The point-hyperplane geometry Codes from projective systems Minimal codes Parameters of the code Geometry of the codes

Codes from the Point–Hyperplane Geometry of PG(V)

Luca Giuzzi

University of Brescia joint work with Ilaria Cardinali

Finite Geometries 2025 — Seventh Irsee Conference

Notation

- \mathbb{F}_q : finite fields with q elements;
- $V_{n+1}(\mathbb{F}_q)$: (n+1)-dimensional vector space over \mathbb{F}_q ;
- $G_k(V_{n+1})$: Grassmann geometry of the k-dimensional vector subspaces of V_{n+1} ;
- $PG(V_{n+1}) = G_1(V_{n+1})$ (column vectors);
- $PG(V_{n+1}^*) = G_n(V_{n+1})$ (row vectors).

Point-Hyperplane Geometry

$$\Gamma := (\mathcal{P}, \mathcal{L})$$

- \mathscr{P} : flags $([p],[\xi]) \subseteq PG(V_{n+1}) \times PG(V_{n+1}^*)$ with $[p] \subseteq [\xi]$.
- \bullet \mathscr{L} : two types
 - **①** Given $\ell \in G_2(V_{n+1})$, $[\xi] \in PG(V_{n+1}^*)$, $\ell \subseteq [\xi]$:

$$((\ell, [\xi])) := \{([p], [\xi]) : p \in \ell\};$$

② Given $[p] \in PG(V_{n+1}^*)$, $S \in G_{n-1}(V_{n+1})$, $[p] \in S$:

$$(([p], S)) := \{([p], [\xi]) : S \subseteq [\xi]\}.$$

Segre Embedding

Definition

- Segre Geometry: $\mathfrak{S}_{1,n} := PG(V_{n+1}) \times PG(V_{n+1}^*);$
- Segre embedding: $\varepsilon:\mathfrak{S}_{1,n}\to \mathrm{PG}(V_{n+1}\otimes V_{n+1}^*);$

$$\varepsilon(([p],[\xi])) = [p \otimes \xi] = [p \cdot \xi].$$

Remark

- $V_{n+1} \otimes V_{n+1}^* \cong M_{n+1}(\mathbb{F}_q);$
- $\dim(\varepsilon) = \dim(V_{n+1} \otimes V_{n+1}^*);$
- Image of $\varepsilon(\mathfrak{S}_{1,n})$: projective points induced by all $(n+1)\times(n+1)$ matrices of rank 1.

Segre Embedding

- $\Gamma \subseteq \mathfrak{S}_{1,n}$;
- $M_{n+1}^0 := \{ M \in M_{n+1} : \operatorname{Tr}(M) = 0 \} \subseteq M_{n+1}(\mathbb{F}_q);$
- $\varepsilon(\Gamma) \subseteq PG(M_{n+1}^0);$
- $\varepsilon_1 := \varepsilon|_{\Gamma}$ is a projective embedding of Γ of dimension n(n+2);
- The image Λ_1 of ε_1 consists of the projective points induced by all $(n+1)\times (n+1)$ matrices of rank 1 and trace 0.

Twisted embedding

- \mathbb{F}_q : field with q elements;
- $\sigma \in Aut(\mathbb{F}_q)$, $\sigma \neq 1$: non-trivial automorphism.

Theorem

Let

$$\varepsilon_{\sigma}: \begin{cases} \Gamma \to \operatorname{PG}(V_{n+1} \otimes V_{n+1}^*) \cong \operatorname{PG}(M_{n+1}(q)) \\ ([p], [\xi]) \to [p^{\sigma} \otimes \xi] = [p^{\sigma} \cdot \xi]. \end{cases}$$

Then,

- ε_{σ} is a projective embedding;
- dim $(\varepsilon_{\sigma}) = (n+1)^2$.
- $\Lambda_{\sigma} := \varepsilon_{\sigma}(\Gamma)$

Projective codes

- W: vector space over \mathbb{F}_q ;
- $\dim(W) = k$;
- $\Omega \subseteq PG(W)$: projective system;
- $\langle \Omega \rangle = PG(W);$
- $\mathscr{C}(\Omega)$: code with generator matrix whose columns correspond to the coordinates of the points of Ω .

