Graphs from hyperbolic quadrics

2025 Finite Geometries Seventh Irsee Conference

Jan De Beule

1 September 2025

Introduction

Hyperbolic quadric,

$$Q^+(2n+1,q): X_0X_1+X_2X_3+\ldots+X_{2n}X_{2n+1}=0,$$

Introduction

- ► Hyperbolic quadric, $Q^+(2n+1,q): X_0X_1 + X_2X_3 + ... + X_{2n}X_{2n+1} = 0$,
- contains points, lines, planes, ..., n-dimensional projective subspaces (called generators),

Introduction

- ► Hyperbolic quadric, $Q^+(2n+1,q): X_0X_1 + X_2X_3 + ... + X_{2n}X_{2n+1} = 0$,
- contains points, lines, planes, ..., n-dimensional projective subspaces (called generators),
- ▶ a finite classical polar space embedded in PG(2n + 1, q).

The $NO^{+}(2n + 2, 2)$ -graph

Consider the hyperbolic quadric $Q^+(2n + 1, 2)$. Define

- \triangleright vertices as the points of PG(2n + 1, 2) \ Q⁺(2n + 1, 2);
- $ightharpoonup x \sim y \iff \langle x,y \rangle$ is a tangent line to $Q^+(2n+1,q)$.
- $ightharpoonup v = 2^{2n+1} 2^n$, $k = 2^{2n} 1$, $\lambda = 2^{2n-1} 2$, $\mu = 2^{2n-1} + 2^{n-1}$.

- For n = 3, this is an srg(120, 63, 30, 36), with automorphism group PFO⁺(8, 2).
- One example of a large class of graphs, called Fischer graphs¹

¹Brouwer-Van Maldeghem, Strongly Regular Graphs, chapter 5

Orbital graphs

- Let G be a group acting transitively on a set Ω .
- ► The *orbitals* of *G* are its orbits on Ω × Ω.
- Each orbital defines a directed graph on Ω.
- An srg(120, 63, 30, 36) arises from a rank 7 action of Sym(7), listed in Brouwer/Van Maldeghem, same parameters as the NO⁺(8, 2)-graph.

Question: can we construct this S_7 -graph on the same vertex set as the $NO^+(2n+2,2)$ -graph?

A geometric description?

Joint work with: Sam Adriaensen, Robert Bailey, Morgan Rodgers.

- ► Set up NO⁺(8, 2) in a geometric way.
- ▶ Find copies of S_7 in $Aut(NO^+(8,2))$.
- Look at orbitals of S₇ on the vertices.
- Try out combinations of orbitals to see if we find an srg with the same parameters.
- ► Look for a geometrical description by exploring its adjacency relation and looking at how the group acts on the other objects.

Key observation

One orbit of S_7 on the generators consists of 7 mutually skew generators, another orbit a pair of mutually skew generators, together making a *spread* of $Q^+(7, q)$.

Let \mathcal{P} be a finite classical polar space.

- An ovoid of \mathcal{P} is a set \mathcal{O} of points such that every generator meets \mathcal{O} in exactly one point.
- ▶ A spread of \mathcal{P} is a set \mathcal{S} of generators of \mathcal{P} such that every point is contained in exactly one element of \mathcal{S} .

Note

The generators of $Q^+(7,q)$ come in two systems (*greek* and *latin* generators). Two generators belonging to one system meet in projective dimension -1, 1, or 3. Hence a spread consists of generators all belonging to one of the systems.

The quadric $Q^+(7,q)$ allows a *triality*, i.e. a map or order 3, preserving incidence, and mapping

- lines on lines,
- points on greeks,
- greeks on latins,
- latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a spread of latins.

The quadric $Q^+(7,q)$ allows a *triality*, i.e. a map or order 3, preserving incidence, and mapping

- lines on lines,
- points on greeks,
- greeks on latins,
- latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a spread of latins.

Corollary

Ovoids and spreads of $Q^+(7,q)$ are equivalent objects.

