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Infroduction

» Hyperbolic quadric,
Q*(Zn +1, Q) XoX1+ XX+ ...+ inX2n+1 =0,

Jan De Beule Graphs from hyperbolic quadrics 1 September 2025 /11



Infroduction

» Hyperbolic quadric,
Q*(Zn + 1,Q) cXoX1+Xo X3+ ... +X2nX2n+1 =0,

> contains points, lines, planes, ..., n-dimensional projective
subspaces (called generators),

Jan De Beule Graphs from hyperbolic quadrics 1 September 2025 /11



Infroduction

» Hyperbolic quadric,
Q*(Zn + 1,Q) cXoX1+Xo X3+ ... +X2nX2n+1 =0,

> contains points, lines, planes, ..., n-dimensional projective
subspaces (called generators),

> a finite classical polar space embedded in PG(2n + 1,q).

Jan De Beule Graphs from hyperbolic quadrics 1 September 2025 /11



The NO*(2n + 2,2)-graph

Consider the hyperbolic quadric Q*(2n + 1,2). Define
» vertices as the points of PG(2n +1,2) \ Q"(2n +1,2);
> x ~y <= (x,y)isatangentlineto Q*(2n +1,q).
>y — 22n+1 _ 20 k = 22n _ 1L, = 22n—1 _ 2, = 22n—1 + on—1
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» Forn = 3, this is an srg(120, 63, 30, 36), with automorphism
group Pro+(8,2).
> One example of a large class of graphs, called Fischer graphs’

"Brouwer-Van Maldeghem, Strongly Regular Graphs, chapter 5
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Orbital graphs

> Let G be a group acting transitively on a set Q.
» The orbitals of G are its orbits on Q x Q.
» Each orbital defines a directed graph on Q.

> Ansrg(120, 63,30, 36) arises from a rank 7 action of Sym(7),
listed in Brouwer/Van Maldeghem, same parameters as the
NO™(8, 2)-graph.
Question: can we construct this S;-graph on the same vertex set as
the NO™(2n + 2, 2)-graph?
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A geometric description?

Joint work with: Sam Adriaensen, Robert Bailey, Morgan Rodgers.

>

| 4
| 4
>

v

Set up NO*(8,2) in a geometric way.
Find copies of S7 in Aut(NO™(8,2)).
Look at orbitals of S; on the vertices.

Try out combinations of orbitals to see if we find an srg with the
same parameters.

Look for a geometrical description by exploring its adjacency
relation and looking at how the group acts on the other objects.
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Ovoids and spreads of Q" (7, q)

Key observation

One orbit of S; on the generators consists of 7 mutually skew
generators, another orbit a pair of mutually skew generators, together

making a spread of Q*(7,q).
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Ovoids and spreads of Q" (7, q)

Let P be a finite classical polar space.

» Anovoid of P is a set O of points such that every generator
meets O in exactly one point.

> A spread of P is a set S of generators of P such that every point
is contained in exactly one element of S.
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Ovoids and spreads of Q" (7, q)

Note

The generators of Q1 (7, q) come in two systems (greek and latin
generators). Two generators belonging to one system meet in
projective dimension —1, 1, or 3. Hence a spread consists of
generators all belonging to one of the systems.
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Ovoids and spreads of Q" (7, q)

The quadric Q*(7, q) allows a triality, i.e. a map or order 3, preserving
incidence, and mapping

» lines on lines,

> points on greeks,
» greeks on latins,
» latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a
spread of latins.
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Ovoids and spreads of Q" (7, q)

The quadric Q*(7, q) allows a triality, i.e. a map or order 3, preserving
incidence, and mapping

» lines on lines,

> points on greeks,

> greeks on latins,

> latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a
spread of latins.

Corollary
Ovoids and spreads of Q" (7, q) are equivalent objects. J

Existence or non-existence of ovoids (and hence spreads) is not
settled for Q" (7, q). J
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Ovoids and spreads of Q" (7, q)
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Ovoids and spreads of Q" (7, q)

An overlarge set of Steiner systems S(k—1,k,n) is a partition of the set of
all k-subsets of an (n + 1)-set into such systems (each omitting one point).
Breach and Street showed that there are just two such sets up to isomor-
phism for k = 4, n =8 both admitting 2-transitive groups. Our purpose
here is twofold:

(i) to give a short proof of this result, using the geometry of the 07(8, 2)

quadric (including triality);
(ii) to show the non-existence of overlarge sets of 5(5,6,12)s.
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Ovoids and spreads of Q" (7, q)
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More fun with spreads and ovoids

From Cameron-Praeger (1991), we know
» There is a unique spread, with automorphism group Ag.

