Additive codes attaining the Griesmer bound

Sascha Kurz (University of Bayreuth)

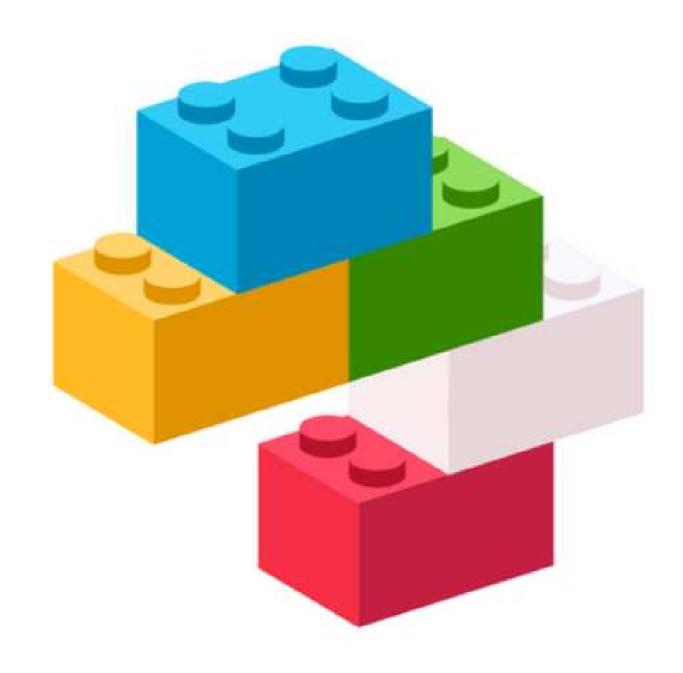
31.08.-06.09.2025 Finite Geometries 2025 – Seventh Irsee Conference

