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A linear code C is an F,-linear subspace of Fy. Let k = dim C.
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A linear code C is an F,-linear subspace of Fy. Let k = dim C.

A generator matrix G is a (k x n)-matrix over F, such that C = row(G), and a
parity check matrix H is a generator matrix for C-+.
Thus one obtains two matroids, one from the G, and one from the H.

There are several ways of producing linear codes from geometry or algebra.
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Geometry and Coding Theory: A Selective Dictionary

Veronesean V, Projective Reed-Muller code PRM,(r, m):
image of the r-uple embedding Evaluation of F[xo, x1, ..., x,], On
P (F,) — P("7)=(F,) (representatives of) points of P"(F,)
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image of the r-uple embedding Evaluation of F[xo, x1, ..., x,], On
P (F,) — P("7)=(F,) (representatives of) points of P"(F,)
Affine Veronesean V2, : Reed-Muller code RM,(r, m):
image of A"(IF,) = {xo = 1} Evaluation of F[x;, ..., x,]<, 0N
under the r-uple embedding points of A" (F,)
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P (F,) — P("7)=(F,) (representatives of) points of P"(F,)
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HNOV, |, [HOVA

ol

PRM,(r,m); RM,(r,m)

rn[?x|H N Vrml; mHaX|H NVE,l  Minimum distance of PRM,(r,m); RM,(r, m)

Linear sections Higher weight spectra of
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max{|[L NV, | : codimL = i}; i-th Generalized Hamming weight of
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Higher Weight Spectra of a linear [n, k],-code C
@ The support and the support weight of a subcode D of C:
Supp(D) :={i:3c=(c1,...,cn) € Dwith ¢; # 0}, wt(D) := |Supp(D)]|.

@ The i-th generalized Hamming weight (GHW) of C (1 < i <k):

d;(C) := min{wt(D) : D C C, dimD = i}.
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@ The support and the support weight of a subcode D of C:
Supp(D) :={i:3c=(c1,...,cn) € Dwith ¢; # 0}, wt(D) := |Supp(D)]|.

@ The i-th generalized Hamming weight (GHW) of C (1 < i <k):
di(C) := min{wt(D) : D C C, dimD = i}.

@ The weight distribution of C is the ordered multiset {A,,(C)} for0 <w <n
where A,,(C) = [{c € C : wi(c) = w}|.
@ For 0 <i <k, the i-th weight spectrum of C is the ordered multiset
{AEV’)(C)} forw=0,...,n, where
AD(C)=|{D: D C C,dimD = i,and wt(D) = w}|

and we call the multiset of i-th weight spectra fori = 0,1, ...,k as the
higher weight spectra of C.
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Higher Weight Spectra of a linear [n, k],-code C
@ The support and the support weight of a subcode D of C:
Supp(D) :={i:3c=(c1,...,cn) € Dwith ¢; # 0}, wt(D) := |Supp(D)]|.

@ The i-th generalized Hamming weight (GHW) of C (1 < i <k):
di(C) := min{wt(D) : D C C, dimD = i}.

@ The weight distribution of C is the ordered multiset {A,,(C)} for0 <w <n
where A,,(C) = [{c € C : wi(c) = w}|.

@ For 0 <i <k, the i-th weight spectrum of C is the ordered multiset
{AS)(C)} forw=0,...,n, where

AD(C)=|{D: D C C,dimD = i,and wt(D) = w}|

w

and we call the multiset of i-th weight spectra fori = 0,1, ...,k as the
higher weight spectra of C. In particular, Ao(C) =1 = A(()O)(C) and
Au(C)=(qg— I)AS)(C) for 1 <w < n. We will write A" forASf)(C)
whenever the code C is understood from the context.
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What is Known

e [Kasami-Lin—Peterson (1968)] The minimum distance of RM,(r, m)

e [McEliece (1969) + Li (2019)] The weight distribution of the second order
affine and projective Reed-Muller codes RM, (2, m) and PRM, (2, m).

o [Zanella (1998)] Generalized Hamming weights of PRM, (2, m)
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e [Heijnen—Pellikaan (1998); Beelen—Datta (2018); Beelen (2019)]
Generalized Hamming weights of RM,(r, m)

e [Serre (1991), Sgrensen (1991), Boguslavsky (1997), Datta—G (2017),
Beelen-Datta—G (2018, 2022)] Many, but not all, GHWs of PRM,(r, m)
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What is Known

e [Kasami-Lin—Peterson (1968)] The minimum distance of RM,(r, m)

e [McEliece (1969) + Li (2019)] The weight distribution of the second order
affine and projective Reed-Muller codes RM, (2, m) and PRM, (2, m).