Theorem (F.MacWilliams, 1964)

The code $\mathscr{C}(\Omega)$ has parameters [N,d,k] where

$$N = |\Omega|, \qquad k = \dim(\langle \Omega \rangle)$$

$$d = N - \max_{H \in \mathrm{PG}(W^*)} |\Omega \cap H|.$$

Minimal codes

- $\mathscr{C}(\Omega)$: code.
- $c \in \mathscr{C}(\Omega)$.
- $supp(c) := \{i : c_i \neq 0\}.$

Definition

A codeword $c \in \mathscr{C}(\Omega)$ is minimal if

$$\forall c' \in \mathscr{C}(\Omega) : \operatorname{supp}(c') \subseteq \operatorname{supp}(c) \Rightarrow \exists \lambda \in \mathbb{F}_a : c' = \lambda c.$$

A code is *minimal* if all of its codewords are minimal.

Remark

Codewords in a minimal code are determined up to a non-zero scalar multiple by their support.

Parameters/Segre embedding $arepsilon_1$

Theorem (I.Cardinali, LG 202?)

The code $\mathscr{C}_1 := \mathscr{C}(\Lambda_1)$ is minimal and it has parameters $[N_1, k_1, d_1]$ given by

$$N_1 = \frac{(q^{n+1}-1)(q^n-1)}{(q-1)^2}, \qquad k_1 = n^2 + 2n,$$

$$d_1 = q^{2n-1} - q^{n-1}.$$

Parameters/Twisted embedding $arepsilon_{\sigma}$

Theorem (I.Cardinali, LG 202?)

If $\sigma \neq 1$, then the code $\mathscr{C}_{\sigma} := \mathscr{C}(\Lambda_{\sigma})$ is minimal and it has parameters $[N_{\sigma}, k_{\sigma}, d_{\sigma}]$ given by

$$N_{\sigma} = \frac{(q^{n+1}-1)(q^n-1)}{(q-1)^2}, \qquad k_{\sigma} = \frac{n^2+2n+1}{n^2}.$$

$$d_{\sigma} = \begin{cases} q^3 - \sqrt{q}^3 & \text{if } \sigma^2 = 1 \text{ and } n = 2, \\ q^{2n-1} - q^{n-1} & \text{if } \sigma^2 \neq 1 \text{ or } n > 2. \end{cases}$$

Weight spectrum/Segre embedding

Theorem (I.Cardinali, LG 202?)

• There is a bijection between

$$\mathcal{I} := \{ (g_1, \dots, g_t) \colon \sum_{i=1}^t g_i \le n+1, \ 1 \le g_1 \le \dots \le g_t \le n+1 \\ 1 \le t \le q \} \cup \{0\}$$

and the set of weights of $\mathscr{C}(\Lambda_1)$.

- **2** The weights of $\mathscr{C}(\Lambda_1)$ are known.
- 3 It is possible to compute the weight enumerator.

$\mathscr{C}(\Lambda_1)$: codewords

$$M \in M_{n+1}(\mathbb{F}_q)/\langle I \rangle, \qquad c_M := (\operatorname{Tr}(MX_1), \dots, \operatorname{Tr}(MX_N)) \in \mathscr{C}(\Lambda_1)$$

Theorem (I. Cardinali, LG 202?)

- The weight of a codeword c_M depends only on the number of eigenvectors of $M \in M_{n+1}(q)/\langle I \rangle$;
- The automorphism group of the code acts on the codewords as the product $PGL(V_{n+1}) \cdot \mathbb{F}_{q}^{*}$ by the action

$$([g],\alpha)(c_M)=c_{\alpha g^{-1}Mg}.$$

$\mathscr{C}(\Lambda_1)$: codewords

Theorem (I.Cardinali, LG 202?)

- Minimum weight codewords of $\mathscr{C}(\Lambda_1)$ are of the form c_M with $\mathrm{rank}(M) = 1$ and $\mathrm{Tr}(M) \neq 0$ $\varepsilon(([p], [\xi]))^{\perp}$ with $[p] \not\subseteq [\xi] \longleftrightarrow \text{points in } \varepsilon(\mathfrak{S}_{1,n}) \setminus \Lambda_1$.
- The minimum weight of $\mathscr{C}(\Lambda_1)$ is $q^{2n-1}-q^{n-1}$.
- The second lowest weight codewords are of the form c_M such that $\operatorname{rank}(M) = 1$ and $\operatorname{Tr}(M) = 0$ $\varepsilon(([p], [\xi]))^{\perp}$ with $[p] \subseteq [\xi] \longleftrightarrow \text{points in } \Lambda_1$.
- The second lowest weight of $\mathscr{C}(\Lambda_1)$ is q^{2n-1} .
- Maximum weight codewords are of the form c_M with M admitting no eigenvalue in \mathbb{F}_q .
- The maximum weight of $\mathscr{C}(\Lambda_1)$ is $q^{n-1}(q^{n+1}-1)/(q-1)$.