Introduction

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

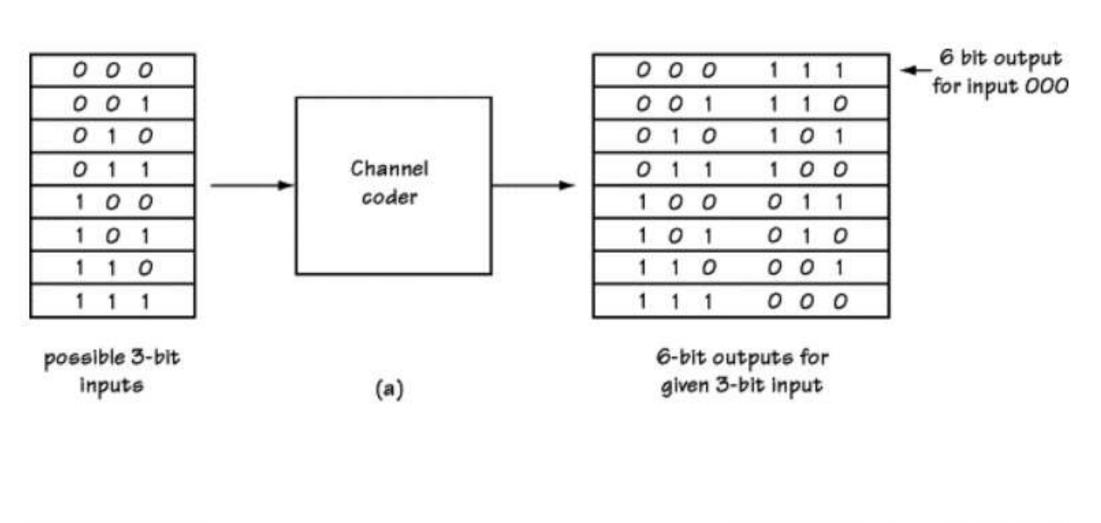
WHAT IS BLOCK CODING

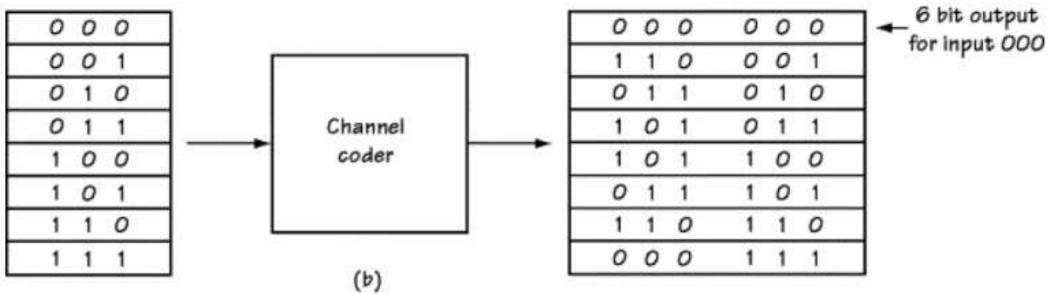


Block coding

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end





Block codes

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

- lacksquare alphabet $\mathcal A$
- \blacksquare length n
- block code $C \subseteq \mathcal{A}^n$
- lacksquare metric d on \mathcal{A}^n
- $\qquad \text{minimum distance } d(C) := \min\{d(c,c') \mid c,c' \in C, c \neq c'\}$

Block codes

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

- alphabet \mathcal{A} $\mathcal{A} = \{a, e, g, i, m, l, r, C, E, T\}$
- length n n = 5
- block code $C \subseteq \mathcal{A}^n$ $C = \{Camel, Eagle, Tiger\}$
- metric d on \mathcal{A}^n Hamming distance: d(Camel, Eagle) = 4, d(Camel, Tiger) = 4, d(Eagle, Tiger) = 4
- minimum distance $d(C) := \min\{d(c,c') \mid c,c' \in C, c \neq c'\}$ $d(C) = \min\{4,4,4\} = 4$

Block codes

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

- alphabet \mathcal{A} $\mathcal{A} = \{a, e, g, i, m, l, r, C, E, T\}$
- length n n = 5
- block code $C \subseteq \mathcal{A}^n$ $C = \{Camel, Eagle, Tiger\}$
- metric d on \mathcal{A}^n Hamming distance: d(Camel, Eagle) = 4, d(Camel, Tiger) = 4, d(Eagle, Tiger) = 4
- minimum distance $d(C) := \min\{d(c,c') \mid c,c' \in C, c \neq c'\}$ $d(C) = \min\{4,4,4\} = 4$

Let $A_q(n,d)$ be the maximum size of a block code with codewords of length n and minimum distance d over an alphabet of size q. \rightsquigarrow determination of $A_q(n,d)$

$A_2(10,3) \ge 72$

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

1001101000, 0001011000, 1111011000, 1100111000, 1011000100, 0100100100, 1100010100, 0111010100, 1001110100, 1000001100, 0101001100, 11111101100, 0010011100, 1101100010, 0110010010, 0000110010, 1011110010, 0011001010,0100101010, 1010101010, 1000011010, 01111111010, 0010000110, 1000100110,1111110001, 1100001001, 1011001001, 0101101001, 0000111001, 1110000101, 0001000101, 0010100101, 1101100101, 11010111101, 0110111101, 1010000011,1110011011, 0101011011, 1001111011, 0100000111, 1011100111, 1000010111,

$A_2(10,3) = 72$

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

More structure needed.

- Chapter 2, Paragraph 17 of F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes (1977).
- P.R.J. Ostergård, T. Baicheva, and E. Kolev, Optimal binary one-error-correcting codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory 45 (1999) 1229–1231.

 562 non-isomorphic optimal codes

Structured codes

Introduction

Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

Let $\mathcal{A} = \mathbb{F}_q$ be a finite field and $C \subseteq \mathcal{A}^n$ be a block code.

- lacksquare C is an additive code iff C is additively closed, i.e. $c, c' \in C$ implies $c + c' \in C$.
- C is a linear code iff C is linearly closed, i.e. $c, c' \in C$ and $\alpha, \alpha' \in \mathbb{F}_q$ imply $\alpha c + \alpha c' \in C$.