o [Zanella (1998)] Generalized Hamming weights of PRM, (2, m)

e [Heijnen—Pellikaan (1998); Beelen—Datta (2018); Beelen (2019)]
Generalized Hamming weights of RM,(r, m)

e [Serre (1991), Sgrensen (1991), Boguslavsky (1997), Datta—G (2017),
Beelen-Datta—G (2018, 2022)] Many, but not all, GHWs of PRM,(r, m)

e [Jurrius (2012)] Higher weight spectra of RM, (1, m).

o [J-Verdure (2019)] Higher weight spectra of PRM,(2, 2).

e [J—Verdure (2021)] Higher weight spectra of PRM,(2, 3).

o [Kaplan—Matei (2021)] First and second weight spectrum of RM,(2, 2).
e [Kaipa—Pradhan (2025)] Higher weight spectra of PRM;(2, 3).

| Question: What about the complete hiaher weiaht spectra of RM (2.2)? |
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What do we know about RM,(2,2)?

RM,(2,2) is a [¢%,6,4* — 2q],-code if ¢ > 2, and is a [4,3,2],-code if ¢ = 2.
Thanks to various prior works, we already know the following for any ¢ > 2:

@ The nonzero weights of RM,(2,2) are
=29 ¢-2q+1, ¢—-q-1, ¢—q+1
@ The generalized Hamming weights of RM,(2,2) are

di=q'-29q, d=q-4 d=¢-3 d=q-2 d=q-1,
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What do we know about RM,(2,2)?

RM,(2,2) is a [¢%,6,4* — 2q],-code if ¢ > 2, and is a [4,3,2],-code if ¢ = 2.
Thanks to various prior works, we already know the following for any ¢ > 2:

@ The nonzero weights of RM,(2,2) are
=29 ¢-2q+1, ¢—-q-1, ¢—q+1
@ The generalized Hamming weights of RM,(2,2) are
di=q-2q, dy=qg—4 d=q¢-3, di=q-2 ds=q—1, ds=¢q.

@ We have to be careful with the higher weight spectra when ¢ < 7. For
g > 7 we can give formulas valid for all such g simultaneously.
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What do we know about RM,(2,2)?

RM,(2,2) is a [¢%,6,4* — 2q],-code if ¢ > 2, and is a [4,3,2],-code if ¢ = 2.
Thanks to various prior works, we already know the following for any ¢ > 2:
@ The nonzero weights of RM,(2,2) are

¢ -2¢, ¢-2q+1, ¢—-q-1, ¢ —q+1
@ The generalized Hamming weights of RM,(2,2) are
di=q'-2, =4 d=¢-3 di=4¢-2 d=¢-1, d=q"

@ We have to be careful with the higher weight spectra when ¢ < 7. For
g > 7 we can give formulas valid for all such g simultaneously.

Main Result: Explicit formulas for the higher weight spectra of RM,(2, 2). ‘
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Higher weight spectra of RM,(2,2) when g > 7

o) _ 1 _I—q (1 _ 4+¢
AO - 17 Aq2—2q — T2 AqZ—Zq-‘,-l - 2

(1 _ -24"'+q () _ 4 2
qu—q—l = o) ) qu—q—l =9 —q,

1 2 3
AV =gttt AY =2 43¢ gAY =g 1y,

(1) o S_ 3
qu—q+1 —4q 2‘1 ,
AQ) 4 4540 14 64" +3¢°

P-4 24 y

6 5 4 3

AD =49 -9 + ¢ +9¢ — 54, Al = L=reEe

Q) P27 +13¢—9 —144* + 114 G)  _ F+q -2 @) g
A, = =2 41349 14"+ 11 A, = (g2 AW, = e
AN _g=g A 24 44" -5¢°+29¢° +154' ~ 274’ +64°

¢-1— 2 ?—-1 6 )

3 8 6 5 4 3 4 5
A | = MBERCCRE 4D g o, AR =

A = €22 A = 968 1847 12148 — 19¢° + 424" + 59¢° — 2447 + 24,

A 64°+99" +8¢°+7¢° +4¢" + 144> +-64*+6 AW 2¢* 424" 4+26°+2¢° +5+¢* +24° +¢*+2¢+2
y 2 v
q 6 q 2 )

AD =@ +q¢*+4+q+1,  AlY =1 andall other A} are zero.
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Higher weight spectra of RM,(2,2) when ¢ = 5,4,3,2

@ For RMs(2,2), the same formulas (as in the case ¢ > 7) work for all
w#qg —q+1=¢—4=21,and A} = 1500, A% = 6500 and A} = 0 for
r=23,4,56.

