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■ alphabet A

■ length n

■ block code C ⊆ An

■ metric d on An

■ minimum distance d(C) := min{d(c, c′) | c, c′ ∈ C, c 6= c′}
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■ alphabet A
A = {a, e, g, i,m, l, r, C, E, T}

■ length n
n = 5

■ block code C ⊆ An

C = {Camel, Eagle, T iger}
■ metric d on An

Hamming distance: d(Camel, Eagle) = 4, d(Camel, T iger) = 4, d(Eagle, T iger) = 4

■ minimum distance d(C) := min{d(c, c′) | c, c′ ∈ C, c 6= c′}
d(C) = min{4, 4, 4} = 4



Block codes

Introduction

Linear codes

Additive codes

Griesmer bound

Partitions into h-spaces

Exact values

Outlook

The end

4 / 23

■ alphabet A
A = {a, e, g, i,m, l, r, C, E, T}

■ length n
n = 5

■ block code C ⊆ An

C = {Camel, Eagle, T iger}
■ metric d on An

Hamming distance: d(Camel, Eagle) = 4, d(Camel, T iger) = 4, d(Eagle, T iger) = 4

■ minimum distance d(C) := min{d(c, c′) | c, c′ ∈ C, c 6= c′}
d(C) = min{4, 4, 4} = 4

Let Aq(n, d) be the maximum size of a block code with codewords of length n and
minimum distance d over an alphabet of size q.  determination of Aq(n, d)
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C = {0000000000, 1110100000, 0011100000, 1010010000, 0101110000, 0110001000,

1001101000, 0001011000, 1111011000, 1100111000, 1011000100, 0100100100,

1100010100, 0111010100, 1001110100, 1000001100, 0101001100, 1111101100,

0010011100, 1101100010, 0110010010, 0000110010, 1011110010, 0011001010,

0100101010, 1010101010, 1000011010, 0111111010, 0010000110, 1000100110,

0111100110, 0001010110, 1110110110, 1110001110, 0001101110, 0100011110,

1011011110, 1101111110, 0111000001, 1000100001, 0100010001, 1001010001,

1111110001, 1100001001, 1011001001, 0101101001, 0000111001, 1110000101,

0001000101, 0010100101, 1101100101, 1101011101, 0110111101, 1010000011,

0110100011, 0001100011, 0011010011, 1100110011, 0000001011, 1111101011,

1110011011, 0101011011, 1001111011, 0100000111, 1011100111, 1000010111,

1111010111, 0101110111, 1001001111, 0111001111, 1100101111, 0011111111}
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C = {0000000000, 1110100000, 0011100000, 1010010000, 0101110000, 0110001000,

1001101000, 0001011000, 1111011000, 1100111000, 1011000100, 0100100100,

1100010100, 0111010100, 1001110100, 1000001100, 0101001100, 1111101100,

0010011100, 1101100010, 0110010010, 0000110010, 1011110010, 0011001010,

0100101010, 1010101010, 1000011010, 0111111010, 0010000110, 1000100110,

0111100110, 0001010110, 1110110110, 1110001110, 0001101110, 0100011110,

1011011110, 1101111110, 0111000001, 1000100001, 0100010001, 1001010001,

1111110001, 1100001001, 1011001001, 0101101001, 0000111001, 1110000101,

0001000101, 0010100101, 1101100101, 1101011101, 0110111101, 1010000011,

0110100011, 0001100011, 0011010011, 1100110011, 0000001011, 1111101011,

1110011011, 0101011011, 1001111011, 0100000111, 1011100111, 1000010111,

1111010111, 0101110111, 1001001111, 0111001111, 1100101111, 0011111111}

More structure needed.

■ Chapter 2, Paragraph 17 of F.J. MacWilliams and N.J.A. Sloane, The theory of
error-correcting codes (1977).

■ P.R.J. Österg̊ard, T. Baicheva, and E. Kolev, Optimal binary one-error-correcting
codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory 45 (1999)
1229–1231.  562 non-isomorphic optimal codes
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Let A = Fq be a finite field and C ⊆ An be a block code.

