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A linear code C is an Fq-linear subspace of Fn
q. Let k = dimC.

A generator matrix G is a (k × n)-matrix over Fq such that C = row(G), and a
parity check matrix H is a generator matrix for C⊥.
Thus one obtains two matroids, one from the G, and one from the H.

There are several ways of producing linear codes from geometry or algebra.
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Geometry and Coding Theory: A Selective Dictionary
Veronesean Vr,m: Projective Reed-Muller code PRMq(r,m):

image of the r-uple embedding Evaluation of Fq[x0, x1, . . . , xm]r on
Pm(Fq) ↪−! P(

m+r
r )−1(Fq) (representatives of) points of Pm(Fq)

Affine Veronesean VA
r,m: Reed-Muller code RMq(r,m):

image of Am(Fq) = {x0 = 1} Evaluation of Fq[x1, . . . , xm]≤r on
under the r-uple embedding points of Am(Fq)

Hyperplane sections Weight distribution of
|H ∩ Vr,m|; |H ∩ VA

r,m| PRMq(r,m); RMq(r,m)

max
H

|H ∩ Vr,m|; max
H

|H ∩ VA
r,m| Minimum distance of PRMq(r,m); RMq(r,m)

Linear sections Higher weight spectra of
|L ∩ Vr,m|; |L ∩ VA

r,m| PRMq(r,m); RMq(r,m)

max{|L ∩ Vr,m| : codim L = i}; i-th Generalized Hamming weight of
max{|L ∩ VA

r,m| : codimL = i} PRMq(r,m); RMq(r,m)
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Higher Weight Spectra of a linear [n, k]q-code C
The support and the support weight of a subcode D of C:

Supp(D) := {i : ∃ c = (c1, . . . , cn) ∈ D with ci ̸= 0}, wt(D) := |Supp(D)|.

The i-th generalized Hamming weight (GHW) of C (1 ≤ i ≤ k):

di(C) := min{wt(D) : D ⊆ C, dimD = i}.

The weight distribution of C is the ordered multiset {Aw(C)} for 0 ≤ w ≤ n
where Aw(C) = |{c ∈ C : wt(c) = w}|.
For 0 ≤ i ≤ k, the i-th weight spectrum of C is the ordered multiset
{A(i)

w (C)} for w = 0, . . . , n, where

A(i)
w (C) = |{D : D ⊆ C,dimD = i,and wt(D) = w}|

and we call the multiset of i-th weight spectra for i = 0, 1, . . . , k as the
higher weight spectra of C. In particular, A0(C) = 1 = A(0)

0 (C) and
Aw(C) = (q − 1)A(1)

w (C) for 1 ≤ w ≤ n. We will write A(i)
w for A(i)

w (C)

whenever the code C is understood from the context.

Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 4 / 21



Higher Weight Spectra of a linear [n, k]q-code C
The support and the support weight of a subcode D of C:

Supp(D) := {i : ∃ c = (c1, . . . , cn) ∈ D with ci ̸= 0}, wt(D) := |Supp(D)|.

The i-th generalized Hamming weight (GHW) of C (1 ≤ i ≤ k):

di(C) := min{wt(D) : D ⊆ C, dimD = i}.

The weight distribution of C is the ordered multiset {Aw(C)} for 0 ≤ w ≤ n
where Aw(C) = |{c ∈ C : wt(c) = w}|.

For 0 ≤ i ≤ k, the i-th weight spectrum of C is the ordered multiset
{A(i)

w (C)} for w = 0, . . . , n, where

A(i)
w (C) = |{D : D ⊆ C,dimD = i,and wt(D) = w}|

and we call the multiset of i-th weight spectra for i = 0, 1, . . . , k as the
higher weight spectra of C. In particular, A0(C) = 1 = A(0)

0 (C) and
Aw(C) = (q − 1)A(1)

w (C) for 1 ≤ w ≤ n. We will write A(i)
w for A(i)

w (C)

whenever the code C is understood from the context.

Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 4 / 21



Higher Weight Spectra of a linear [n, k]q-code C
The support and the support weight of a subcode D of C:

Supp(D) := {i : ∃ c = (c1, . . . , cn) ∈ D with ci ̸= 0}, wt(D) := |Supp(D)|.

The i-th generalized Hamming weight (GHW) of C (1 ≤ i ≤ k):

di(C) := min{wt(D) : D ⊆ C, dimD = i}.

The weight distribution of C is the ordered multiset {Aw(C)} for 0 ≤ w ≤ n
where Aw(C) = |{c ∈ C : wt(c) = w}|.
For 0 ≤ i ≤ k, the i-th weight spectrum of C is the ordered multiset
{A(i)

w (C)} for w = 0, . . . , n, where

A(i)
w (C) = |{D : D ⊆ C,dimD = i,and wt(D) = w}|

and we call the multiset of i-th weight spectra for i = 0, 1, . . . , k as the
higher weight spectra of C.

In particular, A0(C) = 1 = A(0)
0 (C) and

Aw(C) = (q − 1)A(1)
w (C) for 1 ≤ w ≤ n. We will write A(i)

w for A(i)
w (C)

whenever the code C is understood from the context.

Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 4 / 21



Higher Weight Spectra of a linear [n, k]q-code C
The support and the support weight of a subcode D of C:

Supp(D) := {i : ∃ c = (c1, . . . , cn) ∈ D with ci ̸= 0}, wt(D) := |Supp(D)|.

The i-th generalized Hamming weight (GHW) of C (1 ≤ i ≤ k):

di(C) := min{wt(D) : D ⊆ C, dimD = i}.

The weight distribution of C is the ordered multiset {Aw(C)} for 0 ≤ w ≤ n
where Aw(C) = |{c ∈ C : wt(c) = w}|.
For 0 ≤ i ≤ k, the i-th weight spectrum of C is the ordered multiset
{A(i)

w (C)} for w = 0, . . . , n, where

A(i)
w (C) = |{D : D ⊆ C,dimD = i,and wt(D) = w}|

and we call the multiset of i-th weight spectra for i = 0, 1, . . . , k as the
higher weight spectra of C. In particular, A0(C) = 1 = A(0)

0 (C) and
Aw(C) = (q − 1)A(1)

w (C) for 1 ≤ w ≤ n. We will write A(i)
w for A(i)

w (C)

whenever the code C is understood from the context.
Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 4 / 21



What is Known

• [Kasami–Lin–Peterson (1968)] The minimum distance of RMq(r,m)

• [McEliece (1969) + Li (2019)] The weight distribution of the second order
affine and projective Reed-Muller codes RMq(2,m) and PRMq(2,m).

• [Zanella (1998)] Generalized Hamming weights of PRMq(2,m)

• [Heijnen–Pellikaan (1998); Beelen–Datta (2018); Beelen (2019)]
Generalized Hamming weights of RMq(r,m)

• [Serre (1991), Sørensen (1991), Boguslavsky (1997), Datta–G (2017),
Beelen-Datta–G (2018, 2022)] Many, but not all, GHWs of PRMq(r,m)

• [Jurrius (2012)] Higher weight spectra of RMq(1,m).

• [J–Verdure (2019)] Higher weight spectra of PRMq(2, 2).

• [J–Verdure (2021)] Higher weight spectra of PRM2(2, 3).

• [Kaplan–Matei (2021)] First and second weight spectrum of RMq(2, 2).

• [Kaipa–Pradhan (2025)] Higher weight spectra of PRM3(2, 3).

Question: What about the complete higher weight spectra of RMq(2, 2)?
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What do we know about RMq(2, 2)?

