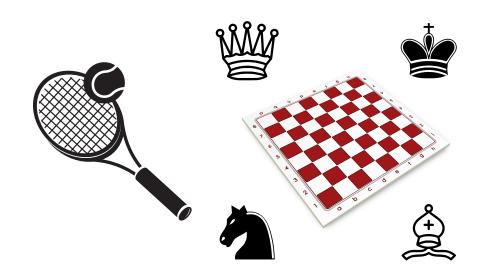
Designs of Perfect Matchings

Lukas Klawuhn

Paderborn University

04 September 2025

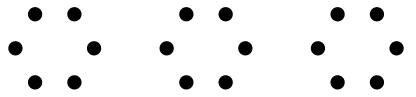
Games!



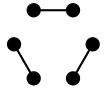
$$n ext{ players } \longrightarrow \binom{n}{2} ext{ matches}$$

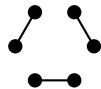
$$2n$$
 players $\longrightarrow \binom{2n}{2} = n(2n-1)$ matches

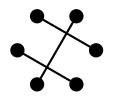
$$2n$$
 players $\longrightarrow \binom{2n}{2} = n(2n-1)$ matches

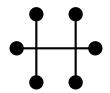


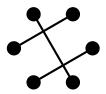
$$2n \text{ players } \longrightarrow \binom{2n}{2} = n(2n-1) \text{ matches}$$











1-factorisation: every edge in exactly 1 perfect matching

1-factorisation: every edge in exactly 1 perfect matching

hyperfactorisation: every pair of disjoint edges in exactly 1

perfect matching

1-factorisation: every edge in exactly 1 perfect matching

hyperfactorisation: every pair of disjoint edges in exactly c

perfect matchings

1-factorisation: every edge in exactly 1 perfect matching

hyperfactorisation: every pair of disjoint edges in exactly c

perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \ge 5$, K_{2n} has a non-trivial hyperfactorisation.

1-factorisation: every edge in exactly 1 perfect matching

hyperfactorisation: every pair of disjoint edges in exactly c

perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \ge 5$, K_{2n} has a non-trivial hyperfactorisation.

Generalisation:

1-factorisation: every edge in exactly 1 perfect matching

hyperfactorisation: every pair of disjoint edges in exactly c

perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \ge 5$, K_{2n} has a non-trivial hyperfactorisation.

Generalisation:

ullet perfect matching \longrightarrow uniform set partition

1-factorisation: every edge in exactly 1 perfect matching

hyperfactorisation: every pair of disjoint edges in exactly c

perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

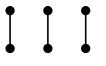
For every $n \ge 5$, K_{2n} has a non-trivial hyperfactorisation.

Generalisation:

- ullet perfect matching \longrightarrow uniform set partition
- ullet pair of disjoint subsets $\longrightarrow t$ disjoint subsets

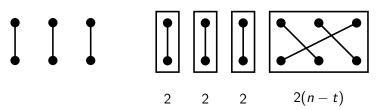
t disjoint edges

t disjoint edges \longrightarrow set partition of shape $(2(n-t), 2, 2, \dots, 2)$



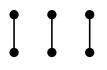
2
$$2(n-t)$$

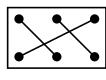
t disjoint edges \longrightarrow set partition of shape $(2(n-t),2,2,\ldots,2)$



 λ -factorisation: every set partition of shape 2λ is refined by exactly c perfect matchings

t disjoint edges \longrightarrow set partition of shape $(2(n-t), 2, 2, \dots, 2)$





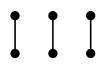
2(n-t)

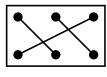
 λ -factorisation: every set partition of shape 2λ is refined

by exactly c perfect matchings

1-factorisation: (n-1,1)-factorisation

t disjoint edges \longrightarrow set partition of shape $(2(n-t),2,2,\ldots,2)$





2

2

2

2(n-t)