■ C is an additive code iff C is additively closed, i.e. c, c′ ∈ C implies c+ c′ ∈ C.
■ C is a linear code iff C is linearly closed, i.e. c, c′ ∈ C and α, α′ ∈ Fq imply

αc+ αc′ ∈ C.

Each additive code is Fq′-linear over some subfield Fq′, i.e. c, c
′ ∈ C and α, α′ ∈ Fq′

imply αc+ αc′ ∈ C.

S. Ball and T. Popatia, Additive codes from linear codes, arXiv preprint 2506.03805
(2025): “Additive codes have become of increasing importance in the field of quantum
error-correction due to their equivalence to subgroups of the Pauli group and also in
the field of classical error-correction, as they can provide examples of codes which
outperform linear codes. It is perhaps surprising that additive codes have not been
more widely studied until recently.”
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Definition: An [n, k, d]q code C is a k-dimensional subspace of Fn
q with minimum

Hamming distance d.

Example: A [7, 3, 4]2 simplex code is given by the generator matrix

G =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


.
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Definition: An [n, k, d]q code C is a k-dimensional subspace of Fn
q with minimum

Hamming distance d.

Example: A [7, 3, 4]2 simplex code is given by the generator matrix

G =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


.

Columns of a generator matrix of an [n, k, d]q code generate n points in PG(k − 1, q).
Codewords correspond to hyperplanes and the Hamming weight of the codeword equals
the number of points that are not contained in the hyperplane, i.e. each hyperplane
contains at most n− d points.

A multiset of points M is a map P → N mapping points to multiplicities. M is
extended additively to subspaces.

Example (cont.): A [7, 3, 4]2 simplex code corresponds to the set of all seven points in
PG(2, 2), where at most 3 are contained in a hyperplane.
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Linear codes are multisets of points in PG(k−1, q) with at most s points in a hyperplane.

Let Si denote an i-dimensional subspace in PG(k − 1, q) and χSi
its characteristic

function, i.e., χSi
(P ) = 1 if P ≤ Si and χSi

(P ) = 0 otherwise. Note that each
hyperplane intersects an i-dimensional subspace in either dimension i or dimension i−1.

Example: The multiset of points σ · χSk
in PG(k − 1, q) corresponds to an[

σ · qk−1
q−1 , k, σ · qk−1

]
q
code.
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Linear codes are multisets of points in PG(k−1, q) with at most s points in a hyperplane.

Let Si denote an i-dimensional subspace in PG(k − 1, q) and χSi
its characteristic

function, i.e., χSi
(P ) = 1 if P ≤ Si and χSi

(P ) = 0 otherwise. Note that each
hyperplane intersects an i-dimensional subspace in either dimension i or dimension i−1.

Example: The multiset of points σ · χSk
in PG(k − 1, q) corresponds to an[

σ · qk−1
q−1 , k, σ · qk−1

]
q
code.

Solomon–Stiffler construction: The multiset of points σ · χSk
−

∑k−1
i=1 εi · χSi

in

PG(k−1, q) corresponds to an

[
σ · qk−1

q−1 −
k−1∑
i=1

εi ·
qi−1
q−1 , k, σ · qk−1 −

k−1∑
i=1

εi · q
i−1

]

q

code

provided that σ is sufficiently large.
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Definition (Ball, Lavrauw, Popatia): A projective h− (n, r, s)q system is a multiset S
of n subspaces of PG(r − 1, q) of dimension at most h such that each hyperplane contains
at most s elements of S and some hyperplane contains exactly s elements of S. We say
that S is faithful if all elements have dimension h.

Remark: A multiset of points is a faithful projective 1− (n, r, s)q system.

Example: A spread of h-spaces in PG(2h− 1, q) is a faithful projective
h−

(
qh + 1, 2h, 1

)
q
system. If h divides r, then h-spreads attain the upper bound

n ≤ qr−1
qr−h−1

· s for projective h− (n, r, s)q systems.

S. Ball, M. Lavrauw, and T. Popatia, Griesmer type bounds for additive codes over finite
fields, integral and fractional MDS codes, Designs, Codes and Cryptography, 93(1), 175-
196 (2025).