@ For RM,(2,2), the same formulas work for all w # ¢* —g=¢* —4 =12
andw # ¢* — g+ 1 = g% — 3 = 13. Moreover, A} =280, 41 = 1020,
AP =20,and A} = 0 for r = 4,5,6. Furthermore, A{) = 480,
AlY = 5280, A3 = 480, and A\ = 0 for r = 4,5,6.

@ For RM;(2,2), the same formulas work for all w # ¢*> — g — 1 = ¢* — 4 = 5,
wEtP—q=¢"—3=6,andw#qg —qg+1=¢"-2=7. A" =54 and

(2) = 126, and A " = 0, for r = 3,4,5,6. Furthermore A(l) = 96, and

Agﬂ =588, and ALY = 84, and A(’ =0, for r = 4,5,6, and A" = 108, and
A% =2160, and A = 1188, and AV =0, for r = 4,5,6.

o For RMy(2,2), A" =4, Al =6, AV =4, AV =1, 4P =6, AP = 16,
AP =13, A =4, 4D = 11, ALY = 1, and all other A}’ are zero.
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Idea of Proof

Some of the terminology below will be explained later. We outline here the
main steps. Let C = RM,(2,2) and let n = ¢*. Note that dim C = 6.
@ First, solve the more general problem of determining the (graded) Betti
numbers fj3;; of the matroid M associated to C and also the Betti
numbers ﬂi(f) of the elongations M(CZ) of Mc.fore=0,1,...,6.
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Idea of Proof

Some of the terminology below will be explained later. We outline here the
main steps. Let C = RM,(2,2) and let n = ¢*. Note that dim C = 6.

@ First, solve the more general problem of determining the (graded) Betti
numbers fj3;; of the matroid M associated to C and also the Betti
numbers ﬂi(f) of the elongations M(CZ) of Mc.fore=0,1,...,6.

@ Use a result of J-Roksvold—Verdure (201 6), which shows that

=SS0 EETY = BINT for0 < w < n,

£>0 i>0
where P,,(T) is the so-called generalized weight polynomial of C which is
a univariate polynomial with integer coefficients having the property that
P, (q°) is the number of codewords of weight w of C ®r, F, for each e > 0.
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Idea of Proof

Some of the terminology below will be explained later. We outline here the
main steps. Let C = RM,(2,2) and let n = ¢*. Note that dim C = 6.

@ First, solve the more general problem of determining the (graded) Betti
numbers fj3;; of the matroid M associated to C and also the Betti
numbers ﬂi(j) of the elongations M(CZ) of Mc.fore=0,1,...,6.

@ Use a result of J-Roksvold—Verdure (201 6), which shows that

=SS0 EETY = BINT for0 < w < n,

£>0 i>0
where P,,(T) is the so-called generalized weight polynomial of C which is
a univariate polynomial with integer coefficients having the property that
P, (q°) is the number of codewords of weight w of C ®r, F, for each e > 0.

@ Use results of Helleseth—Klgve—Mykkeltveit (1977) and Jurrius (2012)
that relate the higher weight spectra with generalized weight polynomials:

e
Py(g) =Y AVT[(¢ —¢) fore=0and0<w<n.
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Review of Matroids and Betti numbers

Definition

Let E be a finite set. A finite matroid (or simply, matroid) on E is a pair (E,Z)
where 7 is a family of subsets of E with the following properties:

(0ez,

(iifo CTand T € Z,theno € Z,

(iii) if o, 7 € Z with |o| < |7], then there exists x € 7\ o such that o U {x} € 7.
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Review of Matroids and Betti numbers

Definition

Let E be a finite set. A finite matroid (or simply, matroid) on E is a pair (E,Z)
where 7 is a family of subsets of E with the following properties:

()0 ez,

(ilifo C7and 7 € Z, then o € Z,

(iii) if o, 7 € Z with |o| < |7], then there exists x € 7\ o such that o U {x} € 7.