Each additive code is $\mathbb{F}_{q'}$ -linear over some subfield $\mathbb{F}_{q'}$, i.e. $c, c' \in C$ and $\alpha, \alpha' \in \mathbb{F}_{q'}$ imply $\alpha c + \alpha c' \in C$.

S. Ball and T. Popatia, Additive codes from linear codes, arXiv preprint 2506.03805 (2025): "Additive codes have become of increasing importance in the field of quantum error-correction due to their equivalence to subgroups of the Pauli group and also in the field of classical error-correction, as they can provide examples of codes which outperform linear codes. It is perhaps surprising that additive codes have not been more widely studied until recently."

Linear Codes

Introduction

Linear codes

The end

Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook

Definition: An $[n, k, d]_q$ code C is a k-dimensional subspace of \mathbb{F}_q^n with minimum Hamming distance d.

Example: A $[7,3,4]_2$ simplex code is given by the generator matrix

$$G = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Linear Codes

Introduction

Linear codes

Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

Definition: An $[n, k, d]_q$ code C is a k-dimensional subspace of \mathbb{F}_q^n with minimum Hamming distance d.

Example: A $[7,3,4]_2$ simplex code is given by the generator matrix

$$G = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Columns of a generator matrix of an $[n, k, d]_q$ code generate n points in PG(k-1, q). Codewords correspond to hyperplanes and the Hamming weight of the codeword equals the number of points that are not contained in the hyperplane, i.e. each hyperplane contains at most n-d points.

A multiset of points \mathcal{M} is a map $\mathcal{P} \to \mathbb{N}$ mapping points to multiplicities. \mathcal{M} is extended additively to subspaces.

Example (cont.): A $[7,3,4]_2$ simplex code corresponds to the set of all seven points in PG(2,2), where at most 3 are contained in a hyperplane.

The geometric point of view

Introduction

Linear codes

Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

Linear codes are multisets of points in PG(k-1,q) with at most s points in a hyperplane.

Let S_i denote an i-dimensional subspace in PG(k-1,q) and χ_{S_i} its characteristic function, i.e., $\chi_{S_i}(P)=1$ if $P\leq S_i$ and $\chi_{S_i}(P)=0$ otherwise. Note that each hyperplane intersects an i-dimensional subspace in either dimension i or dimension i-1.

Example: The multiset of points $\sigma \cdot \chi_{S_k}$ in $\mathrm{PG}(k-1,q)$ corresponds to an $\left[\sigma \cdot \frac{q^k-1}{q-1}, k, \sigma \cdot q^{k-1}\right]_q$ code.

The geometric point of view

Introduction

Linear codes

Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook
The end

Linear codes are multisets of points in PG(k-1,q) with at most s points in a hyperplane.

Let S_i denote an i-dimensional subspace in PG(k-1,q) and χ_{S_i} its characteristic function, i.e., $\chi_{S_i}(P)=1$ if $P\leq S_i$ and $\chi_{S_i}(P)=0$ otherwise. Note that each hyperplane intersects an i-dimensional subspace in either dimension i or dimension i-1.

Example: The multiset of points $\sigma \cdot \chi_{S_k}$ in $\mathrm{PG}(k-1,q)$ corresponds to an $\left[\sigma \cdot \frac{q^k-1}{q-1}, k, \sigma \cdot q^{k-1}\right]_q$ code.

Solomon–Stiffler construction: The multiset of points $\sigma \cdot \chi_{S_k} - \sum_{i=1}^{k-1} \varepsilon_i \cdot \chi_{S_i}$ in PG(k-1,q) corresponds to an $\left[\sigma \cdot \frac{q^k-1}{q-1} - \sum_{i=1}^{k-1} \varepsilon_i \cdot \frac{q^i-1}{q-1}, k, \sigma \cdot q^{k-1} - \sum_{i=1}^{k-1} \varepsilon_i \cdot q^{i-1}\right]_q$ code provided that σ is sufficiently large.