A. Blokhuis and A.E. Brouwer, Small additive quaternary codes, European Journal of
Combinatorics, 25(2), 161-167 (2004).
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Definition: An additive [n, r/h, d]hq code C is a subset of An, where A = Fqh, that is
Fq-linear, has minimum Hamming distance d, and cardinality qr, so that r/h ∈ Q is called
the dimension of C.

Observation: C can be written as the Fq-space spanned by the rows of an r × n matrix G
with entries in Fqh  generator matrix G

Construction: Let B be a basis for Fqh over Fq and write out the elements of G over the

basis B to obtain an r × nh matrix G̃ with entries from Fq. By XG(C) we define the

multiset of the n subspaces spanned by the n blocks of h columns of G̃.

Theorem (Ball, Lavrauw, Popatia): If C is an additive [n, r/h, d]hq code with generator
matrix G, then XG(C) is a projective h− (n, r, n− d)q system S, and conversely, each
projective h− (n, r, s)q system S defines an additive [n, r/h, n− s]hq code C.
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Write F4 ≃ F2[ω]/
(
ω2 + ω + 1

)
and consider the linear code C with generator matrix

(
0 1 1 1 1
1 0 1 ω ω2

)
.

It can be easily checked that C is a [5, 2, 4]4 code. If we interprete C as an [5, 4/2, 4]24
additive code a generator matrix is e.g. given by

G =




0 1 1 1 1
0 ω ω ω ω
1 0 1 ω ω2

ω 0 ω ω2 1


 .

Here we have

G̃ =




00 10 10 10 10
00 01 01 01 01
10 00 10 01 11
01 00 01 11 10




choosing the basis B = (1, ω) and using ω2 = 1 + ω.
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The parameters of an [n, k, d]q code C are related by the so-called Griesmer bound

n ≥
k−1∑

i=0

⌈
d

qi

⌉
=: gq(k, d). (1)

Interestingly enough, this bound can always be attained with equality if the minimum
distance d is sufficiently large and a nice geometric construction was given by Solomon and
Stiffler:

σ · χSk
−

k−1∑

i=1

εi · χSi
→

[
σ ·

qk − 1

q − 1
−

k−1∑

i=1

εi ·
qi − 1

q − 1
, k, σ · qk−1 −

k−1∑

i=1

εi · q
i−1

]

q

Parameterization: Write d as d = σqk−1 −
k−1∑
i=1

εi · q
i−1, where σ ∈ N0 and the 0 ≤ εi < q

are integers for all 1 ≤ i ≤ k − 1. Then, n = gq(k, d) iff n = σ · qk−1
q−1 −

k−1∑
i=1

εi ·
qi−1
q−1 .
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Via the chain [n, r/h, d]hq code → projective h− (n, r, n− d)q system → multiset of points

→
[
qh−1
q−1 · n, r, qh−1 · d

]
q
code we can transfer the Griesmer bound

Lemma: To each faithful projective h− (n, r, n− d)q system we can associate a

qh−1-divisible
[
n · qh−1

q−1 , r, d · q
h−1

]
q
code with maximum weight at most n · qh−1.
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Via the chain [n, r/h, d]hq code → projective h− (n, r, n− d)q system → multiset of points

→
[
qh−1
q−1 · n, r, qh−1 · d

]
q
code we can transfer the Griesmer bound

Lemma: To each faithful projective h− (n, r, n− d)q system we can associate a

qh−1-divisible
[
n · qh−1

q−1 , r, d · q
h−1

]
q
code with maximum weight at most n · qh−1.

Corollary: Each [n, r/h, d]hq code satisfies

n ≥

⌈
gq
(
r, d · qh−1

)
· (q − 1)

qh − 1

⌉
=




(q − 1) ·
r−1∑
i=0

⌈
d · qh−1−i

⌉

qh − 1




. (2)

Interestingly enough, this bound can always be attained with equality if the minimum
distance d is sufficiently large.
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Definition: Let M be a multiset of points in PG(r − 1, q). We say that M is

h-partitionable if there exist h-spaces S1, . . . , Sl such that M =
∑l

i=1 χSi
.

Observation: If M is h-partitionable, then |M| is divisible by qh−1
q−1 and M is

qh−1-divisible, i.e. |M| ≡ |M(H)| (mod qh−1) for every hyperplane H.
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Definition: Let M be a multiset of points in PG(r − 1, q). We say that M is

h-partitionable if there exist h-spaces S1, . . . , Sl such that M =
∑l

i=1 χSi
.

