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Block coding
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m block code C' C A"

B metric d on A"

B minimum distance d(C') := min{d(c,c') | ¢, € C,c # '}
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Block codes

m alphabet A

inear codes

é::lstr:/:rcl::;:d A — {CL, e, qg,1,1Mm, l’ T, C) E) T}
S m lengthn

e ond n=>5

m block code C C A"
C' = {Camel, Eagle, Tiger}
B metric d on A"
Hamming distance: d(Camel, Fagle) = 4, d(Camel, Tiger) = 4, d(Fagle, Tiger) = 4

B minimum distance d(C') := min{d(c,c') | ¢, € C,c # '}
d(C') = min{4,4,4} =4
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Block codes

e m alphabet A

é::is::r(::;jd ./4 — {CL, €, J, i, m, l, T, C) E’ T}
et R m length n

- n=>,

m block code C C A"
C' = {Camel, Eagle, Tiger}
B metric d on A"
Hamming distance: d(Camel, Fagle) = 4, d(Camel, Tiger) = 4, d(Fagle, Tiger) = 4

B minimum distance d(C') := min{d(c,c') | ¢, € C,c # '}
d(C') = min{4,4,4} =4

Let A,(n,d) be the maximum size of a block code with codewords of length n and
minimum distance d over an alphabet of size ¢q. ~» determination of A,(n,d)
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As(10,3) = 72

C = {0000000000, 1110100000, 0011100000, 1010010000, 0101110000, 0110001000,
1001101000, 0001011000, 1111011000, 1100111000, 1011000100, 0100100100,
1100010100, 0111010100, 1001110100, 1000001100, 0101001100, 1111101100,
0010011100, 1101100010, 0110010010, 0000110010, 1011110010, 0011001010,
0100101010, 1010101010, 1000011010,0111111010, 0010000110, 1000100110,
0111100110, 0001010110,1110110110,1110001110, 0001101110, 0100011110,
1011011110,1101111110, 0111000001, 1000100001, 0100010001, 1001010001,
1111110001, 1100001001, 1011001001, 0101101001, 0000111001, 1110000101,
0001000101, 0010100101, 1101100101,1101011101,0110111101, 1010000011,
0110100011, 0001100011, 0011010011,1100110011, 0000001011,1111101011,
1110011011, 0101011011, 1001111011, 0100000111,1011100111, 1000010111,
1111010111,0101110111,1001001111,0111001111,1100101111,0011111111}

More structure needed.

Chapter 2, Paragraph 17 of F.J. MacWilliams and N.J.A. Sloane, The theory of

error-correcting codes (1977).
P.R.J. Ostergard, T. Baicheva, and E. Kolev, Optimal binary one-error-correcting
codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory 45 (1999)

1229-1231. ~» 562 non-isomorphic optimal codes
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Structured codes

_ L £

L Let A =T, be a finite field and C' C A" be a block code.

Additive codes . .. . . . . . . .

Griesmer bound m (' is an additive code iff C' is additively closed, i.e. ¢, € C implies ¢+ ¢ € C.
Partitions into h-spaces . . . . . . .

Exact values m (' is a linear code iff C' is linearly closed, i.e. ¢,¢ € C' and «, &' € F, imply
Outlook

The end C _I_ CVCI E C

Each additive code is F-linear over some subfield F, i.e. ¢, € C' and a,a’ € F,
imply ac + acd € C.

S. Ball and T. Popatia, Additive codes from linear codes, arXiv preprint 2506.03805
(2025): “Additive codes have become of increasing importance in the field of quantum
error-correction due to their equivalence to subgroups of the Pauli group and also in
the field of classical error-correction, as they can provide examples of codes which
outperform linear codes. |t is perhaps surprising that additive codes have not been
more widely studied until recently.”
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Linear Codes

Definition: An |n, k,d|, code C is a k-dimensional subspace of [’ with minimum
A Hamming distance d.
T Example: A [7,3, 4], simplex code is given by the generator matrix
o
0001171
G=10110 01
1 01 010
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Linear Codes

Definition: An |n, k,d|, code C is a k-dimensional subspace of [F' with minimum
Hamming distance d.