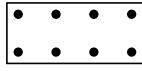
 λ -factorisation: every set partition of shape 2λ is refined by exactly c perfect matchings

 \sim 1-factorisation: (n-1,1)-factorisation hyperfactorisation: (n-2,1,1)-factorisation

$$n = 6$$
, $\lambda = (42)$:

n = 6, $\lambda = (42)$: set partitions of shape (84)

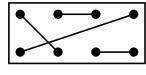
n = 6, $\lambda = (42)$: set partitions of shape (84)



4

8

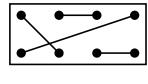
n = 6, $\lambda = (42)$: set partitions of shape (84)



4

8

n = 6, $\lambda = (42)$: set partitions of shape (84)

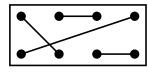


4

8

Perfect matchings on PG(1,11) = $\mathbb{F}_{11} \cup \{\infty\}$:

n = 6, $\lambda = (42)$: set partitions of shape (84)



4

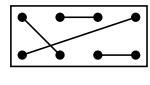
8

Perfect matchings on $PG(1,11) = \mathbb{F}_{11} \cup \{\infty\}$:

$$M_1 = \{\{0, \infty\}\} \cup \{\{x, -x\} : x \in \mathbb{F}_{11}^{\square}\},$$

$$M_2 = \{\{0, \infty\}\} \cup \{\{x, 7x\} : x \in \mathbb{F}_{11}^{\square}\}.$$

n = 6, $\lambda = (42)$: set partitions of shape (84)



4

8

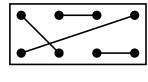
Perfect matchings on $PG(1,11) = \mathbb{F}_{11} \cup \{\infty\}$:

$$M_1 = \{\{0, \infty\}\} \cup \{\{x, -x\} : x \in \mathbb{F}_{11}^{\square}\},$$

$$M_2 = \{\{0, \infty\}\} \cup \{\{x, 7x\} : x \in \mathbb{F}_{11}^{\square}\}.$$

 $G \coloneqq \mathsf{AGL}(1,11) = \mathsf{Stab}(\infty)$ acts on perfect matchings

n = 6, $\lambda = (42)$: set partitions of shape (84)



4

8

Perfect matchings on $PG(1,11) = \mathbb{F}_{11} \cup \{\infty\}$:

$$M_1 = \{\{0, \infty\}\} \cup \{\{x, -x\} : x \in \mathbb{F}_{11}^{\square}\},$$

$$M_2 = \{\{0, \infty\}\} \cup \{\{x, 7x\} : x \in \mathbb{F}_{11}^{\square}\}.$$

 $G:= \mathsf{AGL}(1,11) = \mathsf{Stab}(\infty)$ acts on perfect matchings $D=M_1^G \cup M_2^G$ is (42)-factorisation of index 1

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu \vdash n}$ be its dual distribution. Then

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D\subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu\vdash n}$ be its dual distribution. Then

D is a λ -factorisation \iff $a'_{\mu} = 0$ for all $\mu \vdash n$ with $\lambda \unlhd \mu \neq (n)$.

types $\lambda \longleftrightarrow$ sets of partitions

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D\subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu\vdash n}$ be its dual distribution. Then

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D\subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu\vdash n}$ be its dual distribution. Then

$$\begin{array}{ccc} \text{types } \lambda \longleftrightarrow & \text{sets of partitions} \\ \text{(51)-factorisation} & \longleftrightarrow & \{\text{(51)}\} \\ \text{(42)-factorisation} & \longleftrightarrow & \{\text{(42)}, \text{(51)}\} \end{array}$$

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D\subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu\vdash n}$ be its dual distribution. Then

types
$$\lambda \longleftrightarrow$$
 sets of partitions (51)-factorisation \longleftrightarrow {(51)} (42)-factorisation \longleftrightarrow {(42), (51)} (411)-factorisation \longleftrightarrow {(411), (42), (51)}

Main results

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D\subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu\vdash n}$ be its dual distribution. Then