The quadric $Q^+(7,q)$ allows a *triality*, i.e. a map or order 3, preserving incidence, and mapping

- lines on lines,
- points on greeks,
- greeks on latins,
- latins on points.

Hence a triality maps a spread of latins on an ovoid, and an ovoid on a spread of latins.

Corollary

Ovoids and spreads of $Q^+(7, q)$ are equivalent objects.

Existence or non-existence of ovoids (and hence spreads) is not settled for $Q^+(7, q)$.

An overlarge set of Steiner systems S(k-1,k,n) is a partition of the set of all k-subsets of an (n+1)-set into such systems (each omitting one point). Breach and Street showed that there are just two such sets up to isomorphism for k=4, n=8 both admitting 2-transitive groups. Our purpose here is twofold:

- (i) to give a short proof of this result, using the geometry of the 0⁺(8,2) quadric (including triality);
- (ii) to show the non-existence of overlarge sets of S(5,6,12)s.

which maps lines to lines and preserves incidence. If p and q are points, then $p\tau \cap q\tau = \emptyset$ if and only if p and q are not perpendicular. So $Q\tau$ is a set of 9 pairwise disjoint solids, that is, a spread of solids. Every spread arises as the image of an ovoid under τ or τ^2 . Thus the stabiliser of a spread is A_9 .

More fun with spreads and ovoids

From Cameron-Praeger (1991), we know

- There is a unique spread, with automorphism group A₉.
- There are 960 copies of the unique ovoid.
- ► There are 2 orbits of ovoids under A₉:
 - one orbit O_1 of length 120, each ovoid having stabilizer PFL(2, 8)
 - ightharpoonup one orbit O_2 of length 840, each ovoid having stabilizer ASL(2,3)

- Fix the spread S. Choose two solids π_1 , π_2 . The setwise stabilizer of $\{\pi_1, \pi_2\}$ in Aut(S) is S_7 .
 - Any point $p \in PG(7,2) \setminus Q^+(7,2)$ determines a unique point $p_1 \in \pi_1$ and $p_2 \in \pi_2$ and vice versa.
 - ▶ Given two points $p_1 \in \pi_1$ and $p_2 \in \pi_2$, there is a unique ovoid $\mathcal{O} \in \mathcal{O}_1$ meeting π_1 in p_1 and π_2 in p_2 .
 - ▶ S_7 acts transitively on the points of PG(7, 2) \ Q⁺(7, 2).

- ▶ A vertex v determines a unique ovoid $O \in O_1$.
- ▶ The hyperplane v^{\perp} meets $Q^{+}(7,2)$ in a parabolic quadric Q(6,2), meeting \mathcal{O} in a maximal partial ovoid \mathcal{O}' of size 7.
- ▶ Each set $\mathcal{O}'' \subset \mathcal{O}'$ with $|\mathcal{O}''| = 6$ will span a 5-dimensional space Π_5 , and will be a *maximal partial ovoid* of the elliptic quadric $Q^-(5,2) = \Pi_5 \cap Q^+(7,2)$.
- The line Π_5^{\perp} will contain no points of Q⁺(7, 2).

Let v, w be two different vertices. (Recall: v determines \mathcal{O}' uniquely). Then $v \sim w$ if

- (a) $\langle v, w \rangle$ is tangent to Q⁺(7, 2) and meets Q⁺(7, 2) in a point of $\pi_1 \cup \pi_2$; or
- (b) $\langle v, w \rangle$ is tangent to Q⁺(7, 2) and meets Q⁺(7, 2) in a point of \mathcal{O}' ; or
- (c) $\langle v, w \rangle$ is a line skew to Q⁺(7,2) and $\langle v, w \rangle^{\perp}$ does not meet \mathcal{O}' in 6 points.