Example: A [7,3, 4], simplex code is given by the generator matrix

000111
G=(011001
1 01010

Columns of a generator matrix of an |n, k, d|, code generate n points in PG(k — 1, q).
Codewords correspond to hyperplanes and the Hamming weight of the codeword equals
the number of points that are not contained in the hyperplane, i.e. each hyperplane
contains at most n — d points.

A multiset of points M is a map P — N mapping points to multiplicities. M s
extended additively to subspaces.

Example (cont.): A [7,3, 4], simplex code corresponds to the set of all seven points in
PG(2,2), where at most 3 are contained in a hyperplane.
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The geometric point of view

Introduction

ddive ot Linear codes are multisets of points in PG(k—1, ¢) with at most s points in a hyperplane.
Griesmer bound

Partitions into h-spaces

Exact values

Outlook 5 . . . . . .
et Let S; denote an i-dimensional subspace in PG(k — 1,q) and xg, its characteristic

function, i.e., xs.(P) = 1 if P < S; and xg,(P) = 0 otherwise. Note that each
hyperplane intersects an i-dimensional subspace in either dimension 7 or dimension 7 — 1.

Example: The multiset of points o - xg, in PG(k — 1, q) corresponds to an

k_ _
[a- 1 kg qF 1} code.
q—1 q
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The geometric point of view

Linear codes are multisets of points in PG(k—1, ¢) with at most s points in a hyperplane.

Let S; denote an i-dimensional subspace in PG(k — 1,q) and xg, its characteristic
function, i.e., xs.(P) = 1 if P < S; and xg,(P) = 0 otherwise. Note that each
hyperplane intersects an i-dimensional subspace in either dimension 7 or dimension 7 — 1.

Example: The multiset of points o - xg, in PG(k — 1, q) corresponds to an

k_ —
[a- 1 kg qF 1} code.
q—1 q

Solomon-Stiffler construction: The multiset of points o - xg, — Zf;ll i+ Xs; In

. . kol . k-1 |
PG(k—1, q) corresponds to an {0 : qq_11 — > & %_f, ko-qg" 1 —> g -¢7 ! code
i=1 i=1 .

provided that o is sufficiently large.
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A natural generalization

nreduction Definition (Ball, Lavrauw, Popatia): A projective h — (n, 7, s), system is a multiset S
of n subspaces of PG(r — 1, ¢) of dimension at most h such that each hyperplane contains
Jortitions o firspaces at most s elements of S and some hyperplane contains exactly s elements of S. We say
utlook that S is faithful if all elements have dimension h.

The end

Remark: A multiset of points is a faithful projective 1 — (n,r, s), system.

Example: A spread of h-spaces in PG(2h — 1, q) is a faithful projective
h — (qh + 1, 2h, 1)q system. If A divides r, then h-spreads attain the upper bound

n < q?i__ll - s for projective h — (n,r,s), systems.

S. Ball, M. Lavrauw, and T. Popatia, Griesmer type bounds for additive codes over finite
fields, integral and fractional MDS codes, Designs, Codes and Cryptography, 93(1), 175-
196 (2025).

A. Blokhuis and A.E. Brouwer, Small additive quaternary codes, European Journal of
Combinatorics, 25(2), 161-167 (2004).
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| ?’ /0 U2 0 Additive codes

R | |
AR EilygEdE A

st Definition: An additive [n,7/h,d]! code C is a subset of A", where A = F, that is
e IF,-linear, has minimum Hamming distance d, and cardinality ¢", so that r/h € Q is called
Partitions into h-spaces . .

Exact values the dimension of C'.

Outlook
The end

Observation: (' can be written as the [F -space spanned by the rows of an r X n matrix G
with entries in IF » ~~ generator matrix G

Construction: Let B be a basis for I » over I, and write out the elements of G over the
basis B to obtain an r X nh matrix G with entries from F,. By X (C') we define the
multiset of the n subspaces spanned by the n blocks of h columns of G.