Observation: If M is h-partitionable, then |M| is divisible by qh−1
q−1 and M is

qh−1-divisible, i.e. |M| ≡ |M(H)| (mod qh−1) for every hyperplane H.

Definition: Let M be a multiset of points in PG(r − 1, q) and S1 ≤ S2 ≤ · · · ≤ Sr with

dim(Si) = i. We say that M has type σ[r]−
∑r−1

i=1 εi[i] iff M = σχSr
−

r−1∑
i=1

σiχSi
, where

σ ∈ N and εi ∈ Z for 1 ≤ i ≤ r − 1. We say that σ[r]−
r−1∑
i=1

εi[i] is h-partitionable iff a

multiset of points in PG(r − 1, q) with type σ[r]−
r−1∑
i=1

εi[i] exists.

Observation: If σ[r]−
r−1∑
i=1

εi[i] is h-partionable, then the parameters of a corresponding

projective h− (n, r, s)q system can be computed from σ and the εi.
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Theorem: Let q be a prime power, r > h ≥ 1, g := gcd(r, h), and ε1, . . . , εr−1 ∈ Z such
that qh−i divides εi for all 1 ≤ i < h and

r−1∑

i=1

εi ·
qi − 1

q − 1
≡ 0 (mod qg−1

q−1 ). (3)

Then there exists a σ ∈ N such that

(
σ + t ·

qh − 1

qg − 1

)
[r]−

r−1∑

i=1

εi[i]

is h-partitionable over Fq for all t ∈ N.

Corollary: The Griesmer bound n ≥

⌈
gq(r,d·qh−1)·(q−1)

qh−1

⌉
=




(q−1)·
r−1∑
i=0

⌈d·qh−1−i⌉

qh−1



for

[n, r/h, d]hq codes can be attained with equality if d is sufficiently large.
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Definition: Let nq(r, h; s) denote the maximum cardinality n of a projective h− (n, r, s)q
system.

Remark: n2(r, 2; s) is completely determined for all r ≤ 7. For n2(8, 2; s) just three values
are currently unknown.

J. Bierbrauer, S. Marcugini, and F. Pambianco, Optimal additive quaternary codes of
low dimension, IEEE Transactions on Information Theory, 67(8), 5116-5118 (2021).

S. K., Optimal additive quaternary codes of dimension 3.5, arXiv preprint 2410.07650,
16 pages (2024).

Definition:
nq(r, h; s) := nqh(⌈r/h⌉ , 1; s) (4)

In words, nq(r, h; s) is the size of the largest projective h− (n, r, s)q system that we can
naturally obtain starting from a linear code over Fqh.
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Whenever nq(r, h; s) < nq(r, h; s) we say that additive codes outperform linear codes for
the corresponding parameters, which is especially interesting if r/h is integral.

q r h s nq(r, h; s) nq(r, h; s)
2 8 2 9 33 31
2 8 2 10 36 34
2 8 2 11 40 39
2 8 2 14 54 50
2 8 2 27 107 103
3 6 2 3 21 17
3 6 2 8 66–68 65

F. De Clerck, M. Delanote,N. Hamilton, and R. Mathon, Perp-systems and partial
geometries, Advances in Geometry, 2(1), 1–12 (2002).

S. K., Additive codes attaining the Griesmer bound, arXiv preprint 2412.14615, 100
pages (2024).
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q r h i si,t nq (r, h; si,t) nq (r, h; si,t)− nq (r, h; si,t)
2 8 2 13 21t− 13 85t− 55 2
2 8 2 14 21t− 14 85t− 60 2
2 8 2 18 21t− 18 85t− 76 2
2 8 2 19 21t− 19 85t− 81 2
3 6 2 7 10t− 7 91t− 67 3
3 6 2 8 10t− 8 91t− 77 3
3 6 2 9 10t− 9 91t− 87 3
2 9 3 5 9t− 5 73t− 43 2
2 9 3 6 9t− 6 73t− 52 2
2 9 3 7 9t− 7 73t− 59 4
2 9 3 8 9t− 8 73t− 68 4
4 6 2 9 17t− 9 273t− 149 4
4 6 2 10 17t− 10 273t− 166 4
4 6 2 11 17t− 11 273t− 183 4
4 6 2 12 17t− 12 273t− 200 4
4 6 2 13 17t− 13 273t− 213 8
4 6 2 14 17t− 14 273t− 230 8
4 6 2 15 17t− 15 273t− 247 8
4 6 2 16 17t− 16 273t− 264 8
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For some (pre-) multiset of points M we say that ⋆−M is h-partitionable in PG(r − 1, q)
iff there exists a projective h− (n, r, s)q system with type σ[r]−M for some sufficiently
large σ ∈ N.