A natural generalization

Introduction Linear codes

Additive codes

Griesmer bound Partitions into h-spaces Exact values Outlook The end

Definition (Ball, Lavrauw, Popatia): A projective $h - (n, r, s)_q$ system is a multiset S of n subspaces of PG(r-1,q) of dimension at most h such that each hyperplane contains at most s elements of S and some hyperplane contains exactly s elements of S. We say that S is faithful if all elements have dimension h.

Remark: A multiset of points is a faithful projective $1 - (n, r, s)_q$ system.

Example: A spread of h-spaces in PG(2h-1,q) is a faithful projective $h-\left(q^h+1,2h,1\right)_q$ system. If h divides r, then h-spreads attain the upper bound $n\leq \frac{q^r-1}{q^{r-h}-1}\cdot s$ for projective $h-(n,r,s)_q$ systems.

S. Ball, M. Lavrauw, and T. Popatia, Griesmer type bounds for additive codes over finite fields, integral and fractional MDS codes, Designs, Codes and Cryptography, 93(1), 175-196 (2025).

A. Blokhuis and A.E. Brouwer, Small additive quaternary codes, European Journal of Combinatorics, 25(2), 161-167 (2004).

Additive codes

Introduction Linear codes

Additive codes

Griesmer bound Partitions into h-spaces Exact values Outlook The end

Definition: An additive $[n, r/h, d]_q^h$ code C is a subset of \mathcal{A}^n , where $\mathcal{A} = \mathbb{F}_{q^h}$, that is \mathbb{F}_q -linear, has minimum Hamming distance d, and cardinality q^r , so that $r/h \in \mathbb{Q}$ is called the dimension of C.

Observation: C can be written as the \mathbb{F}_q -space spanned by the rows of an $r \times n$ matrix G with entries in $\mathbb{F}_{q^h} \leadsto$ generator matrix G

Construction: Let \mathcal{B} be a basis for \mathbb{F}_{q^h} over \mathbb{F}_q and write out the elements of G over the basis \mathcal{B} to obtain an $r \times nh$ matrix \widetilde{G} with entries from \mathbb{F}_q . By $\mathcal{X}_G(C)$ we define the multiset of the n subspaces spanned by the n blocks of n columns of n.

Theorem (Ball, Lavrauw, Popatia): If C is an additive $[n, r/h, d]_q^h$ code with generator matrix G, then $\mathcal{X}_G(C)$ is a projective $h - (n, r, n - d)_q$ system \mathcal{S} , and conversely, each projective $h - (n, r, s)_q$ system \mathcal{S} defines an additive $[n, r/h, n - s]_q^h$ code C.

Additive codes (example)

Introduction Linear codes

Additive codes

The end

Griesmer bound Partitions into h-spaces Exact values Outlook

Write $\mathbb{F}_4\simeq \mathbb{F}_2[\omega]/\left(\omega^2+\omega+1\right)$ and consider the linear code C with generator matrix

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^2 \end{pmatrix}$$
.

It can be easily checked that C is a $[5,2,4]_4$ code. If we interprete C as an $[5,4/2,4]_4^2$ additive code a generator matrix is e.g. given by

$$G = egin{pmatrix} 0 & 1 & 1 & 1 & 1 \ 0 & \omega & \omega & \omega & \omega \ 1 & 0 & 1 & \omega & \omega^2 \ \omega & 0 & \omega & \omega^2 & 1 \end{pmatrix}.$$

Here we have

choosing the basis $\mathcal{B}=(1,\omega)$ and using $\omega^2=1+\omega$.

