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Notation

Fq : finite fields with q elements;
Vn+1(Fq ): (n +1)-dimensional vector space over Fq ;
Gk (Vn+1): Grassmann geometry of the k -dimensional vector
subspaces of Vn+1;
PG(Vn+1) =G1(Vn+1) (column vectors);
PG(V ∗n+1) =Gn (Vn+1) (row vectors).
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Point–Hyperplane Geometry

Γ := (P ,L )

P : flags ([p ], [ξ])⊆ PG(Vn+1)×PG(V ∗n+1) with [p ]⊆ [ξ].
L : two types

1 Given ` ∈G2(Vn+1), [ξ] ∈ PG(V ∗n+1), `⊆ [ξ]:

((`, [ξ])) := {([p ], [ξ]) : p ∈ `};

2 Given [p ] ∈ PG(V ∗n+1), S ∈Gn−1(Vn+1), [p ] ∈ S :

(([p ],S )) := {([p ], [ξ]) : S ⊆ [ξ]}.
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Segre Embedding

Definition
Segre Geometry: S1,n := PG(Vn+1)×PG(V ∗n+1);
Segre embedding: ε : S1,n → PG(Vn+1⊗V ∗n+1);

ε(([p ], [ξ])) = [p ⊗ξ] = [p ·ξ].

Remark
Vn+1⊗V ∗n+1

∼=Mn+1(Fq );
dim(ε) = dim(Vn+1⊗V ∗n+1);
Image of ε(S1,n ): projective points induced by all
(n +1)× (n +1) matrices of rank 1.
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Segre Embedding

Γ ⊆S1,n ;
M 0

n+1 := {M ∈Mn+1 : Tr(M ) = 0} ⊆Mn+1(Fq );
ε(Γ )⊆ PG(M 0

n+1);
ε1 := ε|Γ is a projective embedding of Γ of dimension n (n +2);
The image Λ1 of ε1 consists of the projective points induced
by all (n +1)× (n +1) matrices of rank 1 and trace 0.
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Twisted embedding

Fq : field with q elements;
σ ∈Aut(Fq ), σ 6= 1: non-trivial automorphism.

Theorem
Let

εσ :

¨

Γ → PG(Vn+1⊗V ∗n+1)
∼= PG(Mn+1(q ))

([p ], [ξ])→ [pσ ⊗ξ] = [pσ ·ξ].

Then,
εσ is a projective embedding;
dim(εσ) = (n +1)2.

Λσ := εσ(Γ )
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Projective codes
W : vector space over Fq ;
dim(W ) = k ;
Ω⊆ PG(W ): projective system;
〈Ω〉= PG(W );
C (Ω): code with generator matrix whose columns
correspond to the coordinates of the points of Ω.

Theorem (F.MacWilliams, 1964)

The code C (Ω) has parameters [N , d , k ] where

N = |Ω|, k = dim(〈Ω〉)

d =N − max
H∈PG(W ∗)

|Ω∩H |.
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Minimal codes
C (Ω): code.
c ∈C (Ω).
supp(c) := {i : ci 6= 0}.

Definition
A codeword c ∈C (Ω) is minimal if

∀c′ ∈C (Ω) : supp(c′)⊆ supp(c)⇒∃λ ∈Fq : c′ =λc.

A code is minimal if all of its codewords are minimal.

Remark
Codewords in a minimal code are determined up to a non-zero
scalar multiple by their support.
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Parameters/Segre embedding ε1

Theorem (I.Cardinali, LG 202?)

The code C1 :=C (Λ1) is minimal and it has parameters [N1, k1, d1]
given by

N1 =
(q n+1−1)(q n −1)

(q −1)2
, k1 = n 2+2n ,

d1 = q 2n−1−q n−1.
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Parameters/Twisted embedding εσ

Theorem (I.Cardinali, LG 202?)

