New Distance-Biregular Graphs

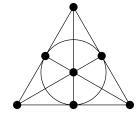
Ferdinand Ihringer (伊林格)

南方科技大学 Southern University of Science and Technology (SUSTech)

September 2025 Finite Geometries, Irsee 2025 Vertices: Points and Lines. Adjacency: Incidence.

DBRGs

00000



This is a distance-regular graph:

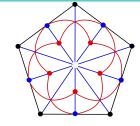
Take two vertices x, y at distance k. Then the number of vertices z at distance i from x and j from y only depends on i, j, k.

Example: Take a non-incident point-line pair (P, L). Then there are precisely 3 lines through P which meet L.

Vertices: Points and Lines. **Adjacency:** Incidence.

DBRGs

00000



This is a distance-regular graph:

Take two vertices x,y at distance k. Then the number of vertices z at distance i from x and j from y only depends on i,j,k.

Example: Take a non-incident point-line pair (P,L). Then there is precisely 1 line through P which meets L.

The Incidence Graph of a GQ(s,t)

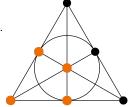
Take a hyperoval \mathcal{O} of a projective plane $\pi \cong PG(2,q)$.

Vertices Y: Points of $PG(3,q) \setminus \pi$.

Vertices Z: Lines of $PG(3,q) \setminus \pi$ meeting \mathcal{O} .

Adjacency: Incidence.

This is a **not** a **distance-regular** graph. It is a generalized quadrangle of order (q-1, q+1).



Take a hyperoval \mathcal{O} of a projective plane $\pi \cong PG(2,q)$.

Vertices Y: Points of $PG(3,q) \setminus \pi$.

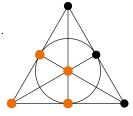
Vertices Z: Lines of $PG(3,q) \setminus \pi$ meeting \mathcal{O} .

Adjacency: Incidence.

DBRGs

00000

This is a **not** a **distance-regular graph**. It is a generalized quadrangle of order (q - 1, q + 1).



It is a distance-biregular graph (DBRG)!

We have a bipartite graph with parts Y and Z (points and lines). Take two vertices x,y at distance k. Then the number of vertices z at distance i from x and y from y only depends on i,j,k and on whether $x\in Y$ or $x\in Z$.

Is the concept of DBRGs interesting?

Are there objects which are DBRG, but nothing else?

Delorme's Construction from an Hyperbolic Quadric

Consider the Klein quadric $Q \cong Q^+(5,q)$ in $H \cong PG(5,q)$.

The Klein quadric has $2(q^3+q^2+q+1)$ planes: half Latins, half Greeks.

Vertices Y: Points of $PG(6,q) \setminus H$.

Vertices Z: Solids of PG(6,q) meeting H in a Greek of Q.

Adjacency: Incidence.

DBRG with parts of sizes q^6 and $(q+1)(q^2+1) \cdot q^3$.

Delorme's Construction from an Hyperbolic Quadric

Consider the Klein quadric $Q \cong Q^+(5,q)$ in $H \cong PG(5,q)$.

The Klein quadric has $2(q^3+q^2+q+1)$ planes: half Latins, half Greeks.

Vertices Y: Points of $PG(6,q) \setminus H$.

Vertices Z: Solids of PG(6,q) meeting H in a Greek of Q.

Adjacency: Incidence.

DBRG with parts of sizes q^6 and $(q+1)(q^2+1) \cdot q^3$.

Till recently, no new examples:

- Delorme (1984/1994): from maximal arcs.
- Van Den Akker (1990): Hall-Janko-Wales graph.
- Fernández, Ih., Lato, Munemasa (2025*):
 - One new sporadic example.
 - One new infinite family.

A kind of Two-Intersection Sets

Consider V=V(n,q). Let \mathcal{S}^* be a family of s subspaces of V(n,q) of co-dimension k in V such that

- $oldsymbol{0}$ each $v \in V^*$ lies in 0 or d elements of \mathcal{S}^* ,
- ② we have $\dim(M \cap M^*) = n 2k$ for all $M, M^* \in \mathcal{S}^*$.

Question: Do you know examples?

DBRGs

Consider V = V(n,q). Let S^* be a family of s subspaces of V(n,q) of co-dimension k in V such that

- each $v \in V^*$ lies in 0 or d elements of S^* .
- \bullet we have $\dim(M \cap M^*) = n 2k$ for all $M, M^* \in \mathcal{S}^*$.

Question: Do you know examples?

- Maximal arcs in $PG(2, 2^h)$.
- ② Blow-ups of maximal arcs to $PG(3\ell-1,2^{h/\ell})$.
- **3** A construction by Mathon (2002) with (n, k, q, d, s) = (6, 2, 3, 3, 21).