Let v, w be two different vertices. (Recall: v determines \mathcal{O}' uniquely). Then $v \sim w$ if

- (a) $\langle v, w \rangle$ is tangent to Q⁺(7,2) and meets Q⁺(7,2) in a point of $\pi_1 \cup \pi_2$; This gives 14 adjacencies;
- (b) $\langle v, w \rangle$ is tangent to Q⁺(7, 2) and meets Q⁺(7, 2) in a point of \mathcal{O}' ; This gives 7 adjacencies;
- (c) $\langle v, w \rangle$ is a line skew to Q⁺(7,2) and $\langle v, w \rangle^{\perp}$ does **not** meet \mathcal{O}' in 6 points.
 - There are 28 lines on v skew to $Q^+(7,2)$. Because there are exactly 7 sets \mathcal{O}'' of size 6, there are exactly 7 lines I_i on v skew to $Q^+(7,2)$ such that I_i^\perp meets \mathcal{O}' in such a set \mathcal{O}'' . So there are exactly 21 skew lines satisfying the condition, each line contains 2 vertices adjacent to v, hence 42 adjacencies.

Consider the hyperbolic quadric $Q^+(2n+1,q)$. Fix a generator Π . Define

- ightharpoonup vertices as the points of $Q^+(2n+1,q)\setminus \Pi$;
- ► $x \sim_1 y \iff \langle x, y \rangle$ is a secant line to $Q^+(2n+1, q)$;
- ► $x \sim_2 y \iff \langle x, y \rangle \subset q^+(2n+1, q)$ and $\langle x, y \rangle$ meet Π in a point.
- ightharpoonup $\sim = \sim_1 \cup \sim_2$.

The graph $\mathcal{G}_n(q)$ is a strongly regular graph with parameters $v = \frac{(q^n+1)(q^{n+1}-1)}{2} - \frac{q^{n+1}-1}{2} = \frac{q^n(q^{n+1}-1)}{2}$, $k = q^{2n} - 1$.

$$v = \frac{(q^{n+1})(q^{n+1}-1)}{q-1} - \frac{q^{n+1}-1}{q-1} = \frac{q^{n}(q^{n+1}-1)}{q-1}, k = q^{2n} - 1,$$

$$\lambda = q^{2n-1}(q-1) - 2 \text{ and } \mu = (q^{2n-1} + q^{n-1})(q-1).$$

The graphs $\mathcal{G}_n(2)$ and NO⁺(2n + 2, 2) have the same parameters.

The graphs $\mathcal{G}_n(2)$ and NO⁺(2n + 2, 2) have the same parameters.

Romaniello and Smaldore

The graphs $\mathcal{G}_3(2)$ and NO⁺(6, 2) are isomorphic

Cliques of $NO^+(8,2)$

Delsarte clique bound

Let Γ be a strongly regular graph with regularity k and smallest eigenvalue λ . Then the size of a clique in Γ is at most $1 - \frac{k}{\lambda}$.

The size of a clique in $NO^+(8,2)$ and $\mathcal{G}_3(2)$ is at most 8.

Brouwer-Van Maldeghem

All maximal cliques of $NO^+(2n+2,2)$ appear as follows. Let π be an n-space of PG(2n+1,q) meeting $Q^+(2n+1,q)$ in an (n-1)-space. The 2^n points of $\pi \setminus Q^+(2n+1,q)$ are a clique of size 2^n , necessarily maximal, and no other maximal cliques exist in $NO^+(2n+2,2)$.

Cliques of $\mathcal{G}_3(2)$

Joint work with Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Valentino Smaldore

# of cliques	Size	Adjacencies	Geometric description
10752	5	1	$Q^-(3,2) \subseteq Q^+(7,2)$ not meeting Π_{∞}
960	8	1	Cameron-Praeger ovoid [5]
15	8	2	Generators of $Q^+(7,2)$ meeting Π_{∞} in a plane
840	8	mixed	Cones $PQ^{-}(3,2), P \in \Pi_{\infty}$, meeting Π_{∞} in a line
210	8	mixed	Cones $\ell Q^+(1,2), \ \ell \in \Pi_{\infty}$, meeting Π_{∞} in ℓ