Cameron-Liebler sets

in the

Klein quadric $Q^+(5,q)$

Jozefien D'haeseleer

Joint work with Leo Storme and Jonathan Mannaert

Finite Geometries 2025
7th Irsee conference

2 \Outline

1 Cameron-Liebler sets in finite classical polar spaces

2 Cameron-Liebler sets in the Klein quadric $Q^+(5,q)$

Cameron-Liebler sets in finite classical polar spaces

2 Cameron-Liebler sets in the Klein quadric $Q^+(5,q)$

4 Finite classical polar spaces

- ► Hyperbolic quadric $Q^+(2n+1,q)$
- ► Elliptic quadric $Q^-(2n+1,q)$
- Parabolic quadric Q(2n, q)
- ► Hermitian variety $H(n, q^2)$
- Symplectic polar space W(2n+1,q)

Definition

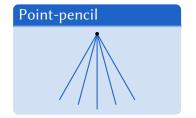
Let $\mathcal P$ be a finite classical polar space of rank d, let $\mathcal L$ be a set of generators in $\mathcal P$. Then $\mathcal L$ is a degree 1 CL set of generators in $\mathcal P$ if and only if the number of elements of $\mathcal L$ meeting a generator π in a codimension 1-space equals

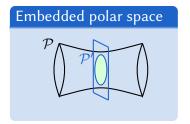
$$\begin{cases} x - 1 + q^e \frac{q^{d-1} - 1}{q - 1} & \text{if } \pi \in \mathcal{L} \\ x & \text{if } \pi \notin \mathcal{L}. \end{cases}$$

Definition

Let $\mathcal P$ be a finite classical polar space of rank d, let $\mathcal L$ be a set of generators in $\mathcal P$ and let i be any* integer in $\{1,\ldots,d-1\}$. Then $\mathcal L$ is a degree 1 CL set of generators in $\mathcal P$ if and only if the number of elements of $\mathcal L$ meeting a generator π in a codimension i-space equals

$$\begin{cases} \left((x-1) \begin{bmatrix} d-1 \\ i-1 \end{bmatrix} + q^{i+e-1} \begin{bmatrix} d-1 \\ i \end{bmatrix} \right) q^{\frac{(i-1)(i-2)}{2} + (i-1)e} & \text{if } \pi \in \mathcal{L} \\ x \begin{bmatrix} d-1 \\ i-1 \end{bmatrix} q^{\frac{(i-1)(i-2)}{2} + (i-1)e} & \text{if } \pi \notin \mathcal{L} \end{cases}$$





Question

Are there non-trivial examples of degree 1 Cameron-Liebler sets in finite classical polar spaces?

See previous talk by Morgan Rodgers.

Question

Are there non-trivial examples of degree 1 Cameron-Liebler sets in finite classical polar spaces?

See previous talk by Morgan Rodgers.

Theorem (M. De Boeck, J.D., M. Rodgers, L. Storme, A. Švob)

If $\mathcal L$ is a (degree 1) CL set of $\mathcal P$ with parameter x, then $x\in\mathbb N$.

Theorem (M. De Boeck, J.D.)

Let $\mathcal L$ be a degree 1 CL set of $\mathcal P$ with parameter x. If $x \leq q^{e-1}+1$, then $\mathcal L$ is the union of x point-pencils whose vertices are pairwise non-collinear or $x=q^{e-1}+1$ and $\mathcal L$ is the set of generators in an embedded polar space.

Theorem (M. De Boeck, J.D.)

Let $\mathcal P$ be the polar space $\mathcal W(5,q)$ or $\mathcal Q(6,q)$ and let $\mathcal L$ be a degree 1 CL set of $\mathcal P$ with parameter $x,2\leq x\leq \sqrt[3]{2q^2}-\frac{\sqrt[3]{4q}}{3}+\frac{1}{6}$. Then $\mathcal L$ is a union of embedded polar spaces $Q^+(5,q)$ and point-pencils.

Theorem (M. De Boeck, J.D., M. Rodgers, L. Storme, A. Švob)

If \mathcal{L} is a (degree 1) CL set of \mathcal{P} with parameter x, then $x \in \mathbb{N}$.

Theorem (M. De Boeck, J.D.)

Let $\mathcal L$ be a degree 1 CL set of $\mathcal P$ with parameter x. If $x \leq q^{e-1}+1$, then $\mathcal L$ is the union of x point-pencils whose vertices are pairwise non-collinear or $x=q^{e-1}+1$ and $\mathcal L$ is the set of generators in an embedded polar space.

Theorem (M. De Boeck, J.D.)

Let $\mathcal P$ be the polar space $\mathcal W(5,q)$ or $\mathcal Q(6,q)$ and let $\mathcal L$ be a degree 1 CL set of $\mathcal P$ with parameter $x,2\leq x\leq \sqrt[3]{2q^2}-\frac{\sqrt[3]{4q}}{3}+\frac{1}{6}$. Then $\mathcal L$ is a union of embedded polar spaces $Q^+(5,q)$ and point-pencils.