If σ 6= 1, then the code Cσ :=C (Λσ) is minimal and it has
parameters [Nσ, kσ, dσ] given by

Nσ =
(q n+1−1)(q n −1)

(q −1)2
, kσ = n 2+2n +1.

dσ =

¨

q 3−pq 3 if σ2 = 1 and n = 2,

q 2n−1−q n−1 if σ2 6= 1 or n > 2.
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Weight spectrum/Segre embedding

Theorem (I.Cardinali, LG 202?)
1 There is a bijection between

I := {(g1, . . . , g t ):
t
∑

i=1

g i ≤ n +1, 1≤ g1 ≤ · · · ≤ g t ≤ n +1

1≤ t ≤ q }∪ {0}

and the set of weights of C (Λ1).
2 The weights of C (Λ1) are known.
3 It is possible to compute the weight enumerator.
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C (Λ1): codewords

M ∈Mn+1(Fq )/〈I 〉, cM := (Tr(M X1), . . . , Tr(M XN )) ∈C (Λ1)

Theorem (I. Cardinali, LG 202?)

The weight of a codeword cM depends only on the number
of eigenvectors of M ∈Mn+1(q )/〈I 〉;
The automorphism group of the code acts on the codewords
as the product PGL(Vn+1) ·F∗q by the action

([g ],α)(cM ) = cαg −1M g .
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C (Λ1): codewords

Theorem (I.Cardinali, LG 202?)

Minimum weight codewords of C (Λ1) are of the form cM

with rank(M ) = 1 and Tr(M ) 6= 0
ε(([p ], [ξ]))⊥ with [p ] 6⊆ [ξ]↔ points in ε(S1,n ) \Λ1.

The minimum weight of C (Λ1) is q 2n−1−q n−1.
The second lowest weight codewords are of the form cM such
that rank(M ) = 1 and Tr(M ) = 0

ε(([p ], [ξ]))⊥ with [p ]⊆ [ξ]↔ points in Λ1.

The second lowest weight of C (Λ1) is q 2n−1.
Maximum weight codewords are of the form cM with M
admitting no eigenvalue in Fq .
The maximum weight of C (Λ1) is q n−1(q n+1−1)/(q −1).
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C (Λσ): codewords

M ∈Mn+1(Fq ), cM := (Tr(M X1), . . . , Tr(M XN )) ∈C (Λσ)

θM := |{ξ : [ξ]σ ⊆ [ξM ]}|

Theorem (I.Cardinali, LG 202?)

The weight of a codeword cM depends only on θM .
The group GL(Vn+1) acts on the codewords as

g (cM ) = cg −1M gσ ;

The full automorphism group of the code is isomorphic to
PGL(Vn+1) ·F∗q .
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C (Λσ): codewords

Theorem (I.Cardinali, LG 202?)
If n > 2 or σ2 6= 1, then

The minimum weight codewords of C (Λσ) have weight
q 2n−1−q n−1;
The minimum weight codewords are of the form cM where
M = ξpσ with pξ 6= 0

ε(([p ], [ξ]))⊥ with [p ]⊆ [ξ]↔ points in ε(S1,n ) \Λσ.
The second lowest weight codewords have weight q 2n−1;
The second lowest weight codewords are of the form cM where
M = ξpσ with pξ= 0

ε(([p ], [ξ]))⊥ with [p ]⊆ [ξ]↔ points in Λσ.
If both q and n are odd, then the maximum weight of C (Λσ) is
q n−1(q n+1−1)/(q −1).
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C (Λσ): codewords (n = 2,σ2 = 1)

Theorem (I.Cardinali, LG 202?)

If n = 2 and σ2 = 1, then the minimum weight codewords of
C (Λσ) have weight q 3−pq 3 and are of the form cM where
M is such that there are three linearly independent row
vectors ξ1, ξ2, ξ3 and α,β ,γ ∈F∗q such that

ασ+1 =βσ+1 = γσ+1

ξ1M =αξσ1 , ξ2M =βξσ2 , ξ3M = γξσ1 .
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Small weight codewords

Theorem (I. Cardinali, LG 202?)

The codewords of minimum and second lowest weight of C (Λ1)
and C (Λσ) are related to the same geometric hyperplanes of Γ .
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Thank you for your attention
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