RMq(2, 2) is a [q2, 6, q2 − 2q]q-code if q > 2, and is a [4, 3, 2]2-code if q = 2.
Thanks to various prior works, we already know the following for any q > 2:

The nonzero weights of RMq(2, 2) are

q2 − 2q, q2 − 2q + 1, q2 − q − 1, q2 − q + 1

The generalized Hamming weights of RMq(2, 2) are

d1 = q2−2q, d2 = q2−4, d3 = q2−3, d4 = q2−2, d5 = q2−1, d6 = q2.

We have to be careful with the higher weight spectra when q < 7. For
q ≥ 7 we can give formulas valid for all such q simultaneously.

Main Result: Explicit formulas for the higher weight spectra of RMq(2, 2).
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Higher weight spectra of RMq(2, 2) when q ≥ 7
A(0)

0 = 1, A(1)
q2−2q = q3−q

2 , A(1)
q2−2q+1 = q4+q3

2 ,

A(1)
q2−q−1 = q5−2q4+q3

2 , A(2)
q2−q−1 = q4 − q2,

A(1)
q2−q = q4 + q2 + 2q, A(2)

q2−q = 2q3 + 3q2 + q, A(3)
q2−q = q2 + q,

A(1)
q2−q+1 = q5−q3

2 ,

A(2)
q2−4 = q8−4q7+5q6+q5−6q4+3q3

24 ,

A(2)
q2−3 = 4q7 − 9q6 + q5 + 9q4 − 5q3, A(3)

q2−3 = q6−q5−q4+q3

6 ,

A(2)
q2−2 = q8−2q7+13q6−9q5−14q4+11q3

4 , A(3)
q2−2 = q7+q5−2q3

2 , A(4)
q2−2 = q4−q2

4 ,

A(1)
q2−1 = q4−q3

2 , A(2)
q2−1 = 2q8+4q7−5q6+29q5+15q4−27q3+6q2

6 ,

A(3)
q2−1 = 2q8+3q6+3q5+5q4+3q3

2 , A(4)
q2−1 = q6 + q5 + q3 + 2q2, A(5)

q2−1 = q2,

A(1)
q2 = q3−q+2

2 , A(2)
q2 = 9q8 + 8q7 + 21q6 − 19q5 + 42q4 + 59q3 − 24q2 + 24,

A(3)
q2 = 6q9+9q7+8q6+7q5+4q4+14q3+6q2+6

6 , A(4)
q2 = 2q8+2q7+2q6+2q5+5∗q4+2q3+q2+2q+2

2 ,

A(5)
q2 = q5 + q4 + q3 + q + 1, A(6)

q2 = 1, and all other A(r)
w are zero.
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Higher weight spectra of RMq(2, 2) when q = 5, 4, 3, 2

For RM5(2, 2), the same formulas (as in the case q ≥ 7) work for all
w ̸= q2 − q + 1 = q2 − 4 = 21, and A(1)

21 = 1500, A(2)
21 = 6500 and A(r)

21 = 0 for
r = 3, 4, 5, 6.

For RM4(2, 2), the same formulas work for all w ̸= q2 − q = q2 − 4 = 12
and w ̸= q2 − q + 1 = q2 − 3 = 13. Moreover, A(1)

12 = 280, A(2)
12 = 1020,

A(3)
12 = 20, and A(r)

12 = 0 for r = 4, 5, 6. Furthermore, A(1)
13 = 480,

A(2)
13 = 5280, A(3)

13 = 480, and A(r)
13 = 0 for r = 4, 5, 6.

For RM3(2, 2), the same formulas work for all w ̸= q2 − q − 1 = q2 − 4 = 5,
w ̸= q2 − q = q2 − 3 = 6, and w ̸= q2 − q + 1 = q2 − 2 = 7. A(1)

5 = 54, and
A(2)

5 = 126, and A(r)
5 = 0, for r = 3, 4, 5, 6. Furthermore A(1)

6 = 96, and
A(2)

6 = 588, and A(3)
6 = 84, and A(r)

6 = 0, for r = 4, 5, 6, and A(1)
7 = 108, and

A(2)
7 = 2160, and A(3)

7 = 1188, and A(r)
7 = 0, for r = 4, 5, 6.