Theorem (M. De Boeck, J.D., M. Rodgers, L. Storme, A. Švob)

If \mathcal{L} is a (degree 1) CL set of \mathcal{P} with parameter x, then $x \in \mathbb{N}$.

Theorem (M. De Boeck, J.D.)

Let $\mathcal L$ be a degree 1 CL set of $\mathcal P$ with parameter x. If $x \leq q^{e-1}+1$, then $\mathcal L$ is the union of x point-pencils whose vertices are pairwise non-collinear or $x=q^{e-1}+1$ and $\mathcal L$ is the set of generators in an embedded polar space.

Theorem (M. De Boeck, J.D.)

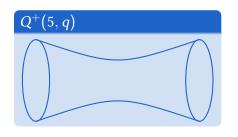
Let $\mathcal P$ be the polar space $\mathcal W(5,q)$ or $\mathcal Q(6,q)$ and let $\mathcal L$ be a degree 1 CL set of $\mathcal P$ with parameter $x,2\leq x\leq \sqrt[3]{2q^2}-\frac{\sqrt[3]{4q}}{3}+\frac{1}{6}$. Then $\mathcal L$ is a union of embedded polar spaces $Q^+(5,q)$ and point-pencils.

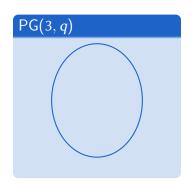
1 Cameron-Liebler sets in finite classical polar spaces

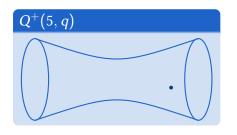
2 Cameron-Liebler sets in the Klein quadric $Q^+(5,q)$

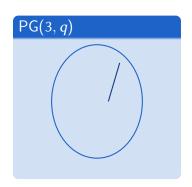
The hyperbolic quadric $Q^+(5,q)$

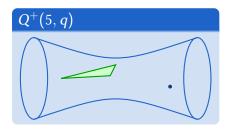
- A non-singular quadric with standard equation $X_0X_1 + X_2X_3 + X_4X_5 = 0$.
- Contains points, lines and planes.
- ▶ The generators (planes), of $Q^+(5, q)$ can be partitioned into two classes, often called the class of the *Latin* generators and the class of the *Greek* generators.
 - Two generators Π_1 and Π_2 of the hyperbolic quadric $Q^+(5,q)$ are equivalent if and only if they are equal or intersect in a point.

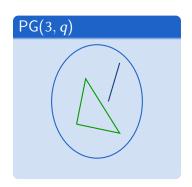


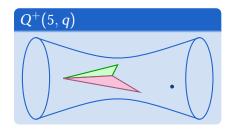


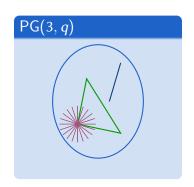












The Klein correspondence

PG(3,q)	$Q^+(5,q)$
Line	Point
Two intersecting lines	Two points, contained in a common line of $Q^+(5, q)$
The set of lines through a fixed point P and in a fixed plane π , with $P \in \pi$	Line
The set of lines in a fixed plane	Greek plane
The set of lines through a fixed point	Latin plane

Definition

Let $\mathcal{Q}=Q^+(5,q)$ be the Klein quadric, let \mathcal{L} be a set of generators in \mathcal{Q} . Then \mathcal{L} is a CL set of generators in \mathcal{Q} if and only if the number of elements of \mathcal{L} meeting a plane π in a line equals

$$\begin{cases} x+q & \text{if } \pi \in \mathcal{L} \\ x & \text{if } \pi \notin \mathcal{L}. \end{cases}$$

Moreover $|\mathcal{L}| = 2x(q+1)$, and \mathcal{L} consist of x(q+1) Latin and x(q+1) Greek planes.

Definition

Let $\mathcal{Q}=Q^+(5,q)$ be the Klein quadric, let \mathcal{L} be a set of generators in \mathcal{Q} . Then \mathcal{L} is a CL set of generators in \mathcal{Q} if and only if the number of elements of \mathcal{L} meeting a plane π in a line equals

$$\begin{cases} x+q & \text{if } \pi \in \mathcal{L} \\ x & \text{if } \pi \notin \mathcal{L}. \end{cases}$$

Moreover $|\mathcal{L}| = 2x(q+1)$, and \mathcal{L} consist of x(q+1) Latin and x(q+1) Greek planes.

CL sets under the Klein correspondence

Suppose that P_0 is a set of points and P_2 is a set of planes in PG(3, q), respectively. Then the following statements are equivalent:

- 1. The set of generators in $Q^+(5,q)$ derived from P_0 and P_2 , using the Klein correspondence is a Cameron-Liebler set of parameter x.
- 2. The following two properties are valid.
 - Every plane of PG(3, q) contains x or q + x points of P_0 , and the planes of P_2 are the planes containing q + x points of P_0 .
 - Every point of PG(3, q) lies in x or q + x planes of P_2 , and the points of P_0 are the points lying in q + x planes of P_2 .