Griesmer bound

Introduction
Linear codes
Additive codes

Griesmer bound

Partitions into h-spaces Exact values Outlook The end

The parameters of an $[n, k, d]_q$ code C are related by the so-called *Griesmer bound*

$$n \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil =: g_q(k, d). \tag{1}$$

Interestingly enough, this bound can always be attained with equality if the minimum distance d is sufficiently large and a nice geometric construction was given by Solomon and Stiffler:

$$\sigma \cdot \chi_{S_k} - \sum_{i=1}^{k-1} \varepsilon_i \cdot \chi_{S_i} \to \left[\sigma \cdot \frac{q^k - 1}{q - 1} - \sum_{i=1}^{k-1} \varepsilon_i \cdot \frac{q^i - 1}{q - 1}, k, \sigma \cdot q^{k-1} - \sum_{i=1}^{k-1} \varepsilon_i \cdot q^{i-1} \right]_q$$

Parameterization: Write d as $d = \sigma q^{k-1} - \sum_{i=1}^{k-1} \varepsilon_i \cdot q^{i-1}$, where $\sigma \in \mathbb{N}_0$ and the $0 \le \varepsilon_i < q$

are integers for all $1 \le i \le k-1$. Then, $n = g_q(k,d)$ iff $n = \sigma \cdot \frac{q^k-1}{q-1} - \sum_{i=1}^{k-1} \varepsilon_i \cdot \frac{q^i-1}{q-1}$.

Griesmer bound for additive codes

Introduction
Linear codes
Additive codes

Griesmer bound

Partitions into h-spaces Exact values Outlook The end

Via the chain $[n,r/h,d]_q^h$ code \to projective $h-(n,r,n-d)_q$ system \to multiset of points $\to \left[\frac{q^h-1}{q-1}\cdot n,r,q^{h-1}\cdot d\right]_q$ code we can transfer the Griesmer bound

Lemma: To each faithful projective $h-(n,r,n-d)_q$ system we can associate a q^{h-1} -divisible $\left[n\cdot \frac{q^h-1}{q-1},r,d\cdot q^{h-1}\right]_q$ code with maximum weight at most $n\cdot q^{h-1}$.

Griesmer bound for additive codes

Introduction
Linear codes
Additive codes

Griesmer bound

Partitions into h-spaces Exact values Outlook The end

Via the chain $[n,r/h,d]_q^h$ code \to projective $h-(n,r,n-d)_q$ system \to multiset of points $\to \left[\frac{q^h-1}{q-1}\cdot n,r,q^{h-1}\cdot d\right]_q$ code we can transfer the Griesmer bound

Lemma: To each faithful projective $h-(n,r,n-d)_q$ system we can associate a q^{h-1} -divisible $\left[n\cdot \frac{q^h-1}{q-1},r,d\cdot q^{h-1}\right]_q$ code with maximum weight at most $n\cdot q^{h-1}$.

Corollary: Each $[n, r/h, d]_q^h$ code satisfies

$$n \ge \left\lceil \frac{g_q(r, d \cdot q^{h-1}) \cdot (q-1)}{q^h - 1} \right\rceil = \left\lceil \frac{(q-1) \cdot \sum_{i=0}^{r-1} \left\lceil d \cdot q^{h-1-i} \right\rceil}{q^h - 1} \right\rceil. \tag{2}$$

Interestingly enough, this bound can always be attained with equality if the minimum distance d is sufficiently large.

Partitions of multisets into h-spaces

Introduction
Linear codes
Additive codes
Griesmer bound

Partitions into h-spaces

Exact values
Outlook
The end

Definition: Let \mathcal{M} be a multiset of points in PG(r-1,q). We say that \mathcal{M} is h-partitionable if there exist h-spaces S_1, \ldots, S_l such that $\mathcal{M} = \sum_{i=1}^l \chi_{S_i}$.

Observation: If \mathcal{M} is h-partitionable, then $|\mathcal{M}|$ is divisible by $\frac{q^h-1}{q-1}$ and \mathcal{M} is q^{h-1} -divisible, i.e. $|\mathcal{M}| \equiv |\mathcal{M}(H)| \pmod{q^{h-1}}$ for every hyperplane H.

Partitions of multisets into h-spaces

Introduction
Linear codes
Additive codes
Griesmer bound

Partitions into h-spaces

Exact value
Outlook
The end

Definition: Let \mathcal{M} be a multiset of points in PG(r-1,q). We say that \mathcal{M} is h-partitionable if there exist h-spaces S_1, \ldots, S_l such that $\mathcal{M} = \sum_{i=1}^l \chi_{S_i}$.

