Erdős-Ko-Rado problems and Uniqueness

Philipp Heering

joint work with Jan De Beule, Jesse Lansdown, Sam Mattheus and Klaus Metsch

Justus-Liebig-Universität Gießen philipp.heering@math.uni-giessen.de

Finite Geometries 2025

The EKR problem

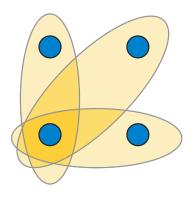


Figure: Star-shaped EKR-set ¹

https://upload.wikimedia.org/wikipedia/commons/8/86/
Intersecting_set_families_2-of-4.svg

Kneser graphs

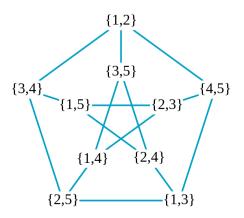


Figure: The Kneser graph $K(5,2)^2$

Kneser graphs

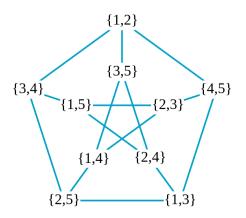
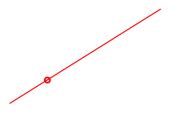
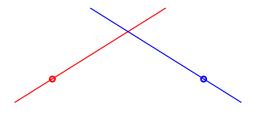


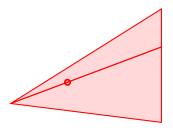
Figure: The Kneser graph $K(5,2)^2$

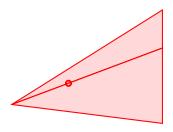
EKR-sets are cocliques of the Kneser graph.



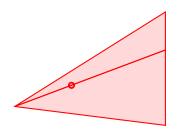


0



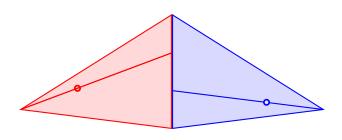


A chamber *C* is a tuple $C = (C_0, \dots, C_{n-1})$.



A chamber *C* is a tuple $C = (C_0, \dots, C_{n-1})$.

C and *B* are opposite : $\Leftrightarrow C_i \cap B_{n-1-i} = \emptyset$



A chamber *C* is a tuple $C = (C_0, \dots, C_{n-1})$.

C and *B* are opposite : $\Leftrightarrow C_i \cap B_{n-1-i} = \emptyset$

EKR problem for chambers of projective spaces

Let \mathcal{F} be a set of pairwise non-opposite chambers of PG(n,q).

How big can \mathcal{F} be? What is the structure of \mathcal{F} ?

The Hoffman ratio-bound

Let $\Gamma = (X, E)$ be a regular graph of degree d and smallest eigenvalue λ_{min} .

The Hoffman ratio-bound

Let $\Gamma = (X, E)$ be a regular graph of degree d and smallest eigenvalue λ_{min} .

Theorem (Hoffman ratio-bound)

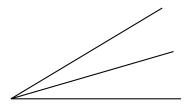
$$\alpha(\Gamma) \leq |X| \frac{-\lambda_{min}}{d - \lambda_{min}}$$

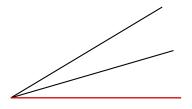
EKR-size for chambers of $\mathbb{F}_{q_1}^n$

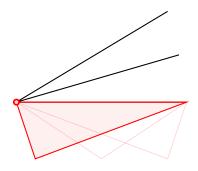
Theorem [De Beule, Mattheus, Metsch 2022]

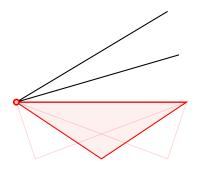
Let $\mathcal F$ be a set of pairwise non-opposite chambers of PG(n,q). Then

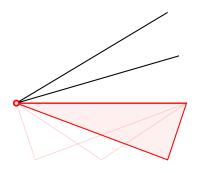
$$|\mathcal{F}| \leq \frac{\begin{bmatrix} n+1 \end{bmatrix}^2 \cdot \dots \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}^2}{1+q^{(n+1)/2}}.$$

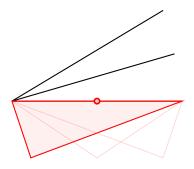


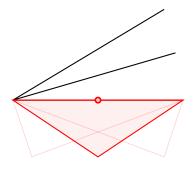


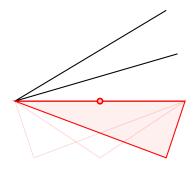


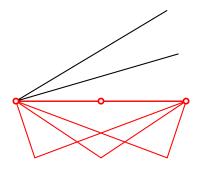


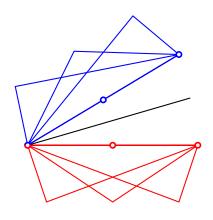




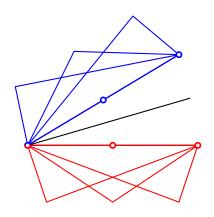








for n odd



Pairwise intersecting (n + 1)/2-subspaces

ightarrow Pairwise non-opposite chambers

Theorem [H., Lansdown, Metsch 2025]

Consider a projective space PG(n, q) with n odd.

Theorem [H., Lansdown, Metsch 2025]

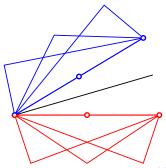
Consider a projective space PG(n,q) with n odd. The largest maximal EKR-sets of chambers of PG(n,q) are blowups of EKR-sets of (n+1)/2-subspaces

Theorem [H., Lansdown, Metsch 2025]

Consider a projective space PG(n,q) with n odd. The largest maximal EKR-sets of chambers of PG(n,q) are blowups of EKR-sets of (n+1)/2-subspaces for q large enough.