» There are 960 copies of the unique ovoid.
» There are 2 orbits of ovoids under Aq:

» one orbit O; of length 120, each ovoid having stabilizer PI'L(2, 8)
> one orbit O, of length 840, each ovoid having stabilizer ASL(2, 3)
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The construction

> Fix the spread S. Choose two solids 7, mp. The setwise stabilizer
of {m, 2} in Aut(S) is S7.
> Any pointp € PG(7,2)\ Q" (7, 2) determines a unique point p; € m
and p, € m; and vice versa.
> Given two points p; € m and p, € m, there is a unique ovoid
O € 01 meeting m in p; and 75 in ps.
> S; acts transitively on the points of PG(7,2) \ Q" (7, 2).
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The construction

> A vertex v determines a unique ovoid O € 0,.

» The hyperplane v meets Q*(7,2) in a parabolic quadric Q(6, 2),
meeting O in a maximal partial ovoid O’ of size 7.

» Each set 0" c O with | 0" | = 6 will span a 5-dimensional space
M5, and will be a maximal partial ovoid of the elliptic quadric
Q7(5.2) =MsNQ*(7,2).

» The line Nz will contain no points of Q™ (7, 2).
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The construction

Let v, w be two different vertices. (Recall: v determines O’ uniquely).

Thenv ~ wiif

(a) (v,w) istangent to Q" (7,2) and meets Q*(7,2) in a point of
m Uy, Or

(b) (v,w) is tangent to Q*(7,2) and meets Q" (7, 2) in a point of O’;
or

(c) (v,w) is a line skew to Q*(7,2) and (v,w)* does not meet O’ in 6
points.
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The construction

Let v, w be two different vertices. (Recall: v determines O’ uniquely).

Thenv ~ wiif

(a) (v,w) istangent to Q" (7,2) and meets Q*(7,2) in a point of
T U o,
This gives 14 adjacencies;

(b) (v,w) is tangent to Q*(7,2) and meets Q*(7,2) in a point of ¢’;
This gives 7 adjacencies;

(c) (v,w) is a line skew to Q™ (7,2) and (v, w)* does not meet O’ in 6
points.
There are 28 lines on v skew to Q" (7, 2). Because there are
exactly 7 sets 0" of size 6, there are exactly 7 lines /; on v skew to
Q" (7,2) such that ;- meets O’ in such a set ©”. So there are
exactly 21 skew lines satisfying the condition, each line contains
2 vertices adjacent to v, hence 42 adjacencies.
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The graph G,(q)

Consider the hyperbolic quadric Q™ (2n + 1, q). Fix a generator I1.
Define

> vertices as the points of Q*(2n +1,9) \ IT;

> x ~1y <= (x,y)is asecantlineto Q" (2n +1,q);

> X~y < (X,¥) Cq"(2n+1,q9) and (x,y) meet I1in a point.
' N:N'I U N2.
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The graph G,(q)

The graph Gn(q) is a strongly regular graph with parameters

N1 n+171 n+‘|_-| n n+171
V=(q+2,(31 )_q(F1 :q(tzli1 ) k=g —1,
A=q""T(q-1)—-2andp=(¢>"""+q" ")(q-1).
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The graph G,(q)

The graphs G,(2) and NO*(2n + 2,2) have the same parameters. J
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The graph G,(q)

The graphs Gp(2) and NO*(2n + 2,2) have the same parameters. )

Romaniello and Smaldore
The graphs G3(2) and NO™ (6, 2) are isomorphic J
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Cliques of NO*(8, 2)

Delsarte clique bound

Let I be a strongly regular graph with regularity kK and smallest
eigenvalue \. Then the size of a cliquein I is at most 1 — §

The size of a clique in NO™(8,2) and G3(2) is at most 8. J

Brouwer-Van Maldeghem

All maximal cliques of NO*(2n + 2, 2) appear as follows. Let = be an
n-space of PG(2n + 1,q) meeting Q" (2n + 1,q) in an (n — 1)-space.
The 2" points of 7 \ Q*(2n + 1, q) are a clique of size 2", necessarily
maximal, and no other maximal cliques exist in NO™(2n + 2, 2).
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Cliques of G3(2)

Joint work with Antonio Cossidente, Giuseppe Marino, Francesco
Pavese, Valentino Smaldore

# of cliques | Size | Adjacencies Geometric description
10752 5 1 Q7 (3,2) € Q*(7,2) not meeting II,,
960 8 1 Cameron-Praeger ovoid [5]
15 8 2 Generators of Q7(7,2) meeting I, in a plane
840 8 mixed Cones PQ~(3,2), P € I, meeting I, in a line
210 8 mixed Cones £Q*(1,2), £ € I, meeting I, in £
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