Observation: If \mathcal{M} is h-partitionable, then $|\mathcal{M}|$ is divisible by $\frac{q^h-1}{q-1}$ and \mathcal{M} is q^{h-1} -divisible, i.e. $|\mathcal{M}| \equiv |\mathcal{M}(H)| \pmod{q^{h-1}}$ for every hyperplane H.

Definition: Let \mathcal{M} be a multiset of points in $\operatorname{PG}(r-1,q)$ and $S_1 \leq S_2 \leq \cdots \leq S_r$ with $\dim(S_i) = i$. We say that \mathcal{M} has type $\sigma[r] - \sum_{i=1}^{r-1} \varepsilon_i[i]$ iff $\mathcal{M} = \sigma \chi_{S_r} - \sum_{i=1}^{r-1} \sigma_i \chi_{S_i}$, where $\sigma \in \mathbb{N}$ and $\sigma \in \mathbb{N}$ and $\sigma \in \mathbb{N}$ for $1 \leq i \leq r-1$. We say that $\sigma[r] - \sum_{i=1}^{r-1} \varepsilon_i[i]$ is σ -partitionable iff a multiset of points in $\operatorname{PG}(r-1,q)$ with type $\sigma[r] - \sum_{i=1}^{r-1} \varepsilon_i[i]$ exists.

Observation: If $\sigma[r] - \sum_{i=1}^{r-1} \varepsilon_i[i]$ is h-partionable, then the parameters of a corresponding projective $h - (n, r, s)_q$ system can be computed from σ and the ε_i .

Main result

Introduction
Linear codes
Additive codes
Griesmer bound

Partitions into h-spaces

Exact values
Outlook
The end

Theorem: Let q be a prime power, $r > h \ge 1$, $g := \gcd(r,h)$, and $\varepsilon_1, \ldots, \varepsilon_{r-1} \in \mathbb{Z}$ such that q^{h-i} divides ε_i for all $1 \le i < h$ and

$$\sum_{i=1}^{r-1} \varepsilon_i \cdot \frac{q^i - 1}{q - 1} \equiv 0 \pmod{\frac{q^g - 1}{q - 1}}.$$
(3)

Then there exists a $\sigma \in \mathbb{N}$ such that

$$\left(\sigma + t \cdot \frac{q^h - 1}{q^g - 1}\right) [r] - \sum_{i=1}^{r-1} \varepsilon_i[i]$$

is h-partitionable over \mathbb{F}_q for all $t \in \mathbb{N}$.

Corollary: The Griesmer bound $n \ge \left\lceil \frac{g_q(r, d \cdot q^{h-1}) \cdot (q-1)}{q^h - 1} \right\rceil = \left\lceil \frac{(q-1) \cdot \sum\limits_{i=0}^{r-1} \left\lceil d \cdot q^{h-1-i} \right\rceil}{q^h - 1} \right\rceil$ for

 $[n, r/h, d]_q^h$ codes can be attained with equality if d is sufficiently large.

Exact values

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces

Exact value

Outlook The end **Definition:** Let $n_q(r, h; s)$ denote the maximum cardinality n of a projective $h - (n, r, s)_q$ system.

Remark: $n_2(r, 2; s)$ is completely determined for all $r \le 7$. For $n_2(8, 2; s)$ just three values are currently unknown.

J. Bierbrauer, S. Marcugini, and F. Pambianco, Optimal additive quaternary codes of low dimension, IEEE Transactions on Information Theory, 67(8), 5116-5118 (2021).

S. K., Optimal additive quaternary codes of dimension 3.5, arXiv preprint 2410.07650, 16 pages (2024).

Definition:

$$\overline{n}_q(r,h;s) := n_{q^h}(\lceil r/h \rceil, 1;s) \tag{4}$$

In words, $\overline{n}_q(r, h; s)$ is the size of the largest projective $h - (n, r, s)_q$ system that we can naturally obtain starting from a linear code over \mathbb{F}_{q^h} .

