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DBRGs Mathon’s Construction Hyperovals Open Problems

The Incidence Graph of the Fano Plane (PG(2, 2))

Vertices: Points and Lines.
Adjacency: Incidence.

This is a distance-regular graph:

Take two vertices x, y at distance k. Then the number of vertices z at distance i from
x and j from y only depends on i, j, k.

Example: Take a non-incident point-line pair (P,L). Then there are
precisely 3 lines through P which meet L.
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The Incidence Graph of the Doily (GQ(2, 2))

Vertices: Points and Lines.
Adjacency: Incidence.

This is a distance-regular graph:

Take two vertices x, y at distance k. Then the number of vertices z at distance i from
x and j from y only depends on i, j, k.

Example: Take a non-incident point-line pair (P,L). Then there is
precisely 1 line through P which meets L.
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The Incidence Graph of a GQ(s, t)

Take a hyperoval O of a projective plane π ∼= PG(2, q).

Vertices Y : Points of PG(3, q) \ π.
Vertices Z: Lines of PG(3, q) \ π meeting O.
Adjacency: Incidence.

This is a not a distance-regular graph.
It is a generalized quadrangle of order (q − 1, q + 1).

It is a distance-biregular graph (DBRG)!

We have a bipartite graph with parts Y and Z (points and lines). Take two vertices
x, y at distance k. Then the number of vertices z at distance i from x and j from y
only depends on i, j, k and on whether x ∈ Y or x ∈ Z.

Is the concept of DBRGs interesting?
Are there objects which are DBRG, but nothing else?
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Delorme’s Construction from an Hyperbolic Quadric

Consider the Klein quadric Q ∼= Q+(5, q) in H ∼= PG(5, q).
The Klein quadric has 2(q3 + q2 + q+1) planes: half Latins, half Greeks.

Vertices Y : Points of PG(6, q) \H.
Vertices Z: Solids of PG(6, q) meeting H in a Greek of Q.
Adjacency: Incidence.

DBRG with parts of sizes q6 and (q + 1)(q2 + 1) · q3.

Till recently, no new examples:
Delorme (1984/1994): from maximal arcs.
Van Den Akker (1990): Hall-Janko-Wales graph.
Fernández, Ih., Lato, Munemasa (2025∗):

One new sporadic example.
One new infinite family.
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A kind of Two-Intersection Sets

Consider V = V (n, q). Let S∗ be a family of s subspaces of V (n, q) of
co-dimension k in V such that

1 each v ∈ V ∗ lies in 0 or d elements of S∗,
2 we have dim(M ∩M∗) = n− 2k for all M,M∗ ∈ S∗.

Question: Do you know examples?

1 Maximal arcs in PG(2, 2h).
2 Blow-ups of maximal arcs to PG(3`− 1, 2h/`).
3 A construction by Mathon (2002) with (n, k, q, d, s) = (6, 2, 3, 3, 21).

Mathon’s Construction is fascinating, ask Simeon Ball about it!
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DBRGs from Two-Intersection Sets

Consider V = V (n, q). Let S∗ be a family of s subspaces of V (n, q) of
co-dimension k in V such that

1 each v ∈ V ∗ lies in 0 or d elements of S∗,
2 we have dim(M ∩M∗) = n− 2k for all M,M∗ ∈ S∗.

Identify V with H ∼= PG(n− 1, q) at infinity of AG(n, q).

Theorem (Fernández, Ih., Lato, Munemasa (2025∗))
Let Y be the points of AG(n, q) and Z be the (k + 1)-spaces of
AG(n, q) meeting H in an elements S∗. Then the bipartite incidence
graph on Y ∪ Z is distance-biregular with intersection array∣∣∣∣ s; 1, d, qn−2k(s− 1)/d, s

qn−k; 1, qn−2k, s− 1, qn−k

∣∣∣∣ .
The only new example from this is Mathon’s Construction.
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Dual Hyperovals

Take a dual hyperoval O∗ of a projective plane π ∼= PG(2, q).

Vertices Y : Points of PG(3, q) \ π.
Vertices Z: Planes of PG(3, q) \ π meeting π in an element of O∗.
Adjacency: Incidence.

This gives a distance-biregular graph (earlier slide).

Long known: Delorme (1984/1994).
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Derived Hyperovals

Take a dual hyperoval O∗ of a projective plane π ∼= PG(2, q).
Fix a point P of PG(3, q) \ π.

We look at the distance-3-or-4-neighborhoods of P in our previous graph!

Vertices Y : Only points Q s.t. P +Q meets π in exterior point.
Vertices Z: Only planes not containing P .
Adjacency: Incidence.

Proof 1: Geometry and counting.
Proof 2:

Theorem (Fernández, Ih., Lato, Munemasa (2025∗))
If the parameters of a distance-biregular graph of diameter 4 satisfy
certain conditions, then N3(z) ∪N4(z) is distance-biregular too.

Application 1: hyperovals.
Application 2: nonexistence.
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As a Picture

Theorem (Fernández, Ih., Lato, Munemasa (2025∗))
If the parameters of a distance-biregular graph of diameter 4 satisfy
certain conditions, then N3(z) ∪N4(z) is distance-biregular too.
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Open Problem

Just look at our tables and do numerology:
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Thank you for your attention!
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