For RM2(2, 2), A(1)
1 = 4, A(1)

2 = 6, A(1)
3 = 4, A(1)

4 = 1, A(2)
2 = 6, A(2)

3 = 16,
A(2)

4 = 13, A(3)
3 = 4, A(3)

4 = 11, A(4)
4 = 1, and all other A(r)

w are zero.
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Idea of Proof

Some of the terminology below will be explained later. We outline here the
main steps. Let C = RMq(2, 2) and let n = q2. Note that dimC = 6.

First, solve the more general problem of determining the (graded) Betti
numbers βi,j of the matroid MC associated to C and also the Betti
numbers β

(ℓ)
i,j of the elongations M(ℓ)

C of MC. for ℓ = 0, 1, . . . , 6.

Use a result of J–Roksvold–Verdure (2016), which shows that

Pw(T) =
∑
ℓ≥0

∑
i≥0

(−1)i+1(β
(ℓ−1)
i,w − β

(ℓ)
i,w )T

l for 0 ≤ w ≤ n,

where Pw(T) is the so-called generalized weight polynomial of C which is
a univariate polynomial with integer coefficients having the property that
Pw(qe) is the number of codewords of weight w of C ⊗Fq Fqe for each e ≥ 0.
Use results of Helleseth–Kløve–Mykkeltveit (1977) and Jurrius (2012)
that relate the higher weight spectra with generalized weight polynomials:

Pw(qe) =

e∑
r=0

A(r)
w

r−1∏
i=0

(qe − qi) for e ≥ 0 and 0 ≤ w ≤ n.
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Review of Matroids and Betti numbers

Definition

Let E be a finite set. A finite matroid (or simply, matroid) on E is a pair (E, I)
where I is a family of subsets of E with the following properties:
(i) ∅ ∈ I,
(ii) if σ ⊆ τ and τ ∈ I, then σ ∈ I,
(iii) if σ, τ ∈ I with |σ| < |τ |, then there exists x ∈ τ \ σ such that σ ∪ {x} ∈ I.

Fix a matroid M = (E, I). Elements of I are called independent sets of M.

Definition
Let σ ⊆ E. The rank and nullity of σ are

ρ(σ) := max{|τ | : τ ⊆ σ and τ ∈ I} and n(σ) := |σ| − ρ(σ).

rank(M):= max{|σ| : σ ∈ I} = ρ(E).

The i-th generalized null space of M is

Ni := {σ ⊆ E : n(σ) = i} for i = 0, . . . , n(E)..

A cycle of M is an inclusion-minimal subset in Ni for some i.
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Euler characteristic, Möbius function and Elongations
Let M = (E, I) be a matroid.

Definition

The Euler characteristic of M is χ(M) :=
∑

i≥0(−1)i+1|{τ ∈ I : |τ | = i}|.
The Möbius function µ = µM of M is the Z-valued function on the lattice LM

of cycles of M defined recursively by µ(∅) = 1 and for σ ∈ LM with σ ̸= ∅,

µ(σ) = −
∑
τ

µ(τ), where the sum is over τ ∈ LM with τ ⊊ σ.

Definition

Let ℓ ≥ 0. Then, the ℓ-th elongation of M is the matroid M(ℓ) = (E, I(ℓ)) with

I(ℓ) = {I ∪ σ : I ∈ I, σ ⊆ E, and |σ| ≤ ℓ}.

I(ℓ) is the set of all subsets of E if ℓ ≥ n(E) = |E| − rank(M).

rank(M(ℓ)) = min{|E|, rank(M) + ℓ}.

The i-th generalized null space N(ℓ)
i of M(ℓ) is Ni+ℓ for i = 0, . . . , n(E)− ℓ.
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Simplicial complexes and Stanley-Reisner rings

Definition
Let E be a finite set. A collection ∆ of subsets of E is a simplicial complex if

σ ∈ ∆ and τ ⊆ σ =⇒ τ ∈ ∆.