D is a λ -factorisation \iff $a'_{\mu} = 0$ for all $\mu \vdash n$ with $\lambda \unlhd \mu \neq (n)$.

```
 \text{types } \lambda \longleftrightarrow \text{ sets of partitions}   (51)\text{-factorisation} \longleftrightarrow \qquad \{(51)\}   (42)\text{-factorisation} \longleftrightarrow \qquad \{(42),(51)\}   (411)\text{-factorisation} \longleftrightarrow \{(411),(42),(51)\}   \vdots
```

Main results

Theorem [Bamberg, K., (Schmidt) 2025]

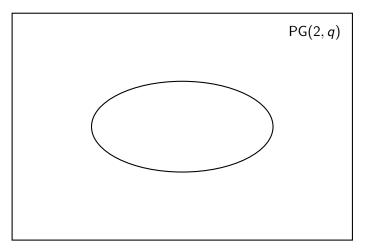
Let $D\subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_{\mu})_{\mu\vdash n}$ be its dual distribution. Then

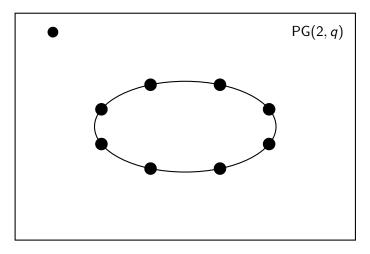
D is a λ -factorisation \iff $a'_{\mu} = 0$ for all $\mu \vdash n$ with $\lambda \unlhd \mu \neq (n)$.

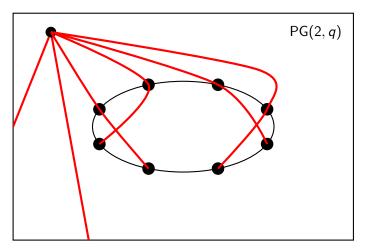
```
types \lambda \longleftrightarrow sets of partitions (51)-factorisation \longleftrightarrow {(51)} (42)-factorisation \longleftrightarrow {(42), (51)} (411)-factorisation \longleftrightarrow {(411), (42), (51)} :
```

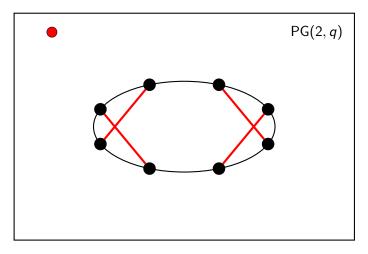
Theorem [Bamberg, K., (Schmidt) 2025]

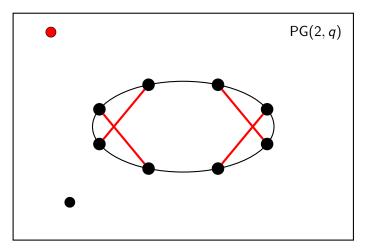
Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

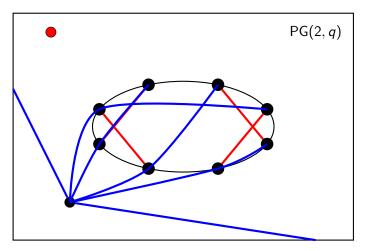


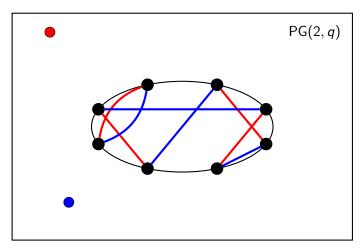




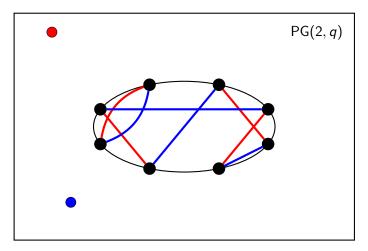








Cameron: Hyperovals in finite projective planes



→ hyperfactorisation on points of the oval

Thank you for your attention!