Theorem [H., Lansdown, Metsch 2025]

Consider a projective space PG(n,q) with n odd. The largest maximal EKR-sets of chambers of PG(n,q) are blowups of EKR-sets of (n+1)/2-subspaces for q large enough.



for *n* odd

Let $\Gamma(n,q)$ be the graph with

for *n* odd

Let $\Gamma(n,q)$ be the graph with vertices: chambers of PG(n,q)

for *n* odd

Let $\Gamma(n,q)$ be the graph with vertices: chambers of PG(n,q) adjacency: opposition

for *n* odd

Let $\Gamma(n,q)$ be the graph with vertices: chambers of PG(n,q) adjacency: opposition

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of PG(n,q).

Antidesigns

for *n* odd

Let $\Gamma(n,q)$ be the graph with vertices: chambers of PG(n,q) adjacency: opposition

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of PG(n,q).

Let V_{min} be the eigenspace for λ_{min} .

Antidesigns

for *n* odd

Let $\Gamma(n,q)$ be the graph with vertices: chambers of PG(n,q) adjacency: opposition

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of PG(n,q).

Let V_{min} be the eigenspace for λ_{min} . An *antidesign* is a vector w such that $v^{\top}w = 0$ for all $v \in V_{min}$.

Antidesigns II

for *n* odd

Let \mathcal{F} be a largest coclique of $\Gamma(n,q)$.

Antidesigns II

for *n* odd

Let \mathcal{F} be a largest coclique of $\Gamma(n,q)$.

$$\mathbb{1}_{\mathcal{F}} \in \langle \mathbb{1} \rangle + \textit{V}_{\textit{min}}$$

Antidesigns II

for *n* odd

Let \mathcal{F} be a largest coclique of $\Gamma(n,q)$.

$$\mathbb{1}_{\mathcal{F}} \in \langle \mathbb{1} \rangle + V_{min}$$

If w is an antidesign, then

$$\mathbb{1}_{\mathcal{F}}^{\top} w = \frac{\mathbb{1}^{\top} w}{q^{(n+1)/2} + 1}$$

for *n* odd

Let *A* be the adjacency matrix of $\Gamma(n,q)$ and let χ be an eigenvector corresponding to λ_{min} .

for *n* odd

Let *A* be the adjacency matrix of $\Gamma(n,q)$ and let χ be an eigenvector corresponding to λ_{min} .

$$(A - \lambda_{min} I)\chi = 0$$

for *n* odd

Let *A* be the adjacency matrix of $\Gamma(n,q)$ and let χ be an eigenvector corresponding to λ_{min} .

$$(A - \lambda_{min}I)\chi = 0$$

Every row of $A - \lambda_{min}$ I is an antidesign.

for *n* odd

Let *A* be the adjacency matrix of $\Gamma(n,q)$ and let χ be an eigenvector corresponding to λ_{min} .

$$(A - \lambda_{min} I)\chi = 0$$

Every row of $A - \lambda_{min}I$ is an antidesign.

For a chamber $C = (C_0, \dots, C_{n-1})$ this means

$$w_C(B) := \begin{cases} -\lambda_{min} & \text{if } C = B, \\ 1 & \text{if } C \text{ and } B \text{ are opposite,} \\ 0 & \text{otherwise.} \end{cases}$$

for *n* odd

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$.

for n odd

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$. The rowspace is its orthogonal complement.

for n odd

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$. The rowspace is its orthogonal complement.

Every antidesign of $\Gamma(n,q)$ is a linear combination of

$$w_C(B) := \begin{cases} -\lambda_{min} & \text{if } C = B, \\ 1 & \text{if } C \text{ and } B \text{ are opposite.} \end{cases}$$

for n odd

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$. The rowspace is its orthogonal complement.

Every antidesign of $\Gamma(n,q)$ is a linear combination of

$$w_C(B) := \begin{cases} -\lambda_{min} & \text{if } C = B, \\ 1 & \text{if } C \text{ and } B \text{ are opposite.} \end{cases}$$

$$w_1(B) := \sum_C w_C(B) = (-\lambda_{min} + d),$$
 for any B .

for *n* odd

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$. The rowspace is its orthogonal complement.

Every antidesign of $\Gamma(n,q)$ is a linear combination of

$$w_C(B) := \begin{cases} -\lambda_{min} & \text{if } C = B, \\ 1 & \text{if } C \text{ and } B \text{ are opposite.} \end{cases}$$

$$w_1(B) := \sum_C w_C(B) = (-\lambda_{min} + d),$$
 for any B .

Let *S* be a spread of (n + 1)/2-spaces.

$$w_{S}(B) = \begin{cases} 1 & \text{if } B_{(n+1)/2} \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with $e \ge 1$ or n even.

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with $e \ge 1$ or n even. The largest maximal EKR-sets of chambers of PS(n, e, q)

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with $e \ge 1$ or n even. The largest maximal EKR-sets of chambers of PS(n, e, q) are blowups of EKR-sets of points or generators for q large enough.

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with $e \ge 1$ or n even. The largest maximal EKR-sets of chambers of PS(n, e, q) are blowups of EKR-sets of points or generators for q large enough.

Thank you for your attention