Theorem (Ball, Lavrauw, Popatia): If C' is an additive [n,7/h, d]; code with generator
matrix GG, then X (C') is a projective h — (n,r,n — d), system S, and conversely, each
projective h — (n,r, s), system S defines an additive [n,r/h,n — s]!' code C.
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Additive codes (example)

Write Fy ~ Fy[w]/ (w? + w + 1) and consider the linear code C' with generator matrix

011 1 1

1 01 w w?/)"
It can be easily checked that C'is a [5,2, 4], code. If we interprete C' as an [5,4/2, 4)*
additive code a generator matrix Is e.g. given by

(001 1 1 1)
0 w w w w
G = 1 01 w w |-
\w 0 w w? 1/
Here we have
(00 10 10 10 10)
G 00 01 01 01 01

10 00 10 01 11
\01 00 01 11 10/

choosing the basis B = (1,w) and using w? = 1 + w.
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Griesmer bound

The parameters of an |n, k, d], code C' are related by the so-called Griesmer bound

= 5 [2] <t 0

1=0

Interestingly enough, this bound can always be attained with equality if the minimum
distance d is sufficiently large and a nice geometric construction was given by Solomon and

Stiffler:

k—1 i qk 1 k—1 q@ 1 k—1 |
U'Xsk—zgz"XSi% o - _1—252-- _1,k,0-qk_1—25i-q7’_1
1=1 i q =1 q i—1 1q

Parameterization: Write d as d = 0¢" ' — Y ;- ¢!, where 0 € Ny and the 0 < ¢; < ¢

k—1 -
o Z i~ 2_1 :
1=1

are integers for all 1 <i <k —1. Then, n = g,(k,d) iff n =0 - qqk__f
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Griesmer bound for additive codes

Introduction . . . . . .
Linea codes Via the chain [n,r/h,d]} code — projective h — (n,r,n — d), system — multiset of points
Additive codes n

—1 = -

ST — — [qu n,r, gt d} code we can transfer the Griesmer bound

Exact values q

Outlook
The end

Lemma: To each faithful projective h — (n,r,n — d), system we can associate a

e h_ . . .
q"-divisible {n - qq_—ll, r,d - qh_l} code with maximum weight at most n - ¢" .
q
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Griesmer bound for additive codes

Introduction . . . . . .
Linea codes Via the chain [n,r/h,d]} code — projective h — (n,r,n — d), system — multiset of points
Additive codes n

—1 = -

ST — — [qu n,r, gt d} code we can transfer the Griesmer bound

Exact values q

Outlook
The end

Lemma: To each faithful projective h — (n,r,n — d), system we can associate a

L h_ . . .
q"~!-divisible {n : qq_—ll, r.d - qh_l} code with maximum weight at most n - ¢" .
q

Corollary: Each [n,r/h,d]! code satisfies

) Ch=1\ (. 1) ] _(q —1) Til (d ' q”“lﬂ _
q q

Interestingly enough, this bound can always be attained with equality if the minimum
distance d is sufficiently large.
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Partitions of multisets into h-spaces

Linear codes
Additive codes

.. . . /
Griesmer bound h-partitionable if there exist h-spaces S7,...,S; such that M = > . xs..

Exact values
Outlook
The end

roduction Definition: Let M be a multiset of points in PG(r — 1, q). We say that M is

Observation: If M is h-partitionable, then | M| is divisible by % and M is
¢"‘-divisible, i.e. [M| = |[M(H)| (mod ¢"~1) for every hyperplane H.
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Partitions of multisets into h-spaces

Definition: Let M be a multiset of points in PG(r — 1, ¢). We say that M is
h-partitionable if there exist h-spaces 51, ...,.5; such that M = 22:1 XS, -

Observation: If M is h-partitionable, then | M| is divisible by % and M is
¢"‘-divisible, i.e. [M| = |[M(H)| (mod ¢"~1) for every hyperplane H.