CL sets coming from partial line spreads in PG(3, q)

- Let S be a maximal partial spread of size $q^2 + 1 x$.
- The set of holes P_0 and the set of planes P_2 , not containing a line of S, both have size x(q + 1).
- $P_0 \cup P_2$ gives a CL set of parameter x in $Q^+(5,q)$

CL sets coming from partial line spreads in PG(3, q)

- ▶ Let S be a maximal partial spread of size $q^2 + 1 x$.
- The set of holes P_0 and the set of planes P_2 , not containing a line of S, both have size x(q + 1).
- $P_0 \cup P_2$ gives a CL set of parameter x in $Q^+(5, q)$.

CL sets coming from partial line spreads in PG(3, q)

- Let S be a maximal partial spread of size $q^2 + 1 x$.
- ► The set of holes P_0 and the set of planes P_2 , not containing a line of S, both have size x(q + 1).
- ▶ $P_0 \cup P_2$ gives a CL set of parameter x in $Q^+(5, q)$.

CL sets coming from Bear subgeometries in $PG(3, q^2)$

- Set of points and planes of the Baer subgeometry PG(3, q) in $PG(3, q^2)$.
- ► Gives CL set \mathcal{L} of parameter q + 1 in $Q^+(5, q^2)$.
- ► Then \mathcal{L} is a sub hyperbolic quadric $Q^+(5, q)$ in $Q^+(5, q^2)$ and is called *Baer subgeometry type*.

CL sets coming from Bear subgeometries in $PG(3, q^2)$

- Set of points and planes of the Baer subgeometry PG(3, q) in $PG(3, q^2)$.
- Gives CL set \mathcal{L} of parameter q+1 in $Q^+(5,q^2)$.
- Then \mathcal{L} is a sub hyperbolic quadric $Q^+(5, q)$ in $Q^+(5, q^2)$ and is called *Baer subgeometry type*.

CL sets coming from Bear subgeometries in PG(3, q^2)

- \triangleright Set of points and planes of the Baer subgeometry PG(3, q) in $PG(3, q^2)$.
- Gives CL set \mathcal{L} of parameter q+1 in $Q^+(5,q^2)$.
- ► Then \mathcal{L} is a sub hyperbolic quadric $Q^+(5,q)$ in $Q^+(5,q^2)$ and is called Baer subgeometry type.

Theorem (J.D., J. Mannaert, L. Storme)

There exist Cameron-Liebler sets on the Klein quadric $Q^+(5, q^t)$ with parameter $x = \frac{q^t-1}{q-1}$, arising from scattered \mathbb{F}_q -linear sets of rank $\frac{rt}{2}$.

Classification results

- ▶ If \mathcal{L} is a (degree 1) Cameron-Liebler set of \mathcal{P} with parameter x, then $x \in \mathbb{N}$.
- If \mathcal{L} is a (degree 1) Cameron-Liebler set of \mathcal{P} with parameter 1, then \mathcal{L} is a point-pencil.

Theorem (J.D., J. Mannaert, L. Storme)

Every Cameron-Liebler set \mathcal{L} on the Klein quadric, with parameter x satisfying $1 \leq x < \sqrt{q} + 1$, is the union of x point-pencils, defined by x points pairwise non-collinear on the Klein quadric.

Method

Holes of maximal partial spreads in PG(3, q).

- Link with non-trivial blocking sets in PG(2, q).
- Characterisations of these blocking sets, and hence, of the sets of holes were found.
 - The proof only uses combinatorial properties.
 - The proof can be repeated in the context of CL sets!

Method

Holes of maximal partial spreads in PG(3, q).

- Link with non-trivial blocking sets in PG(2, q).
- ► Characterisations of these blocking sets, and hence, of the sets of holes were found.
 - The proof only uses combinatorial properties
 - The proof can be repeated in the context of CL sets!

Method

Holes of maximal partial spreads in PG(3, q).

- Link with non-trivial blocking sets in PG(2, q).
- Characterisations of these blocking sets, and hence, of the sets of holes were found.
 - ► The proof only uses combinatorial properties.
 - ► The proof can be repeated in the context of CL sets!

Theorem (J. D., J. Mannaert, L. Storme)

1. Let $p = p_0^h, p_0 \ge 7$ a prime, $h \ge 1$ odd.

Let \mathcal{L} be a CL set of generators on $Q^+(5, p^3)$, with $x \leq \delta_0$, then \mathcal{L} is the union of of disjoint sets of the following types

- point-pencils,
- CL sets of projected PG(5, p) type.
- 2. Let $p = p_0^h$, $p_0 \ge 7$ a prime, h > 1 even.

Let \mathcal{L} be a CL set of generators on $Q^+(5, p^3)$, with $x \leq \delta_0$, then \mathcal{L} is the union of disjoint sets of the following types

- point-pencils,
- CL sets of Baer subgeometry type,
- \triangleright CL sets of projected PG(5, q) type.

Thank you very much for your

attention.