Improvements

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces

Exact values

Outlook The end Whenever $\overline{n}_q(r, h; s) < n_q(r, h; s)$ we say that additive codes outperform linear codes for the corresponding parameters, which is especially interesting if r/h is integral.

r	h	S	$n_q(r,h;s)$	$\overline{n}_q(r,h;s)$
8	2	9	33	31
8	2	10	36	34
8	2	11	40	39
8	2	14	54	50
8	2	27	107	103
6	2	3	21	17
6	2	8	66–68	65
	8 8 8 8 6	 8 2 8 2 8 2 8 2 8 2 6 2 	 8 2 9 8 2 10 8 2 11 8 2 14 8 2 27 6 2 3 	8 2 10 36 8 2 11 40 8 2 14 54 8 2 27 107 6 2 3 21

F. De Clerck, M. Delanote, N. Hamilton, and R. Mathon, Perp-systems and partial geometries, Advances in Geometry, 2(1), 1-12 (2002).

S. K., Additive codes attaining the Griesmer bound, arXiv preprint 2412.14615, 100 pages (2024).

Parametric improvements

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces

Exact values

Outlook The end

q	r	h	i	$s_{i,t}$	$n_q\left(r,h;s_{i,t} ight)$	$n_q\left(r,h;s_{i,t}\right) - \overline{n}_q\left(r,h;s_{i,t}\right)$
2	8	2	13	21t - 13	85t - 55	2
2	8	2	14	21t - 14	85t - 60	2
2	8	2	18	21t - 18	85t - 76	2
2	8	2		21t - 19	85t - 81	2
3	6	2	7	10t - 7	91t - 67	3
3	6	2	8	10t - 8	91t - 77	3
3		2		10t - 9	91t - 87	3
2	9	3	5	9t - 5	73t - 43	2
2	9	3	6	9t - 6	73t - 52	2
2	9	3	7	9t - 7	73t - 59	4
2	9	3	8	9t - 8	73t - 68	4
4	6	2	9	17t - 9	273t - 149	4
4	6	2	10	17t - 10	273t - 166	4
4	6	2	11	17t - 11	273t - 183	4
4	6	2	12	17t - 12	273t - 200	4
4	6	2	13	17t - 13	273t - 213	8
4	6	2	14	17t - 14	273t - 230	8
4	6	2	15	17t - 15	273t - 247	8
4	6	2	16	17t - 16	273t - 264	8
						

Partitions by h-spaces

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values

Outlook

The end

For some (pre-) multiset of points \mathcal{M} we say that $\star - \mathcal{M}$ is h-partitionable in $\mathrm{PG}(r-1,q)$ iff there exists a projective $h-(n,r,s)_q$ system with type $\sigma[r]-\mathcal{M}$ for some sufficiently large $\sigma \in \mathbb{N}$.

Remark: The parameters n and s can be computed from r, σ , and \mathcal{M} . Assuming that σ is sufficiently large, the set of the feasible σ 's is given by some explicit modulo condition. The conditions on \mathcal{M} can be written down quite explicitly.

Partitions by h-spaces

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values

Outlook

The end

For some (pre-) multiset of points \mathcal{M} we say that $\star - \mathcal{M}$ is h-partitionable in $\mathrm{PG}(r-1,q)$ iff there exists a projective $h-(n,r,s)_q$ system with type $\sigma[r]-\mathcal{M}$ for some sufficiently large $\sigma \in \mathbb{N}$.

Remark: The parameters n and s can be computed from r, σ , and \mathcal{M} . Assuming that σ is sufficiently large, the set of the feasible σ 's is given by some explicit modulo condition. The conditions on \mathcal{M} can be written down quite explicitely.

Application: Let $A_q(r,2h;h)$ denote the maximum cardinality of a partial spread \mathcal{P} of h-spaces in $\mathrm{PG}(r-1,q)$ and \mathcal{M} denote the set of uncovered points. In our notation \mathcal{P} is a faithful projective $h-(\#\mathcal{P},r,s,\mathbf{1})_q$ system \mathcal{S} with type $1\cdot [r]-\mathcal{M}$, where $\#\mathcal{P}$ and s can be computed from \mathcal{M} . (Every point is contained in at most $\mu=1$ elements from \mathcal{S} .)