Definition: Let M be a multiset of points in PG(r — 1,¢q) and S; < 55 < --- < 5, with

r—1
dim(S;) = i. We say that M has type or] — S7—, &[i] iff M = oxs — > oixs,, where
i=1

r—1
ocg€eNandeg €Zforl <i¢<r—1. Wesaythat olr] — > g]li| is h-partitionable iff a
i=1

r—1
multiset of points in PG(r — 1, q) with type o|r] — ) ¢;[¢] exists.
i=1
r—1
Observation: If o|r] — > ;1] is h-partionable, then the parameters of a corresponding
i=1

projective h — (n,r, s), system can be computed from ¢ and the ¢;.
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Main result

P Theorem: Let ¢ be a prime power, r > h > 1, g := ged(r,h), and €1, ...,e,_1 € Z such
e, that ¢"~* divides ¢; for all 1 < i < h and
Exact values
OutI(:ok T—l qZ o 1
e en 9_1
The end E Ei - = () (mod q ) (3)
_ q—1
— g— 1
Z:

is h-partitionable over IF, for all £ € N.

for

rdah=1).(g— (C]—l)‘ril (d'qh_l_i—‘
Corollary: The Griesmer bound n > {gq( & 2h_1) & 1)—| = T

n,7/h,d]; codes can be attained with equality if d is sufficiently large.
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Exact values

Definition: Let n,(r, h;s) denote the maximum cardinality n of a projective h — (n, 7, s),
system.

Remark: nsy(r,2;s) is completely determined for all » < 7. For ny(8,2; s) just three values
are currently unknown.

J. Bierbrauer, S. Marcugini, and F. Pambianco, Optimal additive quaternary codes of
low dimension, IEEE Transactions on Information Theory, 67(8), 5116-5118 (2021).

S. K., Optimal additive quaternary codes of dimension 3.5, arXiv preprint 2410.07650,
16 pages (2024).

Definition:
iy (r, h; 8) == ngi([r/Rh] ,1;5) (4)

In words, 7, (r, h; s) is the size of the largest projective h — (n,r, s), system that we can
naturally obtain starting from a linear code over I ».
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% i SIREPNIE_AR" Improvements

R Whenever n,(r, h; s) < ny(r, h; s) we say that additive codes outperform linear codes for
i the corresponding parameters, which is especially interesting if 7/h is integral.

The end q r h s nyr h;s) ng(r, h;s)
2 8 2 9 33 31
2 8 2 10 36 34
2 8 2 11 40 39
2 8 2 14 54 50
2 8 2 27 107 103
3 6 2 3 21 17
3 6 2 8 66—68 65

F. De Clerck, M. Delanote,N. Hamilton, and R. Mathon, Perp-systems and partial
geometries, Advances in Geometry, 2(1), 1-12 (2002).

S. K., Additive codes attaining the Griesmer bound, arXiv preprint 2412.14615, 100
pages (2024).
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Parametric improvements

g r h 1 Sit Ng(ryh;sie) ng(ryh;sie) —ng (r, Ry siy)
2 8 2 13 21t—13 85t —55 2
Addtivecodes 2 8 2 14 21t—14 85t —60 2
Parions oo fspaces 2 8 2 18 21t—18 85t —T6 2
2 8 2 19 21t—19 85— 81 2
36 2 7 10t—7  9lt—67 3
36 2 8 10t—8  91t—77 3
36 2 O 10t—9  91t—87 3
2 0 3 5 O9t—5  73t—43 2
20 3 6 9—6  T3—52 2
2 0 3 7 9—7  73—59 4
2 0 3 8 9—-8  T3t—68 4
4 6 2 9O 17t—9 273t—149 4
4 6 2 10 17t—10 273t— 166 4
4 6 2 11 17t—11 273t—183 4
4 6 2 12 17t—12 273t —200 4
4 6 2 13 17t—13 273t —213 8
4 6 2 14 17t—14 273t —230 8
4 6 2 15 17t—15 273t —247 8
4 6 2 16 17t—16 273t —264 8
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Partitions by h-spaces

e For some (pre-) multiset of points M we say that x — M is h-partitionable in PG(r — 1, q)
e b iff there exists a projective h — (n, 7, s), system with type o[r] — M for some sufficiently
rmne large 0 € N.

Remark: The parameters n and s can be computed from r, o, and M. Assuming that o is

sufficiently large, the set of the feasible o's is given by some explicit modulo condition. The
conditions on M can be written down quite explicitely.
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Partitions by h-spaces

e For some (pre-) multiset of points M we say that x — M is h-partitionable in PG(r — 1, q)
e b iff there exists a projective h — (n, 7, s), system with type o[r] — M for some sufficiently
rmne large 0 € N.