Mathon's Construction is fascinating, ask Simeon Ball about it!

Consider V = V(n,q). Let \mathcal{S}^* be a family of s subspaces of V(n,q) of co-dimension k in V such that

- $oldsymbol{0}$ each $v \in V^*$ lies in 0 or d elements of \mathcal{S}^* ,
- ② we have $\dim(M \cap M^*) = n 2k$ for all $M, M^* \in \mathcal{S}^*$.

Identify V with $H\cong PG(n-1,q)$ at infinity of AG(n,q).

Theorem (Fernández, Ih., Lato, Munemasa (2025*))

Let Y be the points of AG(n,q) and Z be the (k+1)-spaces of AG(n,q) meeting H in an elements \mathcal{S}^* . Then the bipartite incidence graph on $Y \cup Z$ is distance-biregular with intersection array

$$\begin{vmatrix} s; & 1, & d, & q^{n-2k}(s-1)/d, & s \\ q^{n-k}; & 1, & q^{n-2k}, & s-1, & q^{n-k} \end{vmatrix}.$$

The only new example from this is **Mathon's Construction**.

Dual Hyperovals

Take a dual hyperoval \mathcal{O}^* of a projective plane $\pi \cong PG(2,q)$.

Vertices *Y*: Points of $PG(3,q) \setminus \pi$.

Vertices Z: Planes of $PG(3,q) \setminus \pi$ meeting π in an element of \mathcal{O}^* .

Adjacency: Incidence.

This gives a distance-biregular graph (earlier slide).

Long known: Delorme (1984/1994).

Derived Hyperovals

Take a dual hyperoval \mathcal{O}^* of a projective plane $\pi\cong PG(2,q)$. Fix a point P of $PG(3,q)\setminus \pi$.

We look at the distance-3-or-4-neighborhoods of P in our previous graph!

Derived Hyperovals

Take a dual hyperoval \mathcal{O}^* of a projective plane $\pi \cong PG(2,q)$. Fix a point P of $PG(3,q) \setminus \pi$.

We look at the distance-3-or-4-neighborhoods of P in our previous graph!

Vertices Y: Only points Q s.t. P+Q meets π in exterior point.

Vertices Z: Only planes not containing P.

Adjacency: Incidence.

Proof 1: Geometry and counting.

Proof 2:

Theorem (Fernández, Ih., Lato, Munemasa (2025*))

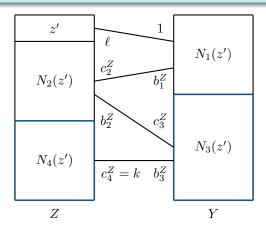
If the parameters of a distance-biregular graph of diameter 4 satisfy certain conditions, then $N_3(z) \cup N_4(z)$ is distance-biregular too.

Application 1: hyperovals. Application 2: nonexistence.

As a Picture

Theorem (Fernández, Ih., Lato, Munemasa (2025*))

If the parameters of a distance-biregular graph of diameter 4 satisfy certain conditions, then $N_3(z) \cup N_4(z)$ is distance-biregular too.



Open Problem

Just look at our tables and do numerology:

Intersection Array	Halved Graph	Notes
6; 1, 2, 10, 6	(64, 45, 32, 30)	Delorme [21]
16; 1, 4, 5, 16	(24, 20, 16, 20)	Ex. 3.3.2: $q = 4, r = 2$
8; 1, 2, 6, 8	(120, 56, 28, 24)	Delorme [21]
15; 1, 3, 4, 15	(64, 35, 18, 20)	Ex. 3.3.1: $q = 2$
10; 1, 2, 18, 10	(196, 135, 94, 90)	Constr. 6.2.2
28; 1, 4, 9, 28	(70, 63, 56, 63)	q = 2
8; 1, 2, 21, 8	(216, 140, 94, 84)	Van Den Akker [1]
36; 1, 6, 7, 36	(48, 42, 36, 42)	Section 6.2
15; 1, 3, 28, 15	(216, 175, 142, 140)	Only known SRG [16]
36; 1, 6, 14, 36	(90, 84, 78, 84)	does not work
12; 1, 3, 33, 12	(225, 176, 139, 132)	Corollary 4.2.3
45; 1, 9, 11, 45	(60, 55, 50, 55)	$\gamma_2 = \frac{9}{5}$
10; 1, 2, 12, 10	(280, 135, 70, 60)	Van Den Akker [1]
28; 1, 4, 6, 28	(100, 63, 38, 42)	Ex. 3.3.3
15; 1, 3, 20, 15	(288, 175, 110, 100)	
36; 1, 6, 10, 36	(120, 84, 58, 60)	

Thank you for your attention!