Fix a matroid M = (E, 7). Elements of Z are called independent sets of M.
Definition

@ Let 0 C E. The rank and nullity of o are

plo) :=max{|r|: 7T Coand T €Z} and n(o):=|o|— p(o).
@ rank(M):= max{|o| : o € T} = p(E).
@ The i-th generalized null space of M is
Ni:={cCE:n(oc)=1i} fori=0,...,n(E)..
@ A cycle of M is an inclusion-minimal subset in N; for some i.

= = = = = 7
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Euler characteristic, MObius function and Elongations
Let M = (E,Z) be a matroid.

Definition

The Euler characteristic of M is  y(M) := Zigo(—l)i+l\{7 eZ:|r| =i}

The Mdbius function p = ua of M is the Z-valued function on the lattice L,
of cycles of M defined recursively by 1 (9) = 1 and for o € L with o # 0,

p(o) = =Y u(r), where the sum is over 7 € Ly With 7 C 0.
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Euler characteristic, MObius function and Elongations
Let M = (E,Z) be a matroid.

Definition

The Euler characteristic of M is  y(M) := Zigo(—l)i+l\{7 eZ:|r| =i}

The Mdbius function p = ua of M is the Z-valued function on the lattice L,
of cycles of M defined recursively by 1 (9) = 1 and for o € L with o # 0,

p(o) = =Y u(r), where the sum is over 7 € Ly With 7 C 0.

Definition

Let £ > 0. Then, the ¢-th elongation of M is the matroid M) = (E, Z()) with

I ={Iuo:1€Z, 0 CE, and |o| < ¢}.

e 71 is the set of all subsets of E if ¢ > n(E) = |E| — rank(M).
@ rank(M®)) = min{|E|, rank(M) + ¢}.
@ The i-th generalized null space N'*) of M) is Ny, fori =0, ... n(E) — (.
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Simplicial complexes and Stanley-Reisner rings

Definition
Let E be afinite set. A collection A of subsets of E is a simplicial complex if

ceAand TCo = 7€ A.
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Simplicial complexes and Stanley-Reisner rings

Definition
Let E be afinite set. A collection A of subsets of E is a simplicial complex if

ceAand TCo = 7€ A.

@ Let A be a simplicial complex on a finite set E.

@ Fix a field k and let S be the polynomial ring k[X, : e € E].
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Simplicial complexes and Stanley-Reisner rings

Definition
Let E be afinite set. A collection A of subsets of E is a simplicial complex if

ceAand TCo = 7€ A.

@ Let A be a simplicial complex on a finite set E.
@ Fix a field k and let S be the polynomial ring k[X, : e € E].

@ The Stanley-Reisner ideal I of A is the ideal of § generated by the
monomials corresponding to non-faces, i.e.,

In=(x":0CEando &A), where x"=HXe forany o C E.

eco
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Simplicial complexes and Stanley-Reisner rings

Definition
Let E be afinite set. A collection A of subsets of E is a simplicial complex if

ceAand TCo = 7€ A.

@ Let A be a simplicial complex on a finite set E.
@ Fix a field k and let S be the polynomial ring k[X, : e € E].

@ The Stanley-Reisner ideal I of A is the ideal of § generated by the
monomials corresponding to non-faces, i.e.,

In=(x":0CEando &A), where x"=HXe forany o C E.

eco
@ The Stanley-Reisner ring of A is
Ra = S/IA.

This is clearly a S-module and a vector space over k.
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Betti numbers of simplicial complexes

Let n := |E|. Since Ia is a monomial ideal of S, Ra is a N"-graded finitely

generated S-module. As such it has a minimal free resolution of the form
0c—Ra <2828 — . X5 0

where S, = § and each S; is a N"-graded free S-module of the form

Si = @ S(—a)Pie = @S(_U)ﬁm.

acNt oCE
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Betti numbers of simplicial complexes

Let n := |E|. Since Ia is a monomial ideal of S, Ra is a N"-graded finitely
generated S-module. As such it has a minimal free resolution of the form

0c—Ra <2828 — . X5 0

where S, = § and each S; is a N"-graded free S-module of the form

Si = @ S(—a)Pie = @S(_U)ﬁm.

acNt oCE

Here 3, , are independent of the choice of the minimal free resolution and they
are called the N"-graded Betti numbers of A. For d,i > 0, we let

Bia = Z Bio and B = Zﬁi,d and ¢; = Z(_l)iﬁu-

|ov|=d d>0 i

We call §; ; and g; the N-graded and ungraded Betti numbers of A, respectively.
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Matroids associated to linear codes
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Matroids associated to linear codes

@ Let C be an [n, k|,-code and let H be a parity check matrix of C.