Let ∆ be a simplicial complex on a finite set E.

Fix a field k and let S be the polynomial ring k[Xe : e ∈ E].

The Stanley-Reisner ideal I∆ of ∆ is the ideal of S generated by the
monomials corresponding to non-faces, i.e.,

I∆ = ⟨xσ : σ ⊆ E and σ ̸∈ ∆⟩ , where xσ =
∏
e∈σ

Xe for any σ ⊆ E.

The Stanley-Reisner ring of ∆ is

R∆ = S/I∆.

This is clearly a S-module and a vector space over k.
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Betti numbers of simplicial complexes

Let n := |E|. Since I∆ is a monomial ideal of S, R∆ is a Nn-graded finitely
generated S-module. As such it has a minimal free resolution of the form

0 − R∆
∂0 − S0

∂1 − S1  − · · · ∂l − Sl  − 0

where S0 = S and each Si is a Nn-graded free S-module of the form

Si =
⊕
α∈Nn

S(−α)βi,α =
⊕
σ⊆E

S(−σ)βi,σ .

Here βi,α are independent of the choice of the minimal free resolution and they
are called the Nn-graded Betti numbers of ∆. For d, i ≥ 0, we let

βi,d =
∑
|α|=d

βi,α and βi =
∑
d≥0

βi,d and ϕj =
∑

i

(−1)iβi,j.

We call βi,d and βi the N-graded and ungraded Betti numbers of ∆, respectively.
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Matroids associated to linear codes

Let C be an [n, k]q-code and let H be a parity check matrix of C.

Let E = [n] := {1, 2, . . . , n} and for i ∈ E, let Hi be the i-th column of H.

Define ∆C := {σ ⊆ E : {Hi : i ∈ σ} is linearly independent over Fq}.
Then MC = (E, ∆C) is the matroid associated to the code C. It is
independent of the choice of a parity check matrix of C.

Since rank(H) = n − k, the rank of the matroid MC is n − k and n(E) = k.

∆C is a simplicial complex. Let RC be its Stanley-Reisner ring.

RC is Cohen-Macaulay and dim(RC) = n − k.

By the Auslander-Buchsbaum formula, the length of any minimal free
resolution of RC is depth(S)− depth(RC), i.e. , n − (n − k) = k.

βi,σ, βi,d and βi are independent of the choice of field k and are called the
Nn-graded, N-graded, and ungraded Betti numbers of C, respectively.
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Useful Results for solving the more general problem

• [J–Verdure (2013)] Betti numbers of C determine its generalized
Hamming weights. In fact,

di(C) = min{j : βi,j ̸= 0} for i = 1, . . . , k.

Let ℓ ≥ 0 and consider the N-graded and Nn-graded Betti numbers of M(ℓ)
C .

• [Peskine–Szpiro (1974); Boij–Søderberg (2008); Herzog–Kühl ]∑
i≥0

∑
w≥0

(−1)iwsβ
(ℓ)
i,w = 0 for 0 ≤ s ≤ k − 1 [where by convention, 00 = 1].

• [J–Verdure (2013)] For any i ≥ 0,

β
(ℓ)
i,σ ̸= 0 ⇐⇒ σ is inclusion-minimal in N(ℓ)

i .

• [Hochster (1977) + Björner (1992)] If σ ∈ Ni, then

β
(ℓ)
i,σ = (−1)r(σ)−1χ(M(ℓ)

σ ), where I(M(ℓ)
σ ) := {τ ∈ I(M(ℓ)) : τ ⊆ σ}.

• [Stanley (1977)] βi,σ = |µ(σ)| for any inclusion-minimal element σ of Ni.
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Now suppose C = RMq(2, 2). Then the ground set E of the associated matroid
MC can be identified with A2(Fq). A crucial observation is the following.