Remark: The parameters n and s can be computed from r, σ, and M. Assuming that σ is
sufficiently large, the set of the feasible σ’s is given by some explicit modulo condition. The
conditions on M can be written down quite explicitely.

■

■
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For some (pre-) multiset of points M we say that ⋆−M is h-partitionable in PG(r − 1, q)
iff there exists a projective h− (n, r, s)q system with type σ[r]−M for some sufficiently
large σ ∈ N.

Remark: The parameters n and s can be computed from r, σ, and M. Assuming that σ is
sufficiently large, the set of the feasible σ’s is given by some explicit modulo condition. The
conditions on M can be written down quite explicitely.

Application: Let Aq(r, 2h;h) denote the maximum cardinality of a partial spread P of
h-spaces in PG(r − 1, q) and M denote the set of uncovered points. In our notation P is a
faithful projective h− (#P , r, s, 1)q system S with type 1 · [r]−M, where #P and s can
be computed from M. (Every point is contained in at most µ = 1 elements from S.)

■ 129 ≤ A2(11, 8; 4) ≤ 132: #M ≡ 7 (mod 15), M is 8-divisible, σ ∈ N

For # = 132 several 8-divisible point sets of cardinality 67 exist in PG(10, 2).

■ 244 ≤ A3(8, 6; 3) ≤ 248: #M ≡ 4 (mod 13), M is 9-divisible, σ ∈ N

For # = 248 there exists a unique 9-divisible point set of cardinality 56 in PG(7, 3), the
Hill cap.

The determination of the smallest possible σ seems to be a really hard problem.
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In storage applications the reading device is sometimes insufficient to isolate adjacent
symbols, which makes it necessary to adjust the standard coding-theoretic error model.
Cassuto and Blaum studied a model where pairs of adjacent symbols are read in every step
and introduced the so-called symbol-pair metric for codes. This notion was generalized to
the b-symbol metric where b-tuples of adjacent symbols are read at every step.

Y. Cassuto and M. Blaum, Codes for symbol-pair read channels, IEEE Transactions on
Information Theory, 57(12), 8011-8020 (2011).

E. Yaakobi, J. Bruck, and P.H. Siegel, Constructions and decoding of cyclic codes over
b-symbol read channels, IEEE Transactions on Information Theory, 62(4), 1541-1551
(2016).

Definition: Let nb
q(k, d) the minimum possible length n of an [n, k]q code with minimum

distance d w.r.t. the b-symbol metric.
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Observation: Let G be a generator matrix of an [n, k]q code.

■ Blocks of b subsequent columns of G span subspaces.
■ The minimum distance w.r.t. the b-symbol metric equals n minus the maximum number

of subspaces contained in a hyperplane.

I.e. yet another generalization of linear codes and a special subclass of additive codes.
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Observation: Let G be a generator matrix of an [n, k]q code.

■ Blocks of b subsequent columns of G span subspaces.
■ The minimum distance w.r.t. the b-symbol metric equals n minus the maximum number

of subspaces contained in a hyperplane.

I.e. yet another generalization of linear codes and a special subclass of additive codes.

Griesmer type bound:

nb
q(k, d) ≥

⌈
gq
(
k, qb−1 · d

)
· (q − 1)

qb − 1

⌉
=




(q − 1) ·
r−1∑
i=0

⌈
d · qb−1−i

⌉

qb − 1




(5)

is attained with equality for all sufficiently large d.
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More research needed on additive codes and Griesmer type bounds for different settings.
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