@ LetE=[n]:={1,2,...,n} and for i € E, let H; be the i-th column of H.

@ Define A¢c:={o CE:{H,:i€ o} islinearly independent over F,}.
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Matroids associated to linear codes
@ Let C be an [n, k|,-code and let H be a parity check matrix of C.
@ LetE=[n]:={1,2,...,n} and for i € E, let H; be the i-th column of H.

@ Define A¢c:={o CE:{H,:i€ o} islinearly independent over F,}.
Then M¢ = (E, Ac¢) is the matroid associated to the code C. It is
independent of the choice of a parity check matrix of C.

@ Since rank(H) = n — k, the rank of the matroid Mc is n — k and n(E) = «.
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@ Define A¢c:={o CE:{H,:i€ o} islinearly independent over F,}.
Then M¢ = (E, Ac¢) is the matroid associated to the code C. It is
independent of the choice of a parity check matrix of C.

@ Since rank(H) = n — k, the rank of the matroid Mc is n — k and n(E) = «.

@ A is a simplicial complex. Let R¢ be its Stanley-Reisner ring.
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Matroids associated to linear codes

@ Let C be an [n, k|,-code and let H be a parity check matrix of C.
@ LetE=[n]:={1,2,...,n} and for i € E, let H; be the i-th column of H.

@ Define A¢c:={o CE:{H,:i€ o} islinearly independent over F,}.
Then M¢ = (E, Ac) is the matroid associated to the code C. It is
independent of the choice of a parity check matrix of C.

@ Since rank(H) = n — k, the rank of the matroid Mc is n — k and n(E) = «.
@ A is a simplicial complex. Let R¢ be its Stanley-Reisner ring.
@ Rc is Cohen-Macaulay and dim(R¢) = n — k.

@ By the Auslander-Buchsbaum formula, the length of any minimal free
resolution of R¢ is depth(S) — depth(R¢), i.e. ,n— (n — k) =k.

® [+, Bia and p; are independent of the choice of field k and are called the
N"-graded, N-graded, and ungraded Betti numbers of C, respectively.
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Useful Results for solving the more general problem

e [J-Verdure (2013)] Betti numbers of C determine its generalized
Hamming weights. In fact,

di(C) =min{j: §;; #0} fori=1,... k.

Let ¢ > 0 and consider the N-graded and N"-graded Betti numbers of M(Cf).
e [Peskine—Szpiro (1974); Boij—Sederberg (2008); Herzog—Kiihl ]

S N (-1)ywBl) =0 foro<s<k-1 [where by convention, 0° = 1].
i>0 w>0
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Hamming weights. In fact,

di(C) =min{j: §;; #0} fori=1,... k.

Let ¢ > 0 and consider the N-graded and N"-graded Betti numbers of M(Cf).
e [Peskine—Szpiro (1974); Boij—Sederberg (2008); Herzog—Kiihl ]

S N (-1)ywBl) =0 foro<s<k-1 [where by convention, 0° = 1].
i>0 w>0

e [J—Verdure (2013)] For any i > 0,

B,.(f,) # 0 < o is inclusion-minimal in Nl.(e).
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Useful Results for solving the more general problem

e [J-Verdure (2013)] Betti numbers of C determine its generalized
Hamming weights. In fact,

di(C) =min{j: §;; #0} fori=1,... k.

Let ¢ > 0 and consider the N-graded and N"-graded Betti numbers of M(CE).
e [Peskine—Szpiro (1974); Boij—Sederberg (2008); Herzog—Kiihl ]

S N (-1)ywBl) =0 foro<s<k-1 [where by convention, 0° = 1].
i>0 w>0

e [J—Verdure (2013)] For any i > 0,
ﬁ,.(f,) # 0 <= o is inclusion-minimal in Nl.(e).
e [Hochster (1977) + Bjorner (1992)] If o € N;, then
Bl = (1)@= (M), where ZMY)) = {r e (M) : 7 C o}

e [Stanley (1977)] B, = |u(o)]| for any inclusion-minimal element o of N;.

Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 15/21



Now suppose C = RM,(2,2). Then the ground set E of the associated matroid
M. can be identified with A?(F,). A crucial observation is the following.

Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 16/21



Now suppose C = RM,(2,2). Then the ground set E of the associated matroid
M. can be identified with A?(F,). A crucial observation is the following.