Lemma

Assume that q ≥ 3. Then the nullity of any σ ⊆ E is equal to the Fq-vector
space dimension of the space of affine conics in A2(Fq) passing through E \ σ:

n(σ) = dimFq {f ∈ Fq[X,Y]≤2 : f (P) = 0 for all P ∈ E \ σ} .

Theorem (Hirschfeld)

In P2(Fq), the q6−1
q−1 conics (corresponding to polynomials in Fq[X,Y,Z]2) are:

q2 + q + 1 double lines with q + 1 points in P2(Fq),

q(q+1)(q2+q+1)
2 pairs of two distinct lines with 2q + 1 points in P2(Fq).

q5 − q2 irreducible conics with q + 1 points in P2(Fq),

q(q−1)(q2+q+1)
2 conics (pairs of Galois-conjugate lines defined over Fq2 \ Fq)

that just possess a single Fq-rational point each.
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Now suppose C = RMq(2, 2). Then the ground set E of the associated matroid
MC can be identified with A2(Fq). A crucial observation is the following.

Lemma

Assume that q ≥ 3. Then the nullity of any σ ⊆ E is equal to the Fq-vector
space dimension of the space of affine conics in A2(Fq) passing through E \ σ:
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Classification of conics in A2(Fq)

We use the result of Hirschfeld to work out a classification of affine conics.
Denote by L, say Z = 0, the line at infinity in P2(Fq).

Theorem

• The q2 + q + 1 double lines in P2(Fq) are divided into 2 categories:

a) 1 double line Z2 = 0, with no points in A2(Fq).

b) q2 + q other double lines, each with q zeros in A2(Fq).

• The q(q+1)(q2+q+1)
2 pairs of two distinct lines are divided into 3 categories:

c) q2 + q line pairs of the type Z F(X,Y,Z) = 0, where F(X,Y,Z) is a linear
form not proportional to Z. These conics have q zeros in A2(Fq).

d) q4+q3

2 line pairs intersecting outside L. These conics have 2q − 1 zeros in
A2(Fq).

e) q(q2−1)
2 line pairs intersecting at a single point of the line L. Such line pairs

have 2q zeros in A2(Fq).
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Classification of conics in A2(Fq) contd.

• The q5 − q2 irreducible conics are divided into 3 categories:

f) q3(q2−1)
2 conics intersecting L in two distinct points over Fq. These conics

have q − 1 zeros in A2(Fq).

g) q2(q2 − 1) conics being tangent to L at one Fq-rational point. These conics
have q zeros in A2(Fq).

h) q3(q−1)2

2 conics that have no Fq-rational point on L. These conics have
q + 1 zeros in A2(Fq).

• The q(q−1)(q2+q+1)
2 conics that just possess a single Fq-rational point each,

are divided into 2 categories:

i) q2(q2−q)
2 conics, where the single point is not on L. These conics have 1

point in A2(Fq).

j) q3−q
2 conics, where the single point is on L. These conics have 0 points in

A2(Fq).
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Using the Classification to complete the quest

In the above classification, cases d), e), f), g), h) correspond to the
minimal codewords of C = RMq(2, 2). These give the values of all the β1,j.

We further determine the minimal sets in N(ℓ)
1 = N1+ℓ to get the values of

all the β
(ℓ)
1,j .

Additionally, we determine some more β
(ℓ)
i,j for i ≥ 2 partly by using the

Boij-Søderberg equations.

We then go back to the relation between the Betti numbers of (the
elongations of matroids corresponding to) C to determine the generalized
weight polynomials.

In turn, the generalized weight polynomials are used to obtain the higher
weight spectra.

Problem for Brave People: Do this for any RMq(r,m) and PRMq(r,m).
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Thanks for your attention!

Reference: S. R. Ghorpade, T. Johnsen, R. Ludhani, and R. Pratihar,
Higher weight spectra and Betti numbers of Reed-Muller codes RMq(2, 2),
https://arxiv.org/html/2408.02548v1
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