Remark: The parameters n and s can be computed from r, o, and M. Assuming that o is

sufficiently large, the set of the feasible o's is given by some explicit modulo condition. The
conditions on M can be written down quite explicitely.

Application: Let A (r,2h; h) denote the maximum cardinality of a partial spread P of
h-spaces in PG(r — 1, ¢) and M denote the set of uncovered points. In our notation P is a
faithful projective h — (#P,r,s,1), system S with type 1-[r] — M, where #P and s can
be com puted from M. (Every point is contained in at most . = 1 elements from S.)

B 129 < A5(11,8;4) < 132: #M =7 (mod 15), M is 8-divisible, o € N
For # = 132 several 8-divisible point sets of cardinality 67 exist in PG(10, 2).

B 244 < A3(8,6;3) < 248: #M =4 (mod 13), M is 9-divisible, 0 € N
For # = 248 there exists a unique 9-divisible point set of cardinality 56 in PG(7,3), the
Hill cap.

The determination of the smallest possible o seems to be a really hard problem.
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Linear codes in the b-symbol metric

In storage applications the reading device is sometimes insufficient to isolate adjacent
symbols, which makes it necessary to adjust the standard coding-theoretic error model.
Cassuto and Blaum studied a model where pairs of adjacent symbols are read in every step
and introduced the so-called symbol-pair metric for codes. This notion was generalized to
the b-symbol metric where b-tuples of adjacent symbols are read at every step.

Y. Cassuto and M. Blaum, Codes for symbol-pair read channels, IEEE Transactions on
Information Theory, 57(12), 8011-8020 (2011).

E. Yaakobi, J. Bruck, and P.H. Siegel, Constructions and decoding of cyclic codes over
b-symbol read channels, IEEE Transactions on Information Theory, 62(4), 1541-1551

(2016).

Definition: Let n)(k, d) the minimum possible length n of an [n, k|, code with minimum
distance d w.r.t. the b-symbol metric.
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Linear codes in the b-symbol metric attain the Griesmer bound

R Observation: Let G be a generator matrix of an |n, k|, code.

Additive codes

S bid m Blocks of b subsequent columns of GG span subspaces.

artitions into h-spaces . . . . . .

SESUEIG m [he minimum distance w.r.t. the b-symbol metric equals n minus the maximum number
N

The end of subspaces contained in a hyperplane.

|.e. yet another generalization of linear codes and a special subclass of additive codes.
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Linear codes in the b-symbol metric attain the Griesmer bound

R Observation: Let G be a generator matrix of an |n, k|, code.

Additive codes

iz ol m Blocks of b subsequent columns of GG span subspaces.

artitions into h-spaces . . . . . .

SESUEIG m [he minimum distance w.r.t. the b-symbol metric equals n minus the maximum number
.

The end of subspaces contained in a hyperplane.

|.e. yet another generalization of linear codes and a special subclass of additive codes.

Griesmer type bound:

B r—1

bt N (q—=1)- 3 [d ¢ ]
ng(/{,d) 2 Yq (kvq - ii)l (q 1) _ i?O_ 1 (5)
q q

Is attained with equality for all sufficiently large d.

G. Luo, M.F. Ezerman, C. Giineri, S. Ling, and F. Ozbudak, Griesmer bound and constructions of linear codes in b-symbol
metric, IEEE Transactions on Information Theory, 70(11):7840-7847, (2024).

D. Huang, Q. Liao, G. Tang, and A. Zhu, On the b-symbol weights of linear codes for large b, Finite Fields and Their
Applications, 107, 102647 (2025).

S. K., Linear codes for b-symbol read channels attaining the Griesmer bound, arXiv preprint 2507.07728, 27 pages (2025).
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Thanks for your attention! Questions or remarks?

Introduction More research needed on additive codes and Griesmer type bounds for different settings.

Linear codes

Additive codes
Griesmer bound
Partitions into h-spaces
Exact values

Outlook
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