Lemma

Assume that g > 3. Then the nullity of any o C E is equal to the F,-vector
space dimension of the space of affine conics in A*(F,) passing throughE\ o:

n(o) = dimg, {f € F[X,Y]<2: f(P)=0forallP c E\o}.
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Now suppose C = RM,(2,2). Then the ground set E of the associated matroid
M. can be identified with A?(F,). A crucial observation is the following.

Lemma
Assume that g > 3. Then the nullity of any o C E is equal to the F,-vector
space dimension of the space of affine conics in A*(F,) passing throughE\ o:

n(o) = dimg, {f € F[X,Y]<2: f(P)=0forallP c E\o}.

Theorem (Hirschfeld)

InP2(F,), the q;%ll conics (corresponding to polynomials in ¥,[X,Y,Z],) are:
® ¢* + g+ 1 double lines with g + 1 points in P*(F,),
o UtV +etY) pajrs of two distinct lines with 2q + 1 points in P(F,).
@ ¢’ — ¢* irreducible conics with g + 1 points in P*(F,),

° MZ*M conics (pairs of Galois-conjugate lines defined over F . \ F,)
that just possess a single F,-rational point each.
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Classification of conics in A*(F,)

We use the result of Hirschfeld to work out a classification of affine conics.
Denote by L, say Z = 0, the line at infinity in P?(FF,).
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Classification of conics in A*(F,)

We use the result of Hirschfeld to work out a classification of affine conics.
Denote by L, say Z = 0, the line at infinity in P?(FF,).

Theorem

e The ¢* + g + 1 double lines in P*(F,) are divided into 2 categories:

a) 1 double line Z* = 0, with no points in A*(F,).

b) ¢* + q other double lines, each with q zeros in A*(F,,).

e The Mf”“) pairs of two distinct lines are divided into 3 categories:

c) ¢* + q line pairs of the type ZF(X,Y,Z) = 0, where F(X,Y,Z) is a linear
form not proportional to Z. These conics have q zeros in A*(F,).

d) # line pairs intersecting outside L. These conics have 2q — 1 zeros in
A%(F,).

e) ”("%1) line pairs intersecting at a single point of the line L. Such line pairs
have 2q zeros in A*(F,).
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Classification of conics in A*(F,) contd.

e The ¢° — ¢? irreducible conics are divided into 3 categories:

f) w conics intersecting L in two distinct points over F,. These conics
have ¢ — 1 zeros in A*(F,).

g) ¢*(¢* — 1) conics being tangent to L at one F,-rational point. These conics
have g zeros in A%(F,).

h) M conics that have no F,-rational point on L. These conics have
q + 1 zeros in A%(F,).

e The w conics that just possess a single F,-rational point each,
are divided into 2 categories:

i) W conics, where the single point is not on L. These conics have 1
point in A%(FF,).

i) f—;q conics, where the single point is on L. These conics have 0 points in
A(F,).

— — = - = ~oF
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Using the Classification to complete the quest

@ In the above classification, cases d), e), f), g), h) correspond to the
minimal codewords of C = RM,(2,2). These give the values of all the 3, ;.

@ We further determine the minimal sets in Nl(’z) = Ny to get the values of
all the 4.

@ Additionally, we determine some more ij) for i > 2 partly by using the
Boij-Saderberg equations.

@ We then go back to the relation between the Betti numbers of (the
elongations of matroids corresponding to) C to determine the generalized
weight polynomials.

@ Inturn, the generalized weight polynomials are used to obtain the higher
weight spectra.
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Using the Classification to complete the quest

@ In the above classification, cases d), e), f), g), h) correspond to the
minimal codewords of C = RM,(2,2). These give the values of all the 3, ;.

@ We further determine the minimal sets in Nl(’z) = Ny to get the values of
all the 4.

@ Additionally, we determine some more ij) for i > 2 partly by using the
Boij-Saderberg equations.

@ We then go back to the relation between the Betti numbers of (the
elongations of matroids corresponding to) C to determine the generalized
weight polynomials.

@ Inturn, the generalized weight polynomials are used to obtain the higher
weight spectra.

Problem for Brave People: Do this for any RM,(r, m) and PRM,(r, m).

Sudhir Ghorpade Affine Veroneseans and Higher weight spectra AGC2T-2025 19/21



Thanks for your attention!
Reference: S. R. Ghorpade, T. Johnsen, R. Ludhani, and R. Pratihar,

Higher weight spectra and Betti numbers of Reed-Muller codes RM,(2,2),
https://arxiv.org/htm|/2408.02548v1
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