$\mathscr{C}(\Lambda_{\sigma})$: codewords

$$M \in M_{n+1}(\mathbb{F}_q), \qquad c_M := (\operatorname{Tr}(MX_1), \dots, \operatorname{Tr}(MX_N)) \in \mathscr{C}(\Lambda_\sigma)$$

$$\theta_M := |\{\xi : [\xi]^\sigma \subseteq [\xi M]\}|$$

Theorem (I.Cardinali, LG 202?)

- The weight of a codeword c_M depends only on θ_M .
- The group $GL(V_{n+1})$ acts on the codewords as

$$g(c_M) = c_{g^{-1}Mg^{\sigma}};$$

• The full automorphism group of the code is isomorphic to $PGL(V_{n+1}) \cdot \mathbb{F}_{a}^{*}$.

$\mathscr{C}(\Lambda_{\sigma})$: codewords

Theorem (I.Cardinali, LG 202?)

If n > 2 or $\sigma^2 \neq 1$, then

- The minimum weight codewords of $\mathscr{C}(\Lambda_{\sigma})$ have weight $q^{2n-1}-q^{n-1}$;
- The minimum weight codewords are of the form c_M where $M = \xi p^{\sigma}$ with $p\xi \neq 0$ $\varepsilon(([p], [\xi]))^{\perp}$ with $[p] \subseteq [\xi] \longleftrightarrow \text{points in } \varepsilon(\mathfrak{S}_{1,n}) \setminus \Lambda_{\sigma}$.
- The second lowest weight codewords have weight q^{2n-1} ;
- The second lowest weight codewords are of the form c_M where $M = \xi p^{\sigma}$ with $p\xi = 0$ $\varepsilon(([p], [\xi]))^{\perp}$ with $[p] \subseteq [\xi] \longleftrightarrow points$ in Λ_{σ} .
- If both q and n are odd, then the maximum weight of $\mathscr{C}(\Lambda_{\sigma})$ is $q^{n-1}(q^{n+1}-1)/(q-1)$.

$$\mathscr{C}(\Lambda_{\sigma})$$
: codewords $(n=2, \sigma^2=1)$

Theorem (I.Cardinali, LG 202?)

• If n=2 and $\sigma^2=1$, then the minimum weight codewords of $\mathscr{C}(\Lambda_\sigma)$ have weight $q^3-\sqrt{q}^3$ and are of the form c_M where M is such that there are three linearly independent row vectors ξ_1 , ξ_2 , ξ_3 and $\alpha,\beta,\gamma\in\mathbb{F}_q^*$ such that

$$\alpha^{\sigma+1} = \beta^{\sigma+1} = \gamma^{\sigma+1}$$

$$\xi_1 M = \alpha \xi_1^{\sigma}, \quad \xi_2 M = \beta \xi_2^{\sigma}, \quad \xi_3 M = \gamma \xi_1^{\sigma}.$$

Small weight codewords

Theorem (I. Cardinali, LG 202?)

The codewords of minimum and second lowest weight of $\mathscr{C}(\Lambda_1)$ and $\mathscr{C}(\Lambda_{\sigma})$ are related to the same geometric hyperplanes of Γ .

References

I. Cardinali, L. Giuzzi, Linear codes arising from the point-hyperplane geometry — part I: the Segre embedding (Jun. 2025).

arXiv:2506.21309, doi:10.48550/ARXIV.2506.21309.

I. Cardinali, L. Giuzzi, Linear codes arising from the point-hyperplane geometry — part II: the Twisted embedding (Jul. 2025).

arXiv:2506.21309, doi:10.48550/ARXIV.2506.21309.

I. Cardinali, L. Giuzzi, On minimal codes arising from projective embeddings of point-line geometries., in preparation.

The point-hyperplane geometry Codes from projective systems Minimal codes Parameters of the code Geometry of the codes

Thank you for your attention