(q)

The graphs Gn(2) and NO+(2n+ 2,2) have the same parameters.

Romaniello and Smaldore
The graphs G3(2) and NO+(6,2) are isomorphic
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Cliques of NO+(8,2)

Delsarte clique bound
Let Γ be a strongly regular graph with regularity k and smallest
eigenvalue λ. Then the size of a clique in Γ is at most 1− k

λ .

The size of a clique in NO+(8,2) and G3(2) is at most 8.

Brouwer-Van Maldeghem
All maximal cliques of NO+(2n+ 2,2) appear as follows. Let π be an
n-space of PG(2n+ 1,q) meeting Q+(2n+ 1,q) in an (n− 1)-space.
The 2n points of π \ Q+(2n+ 1,q) are a clique of size 2n, necessarily
maximal, and no other maximal cliques exist in NO+(2n+ 2,2).
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Cliques of G3(2)

Joint work with Antonio Cossidente, Giuseppe Marino, Francesco
Pavese, Valentino Smaldore
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