- $129 \le A_2(11, 8; 4) \le 132$: $\#\mathcal{M} \equiv 7 \pmod{15}$, \mathcal{M} is 8-divisible, $\sigma \in \mathbb{N}$ For # = 132 several 8-divisible point sets of cardinality 67 exist in PG(10, 2).
- $244 \le A_3(8,6;3) \le 248$: $\#\mathcal{M} \equiv 4 \pmod{13}$, \mathcal{M} is 9-divisible, $\sigma \in \mathbb{N}$ For # = 248 there exists a unique 9-divisible point set of cardinality 56 in PG(7,3), the *Hill cap*.

The determination of the smallest possible σ seems to be a really hard problem.

Linear codes in the b-symbol metric

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values

Outlook

The end

In storage applications the reading device is sometimes insufficient to isolate adjacent symbols, which makes it necessary to adjust the standard coding-theoretic error model. Cassuto and Blaum studied a model where pairs of adjacent symbols are read in every step and introduced the so-called symbol-pair metric for codes. This notion was generalized to the b-symbol metric where b-tuples of adjacent symbols are read at every step.

Y. Cassuto and M. Blaum, Codes for symbol-pair read channels, IEEE Transactions on Information Theory, 57(12), 8011-8020 (2011).

E. Yaakobi, J. Bruck, and P.H. Siegel, Constructions and decoding of cyclic codes over b-symbol read channels, IEEE Transactions on Information Theory, 62(4), 1541-1551 (2016).

Definition: Let $n_q^b(k,d)$ the minimum possible length n of an $[n,k]_q$ code with minimum distance d w.r.t. the b-symbol metric.

Linear codes in the b-symbol metric attain the Griesmer bound

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values

Outlook

The end

Observation: Let G be a generator matrix of an $[n, k]_q$ code.

- lacksquare Blocks of b subsequent columns of G span subspaces.
- The minimum distance w.r.t. the b-symbol metric equals n minus the maximum number of subspaces contained in a hyperplane.

I.e. yet another generalization of linear codes and a special subclass of additive codes.

Linear codes in the b-symbol metric attain the Griesmer bound

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values

Out<u>look</u>

The end

Observation: Let G be a generator matrix of an $[n, k]_q$ code.

- lacksquare Blocks of b subsequent columns of G span subspaces.
- The minimum distance w.r.t. the b-symbol metric equals n minus the maximum number of subspaces contained in a hyperplane.

I.e. yet another generalization of linear codes and a special subclass of additive codes.

Griesmer type bound:

$$n_q^b(k,d) \ge \left\lceil \frac{g_q(k,q^{b-1} \cdot d) \cdot (q-1)}{q^b - 1} \right\rceil = \left\lceil \frac{(q-1) \cdot \sum_{i=0}^{r-1} \left\lceil d \cdot q^{b-1-i} \right\rceil}{q^b - 1} \right\rceil$$
 (5)

is attained with equality for all sufficiently large d.

G. Luo, M.F. Ezerman, C. Güneri, S. Ling, and F. Özbudak, Griesmer bound and constructions of linear codes in b-symbol metric, IEEE Transactions on Information Theory, 70(11):7840-7847, (2024).

D. Huang, Q. Liao, G. Tang, and A. Zhu, On the b-symbol weights of linear codes for large b, Finite Fields and Their Applications, 107, 102647 (2025).

S. K., Linear codes for b-symbol read channels attaining the Griesmer bound, arXiv preprint 2507.07728, 27 pages (2025).

Thanks for your attention! Questions or remarks?

Introduction
Linear codes
Additive codes
Griesmer bound
Partitions into h-spaces
Exact values
Outlook

The end

More research needed on additive codes and Griesmer type bounds for different settings.

