The incidence matrix of a q-ary graph

Relinde Jurrius (joint work with Michela Ceria)

Netherlands Defence Academy

Finite Geometries Irsee, September 1, 2025

The q-team at Combinatorics 2024

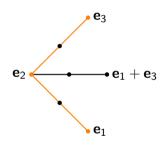
Definition

Let $V = \mathbb{F}_q^{\mathsf{v}}$ and let E be a set of 2-dimensional subspaces of V, the *edges*. Then (V, E) is a q-ary graph if for all $c_1, c_2 \in \mathbb{F}_q$:

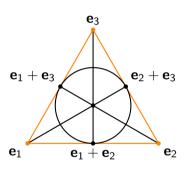
If $\langle \mathbf{x}, \mathbf{y_1} \rangle$ and $\langle \mathbf{x}, \mathbf{y_2} \rangle$ are (adjecent) edges, then $\langle \mathbf{x}, c_1 \mathbf{y_1} + c_2 \mathbf{y_2} \rangle$ is an edge.

In other words: neighbourhoods are spaces.

Example



q-ary P_2 in \mathbb{F}_2^3



q-ary C_3 in \mathbb{F}_2^3

Question Do q-ary graphs have a nice geometric interpretation?

Question

Can we "q-ify" each graph?

Incidence matrix of a graph: matrix over \mathbb{F}_q (usually \mathbb{F}_2) with v rows such that

- ► columns ↔ edges:
 - ► Hamming support = edge (as a set of vertices);
 - \triangleright so: Hamming weight = 2;
 - ightharpoonup orthogonal to $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$ (full Hamming weight vector).

Incidence matrix of a q-ary graph: matrix over $\mathbb{F}_{q^{\nu}} = \mathbb{F}_{q}[\alpha]$ with ν rows such that

- ▶ columns ↔ edges;
 - ► rank support = edge (as a space);
 - ightharpoonup so: rank weight = 2;
 - \blacktriangleright orthogonal to $\begin{bmatrix} 1 & \alpha & \cdots & \alpha^{v-1} \end{bmatrix}^T$ (full rank weight vector);

behaves nicely with the q-ary graph property.

Theorem

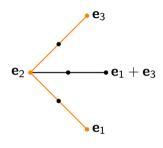
Let $\langle \mathbf{x}, \mathbf{y}_1 \rangle, \dots, \langle \mathbf{x}, \mathbf{y}_d \rangle$ be edges through the same vertex. Fix a representation \mathbf{v}_1 of

the edge $\langle \mathbf{x}, \mathbf{y}_1 \rangle$. Then there exist unique representations $\mathbf{v}_2, \dots, \mathbf{v}_d$ of the edges $\langle \mathbf{x}, \mathbf{y}_2 \rangle, \dots, \langle \mathbf{x}, \mathbf{y}_d \rangle$ such that for any $\lambda_1, \dots, \lambda_d \in \mathbb{F}_q$ the vector

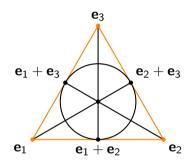
 $\mathbf{v}_{d+1} := \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_d \mathbf{v}_d$ is a representation of the edge $\langle \mathbf{x}, \sum_{i=1}^d \lambda_i \mathbf{v}_i \rangle$.

Proof: constructive, by linear algebra.

Example



$$\left[\begin{array}{ccc} \alpha & 0 & \alpha \\ 1 & \alpha^2 & \alpha^6 \\ 0 & \alpha & \alpha \end{array}\right]$$



$$\begin{bmatrix}
\alpha & 0 & \alpha^2 & \alpha & \alpha^4 & \alpha^2 & \alpha^4 \\
1 & \alpha^2 & 0 & \alpha^6 & 1 & \alpha^2 & \alpha^6 \\
0 & \alpha & 1 & \alpha & 1 & \alpha^3 & \alpha^3
\end{bmatrix}$$

Theorem

all other edges up to a scalar in \mathbb{F}_q^* .

will multiply the whole incidence matrix with a scalar $\mathbb{F}_{q^{\vee}}^*$.

So: different incidence matrices give isomorphic *q*-matroids.

Starting with a different representation for the first edge, or with a different first edge,

For every q-ary graph, fixing the representation of one edge fixes a representation for

Concluding remarks:

- ► We can make a *q*-matroid from a *q*-ary graph!
- \blacktriangleright We can motivate this incidence matrix by doing geometry over \mathbb{F}_1 .
- ► How to get directly from a *q*-ary graph to a *q*-matroid? Still no idea!

Wild speculation:

- ▶ We made a *q*-analogue of a characteristic vector. Can this be extended to other applications, like polytopes?
- ▶ Maybe we can make the definition of a *q*-ary SRG less strict?

Thank you for your attention! arxiv.org/abs/2508.19964