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The Incidence Graph of the Fano Plane (PG(2,2))

Vertices: Points and Lines.
Adjacency: Incidence.

This is a distance-regular graph:

Take two vertices x, y at distance k. Then the number of vertices z at distance i from
x and j from y only depends on 1, j, k.

Example: Take a non-incident point-line pair (P, L). Then there are
precisely 3 lines through P which meet L.



DBRGs

[e]e] Ie]e}

The Incidence Graph of the Doily (GQ(2,2))

Vertices: Points and Lines.
Adjacency: Incidence.

This is a distance-regular graph:

Take two vertices x, y at distance k. Then the number of vertices z at distance i from
x and j from y only depends on 1, j, k.

Example: Take a non-incident point-line pair (P, L). Then there is
precisely 1 line through P which meets L.
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The Incidence Graph of a GQ(s, t)

Take a hyperoval O of a projective plane ™ = PG(2,q).

Vertices Y: Points of PG(3,q) \ 7.
Vertices Z: Lines of PG(3,q) \ m meeting O.
Adjacency: Incidence.

This is a not a distance-regular graph.
It is a generalized quadrangle of order (¢ — 1,9 + 1).
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The Incidence Graph of a GQ(s, t)

Take a hyperoval O of a projective plane ™ = PG(2,q).

Vertices Y: Points of PG(3,q) \ 7.
Vertices Z: Lines of PG(3,q) \ m meeting O.
Adjacency: Incidence.

This is a not a distance-regular graph.
It is a generalized quadrangle of order (¢ — 1,9 + 1).

It is a distance-biregular graph (DBRG)!

We have a bipartite graph with parts Y and Z (points and lines). Take two vertices
xz,y at distance k. Then the number of vertices z at distance ¢ from x and j from y
only depends on i, j,k and on whether z € Y or x € Z.

Is the concept of DBRGs interesting?
Are there objects which are DBRG, but nothing else?
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Delorme's Construction from an Hyperbolic Quadric

Consider the Klein quadric @ 2 Q™ (5,q) in H = PG(5,q).

The Klein quadric has 2(¢* + ¢® + ¢+ 1) planes: half Latins, half Greeks.
Vertices Y: Points of PG(6,q) \ H.

Vertices Z: Solids of PG(6,q) meeting H in a Greek of Q.

Adjacency: Incidence.

DBRG with parts of sizes ¢® and (¢ + 1)(¢®> + 1) - ¢>.



DBRGs
[e]e]e]e] ]

Delorme's Construction from an Hyperbolic Quadric

Consider the Klein quadric @ 2 Q™ (5,q) in H = PG(5,q).
The Klein quadric has 2(¢* + ¢® + ¢+ 1) planes: half Latins, half Greeks.

Vertices Y: Points of PG(6,q) \ H.
Vertices Z: Solids of PG(6,q) meeting H in a Greek of Q.
Adjacency: Incidence.

DBRG with parts of sizes ¢® and (¢ + 1)(¢®> + 1) - ¢>.

Till recently, no new examples:
@ Delorme (1984/1994): from maximal arcs.
@ Van Den Akker (1990): Hall-Janko-Wales graph.

e Fernandez, lh., Lato, Munemasa (2025*):

e One new sporadic example.
e One new infinite family.
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A kind of Two-Intersection Sets

Consider V.=V (n,q). Let S* be a family of s subspaces of V(n, q) of
co-dimension k in V such that

@ cach v € V* lies in 0 or d elements of S*,
@ we have dim(M N M*) =n — 2k for all M, M* € S*.

Question: Do you know examples?
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A kind of Two-Intersection Sets

Consider V.=V (n,q). Let S* be a family of s subspaces of V(n, q) of
co-dimension k in V such that

@ cach v € V* lies in 0 or d elements of S*,
@ we have dim(M N M*) =n — 2k for all M, M* € S*.

Question: Do you know examples?

@ Maximal arcs in PG(2,2").
@ Blow-ups of maximal arcs to PG(3¢ — 1,2"/*).
@ A construction by Mathon (2002) with (n, k,q,d, s) = (6,2, 3,3,21).

Mathon's Construction is fascinating, ask Simeon Ball about it!
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DBRGs from Two-Intersection Sets

Consider V.=V (n,q). Let S* be a family of s subspaces of V(n, q) of
co-dimension k in V such that

@ cach v € V* lies in 0 or d elements of S*,
@ we have dim(M N M*) =n — 2k for all M, M* € S*.

Identify V' with H =2 PG(n — 1, q) at infinity of AG(n, q).

Theorem (Fernandez, |h., Lato, Munemasa (2025*))

Let Y be the points of AG(n,q) and Z be the (k + 1)-spaces of
AG(n,q) meeting H in an elements S*. Then the bipartite incidence
graph on'Y U Z is distance-biregular with intersection array

53 17 da qn_2k(s - 1)/d7 S
qn—k. 1’ qn—2k, S — 1, qn—k .

The only new example from this is Mathon’s Construction.
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Dual Hyperovals

Take a dual hyperoval O* of a projective plane m = PG(2,q).
Vertices Y: Points of PG(3,q) \ 7.

Vertices Z: Planes of PG(3,q) \ m meeting 7 in an element of O*.
Adjacency: Incidence.

This gives a distance-biregular graph (earlier slide).

Long known: Delorme (1984/1994).
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Derived Hyperovals

Take a dual hyperoval O* of a projective plane m = PG(2,q).
Fix a point P of PG(3,q) \ 7.

We look at the distance-3-or-4-neighborhoods of P in our previous graph!
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Derived Hyperovals

Take a dual hyperoval O* of a projective plane m = PG(2,q).
Fix a point P of PG(3,q) \ 7.

We look at the distance-3-or-4-neighborhoods of P in our previous graph!
Vertices Y: Only points @) s.t. P+ Q meets 7 in exterior point.
Vertices Z: Only planes not containing P.

Adjacency: Incidence.

Proof 1: Geometry and counting.
Proof 2:

Theorem (Fernandez, |h., Lato, Munemasa (2025*))

If the parameters of a distance-biregular graph of diameter 4 satisfy
certain conditions, then N3(z) U Ny(z) is distance-biregular too.

Application 1: hyperovals.
Application 2: nonexistence.
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As a Picture

Theorem (Fernandez, |h., Lato, Munemasa (2025*))

If the parameters of a distance-biregular graph of diameter 4 satisfy
certain conditions, then N3(z) U Ny(z) is distance-biregular too.
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Open Problem

Just look at our tables and do numerology:

Intersection Array Halved Graph Notes
6 1, 2, 10, 6 (64,45,32,30) Delorme [21]
16, 1, 4, 5, 16 (24,20, 16, 20) Ex. 3.3.2: g=4,7 =2
8 1, 2, 6, 8 (120, 56, 28, 24) Delorme [21]
15 1, 3, 4, 15 (64, 35,18, 20) Fx.3.3.1: ¢=2
10; 1, 2, 18, 10 (196, 135,94, 90) Constr. 6.2.2
28 1, 4, 9, 28 (70,63, 56, 63) g=2
g 1, 2, 21, 8 (216,140, 94, 84) Van Den Akker [1]
36; 1, 6, 7, 36 (48,42, 36, 42) Section 6.2
15, 1, 3, 28, 15 (216, 175, 142, 140) Only known SRG [16]
36; 1, 6, 14, 36 (90, 84,78, 84) does not work
12, 1, 3, 33, 12 (225, 176, 139, 132) Corollary 4.2.3
45, 1, 9, 11, 45 (60, 55, 50, 55) Yo=2
10; 1, 2, 12, 10 (280, 135, 70, 60) Van Den Akker [1]
28, 1, 4, 6, 28 (100, 63, 38, 42) Ex. 3.3.3
15; 1, 3, 20, 15 (288, 175, 110, 100)
36; 1, 6, 10, 36 (120,84, 58, 60)
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Thank you for your attention!
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