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Basic definitions

V = Fn
q , q = pm;

α-primitive element of Fq ;
[n, k]q-code, k-dimensional subspace of V ;

[n]q = qn−1
q−1 ;

Ci = {(x1, . . . , xi−1, 0, xi+1, . . . , xn); xj ∈ Fq}, (Coordinate hyperplane)
Kernel of the coordinate functional ci ((x1, x2, . . . , xn)) = xi ;
X = 〈v1, . . . , vk〉 − [n, k]q-code, Gx -generator matrix;

Gx =

 v1
...

vk


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Basic definitions

Ci,j = Ci ∩ Cj

Code X such that dim(X ∩ Ci,j ) = k − 2 for all i , j is called a projective code.
The columns of a generator matrix of a projective code are distinct points of a
projective space i.e. every two columns are linearly independent.[

1 0 1 1
0 1 1 2

]
[

2 0 2 2
0 1 1 2

]

Mariusz Kwiatkowski Graphs of simplex codes



simplex codes

Projective codes with maximal length n = [k]q are called simplex codes.[
1 0 1 1
0 1 1 2

]
[

1 0 1 1 1
0 1 1 α α2

]
Generator matrices of simplex codes of dimension 2 over F3 and F4.

We say that x ∈ V is a simplex vector if the Hamming weight of this vector is
qk−1.
A non-zero vector is simplex if and only if it is a codeword of a certain q-ary
simplex code of dimension k.
A subspace of V is a q-ary simplex code of dimension k if and only if it is
maximal with respect to the property that all non-zero vectors are simplex.
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simplex codes

Theorem (K, Pankov, Pasini)

The simplex vectors form the algebraic variety defined by the equations∑
i1<···<ipj

xq−1
i1 · · · xq−1

ipj
= 0

for j ∈ {0, . . . ,mk −m − 1}, where q = pm and p is a prime number.
This variety is a quadric only if q = 2, k = 3 or q = 3, k = 2.

The group of monomial linear automorphisms of V acts transitively on the set of
simplex codes and contains precisely n!(q − 1)n elements. There are precisely

(qk − 1)(qk − q) . . . (qk − qk−1)

(the number of elements in GL(k, q)) monomial linear automorphisms of V which
preserve a fixed simplex code. Therefore the number of q-ary simplex codes of
dimension k is equal to

n!(q − 1)n

(qk − 1)(qk − q) . . . (qk − qk−1)
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subcodes of simplex code

Proposition (K, Pankov)

If X is an m-dimensional subcode of a simplex code, then every generator matrix M of
X satisfies the following condition:

(∗)m M contains precisely [k −m]q zero columns and any non-zero column of M is
proportional to precisely qk−m columns including itself.

If a generator matrix M of an m-dimensional code X ⊂ V satisfies (∗)m, then X is a
subcode of a simplex code.

M =
[

0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 2 2 2

]
M is a generator matrix of a subcode of simplex code with generator matrix[

1 0 1 2 0 1 2 0 1 2 0 1 2
0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 2 2 2

]
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subcodes of simplex code

Theorem (K, Pankov)

Let m ∈ {0, 1, . . . , k − 1}. Every m-dimensional subcode of a simplex code is
contained in precisely

[k −m]q!(q − 1)[k−m]q (qk−m!)[m]q

(qk−m − 1)(qk−m − q) · · · (qk−m − qk−m−1)qm(k−m)

distinct simplex codes. Furthermore, there are two simplex codes whose intersection is
precisely this subcode except the case when q = k = 2.
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Grassman graph

The Grassmann graph Γk (V ) is the simple graph whose points are k-dimensional
subspaces (codes) of V and two such subspaces are adjacent if their intersection is
(k − 1)-dimensional. We assume that n = [k]q , k ≥ 2 and denote by Γs (k, q) the
subgraph of Γk (V ) induced by the set of q-ary simplex codes of dimension k.
Examples:
• Γs (2, 2) is a single vertex;
• Γs (2, 3) is the complete bipartite graph K4,4,
• Γs (3, 2) is isomorphic to the graph Γ1,3(F4

2) formed by 1-dimensional and
3-dimensional subspaces of F4

2, where distinct subspaces are connected by an
edge if they are incident.
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maximal cliques

A clique is a complete subgraph. A clique X is said to be maximal if every clique
containing X coincides with X . Every maximal clique of Γk (V ) is of one of the
following type:
• the star S(X) consisting of all k-dimensional subspaces containing a certain

(k − 1)-dimensional subspace X ;
• the top T (Y ) consisting of all k-dimensional subspaces contained in a certain

(k + 1)-dimensional subspace Y .
The intersections of S(X) and T (Y ) with the set of simplex codes are denoted by
Ss (X) and T s (Y ), respectively. Every such intersection is a clique in Γs (k, q) (if it is
non-empty), but we cannot assert that this clique is maximal. We say that Ss (X) or

T s (Y ) is a star or a top of the simplex code graph Γs (k, q) only in the case when it is
a maximal clique of Γs (k, q).
Since Γs (2, 3) and Γs (3, 2) are bipartite, every maximal clique in these graphs consists
of two vertices which implies that it is a star and a top simultaneously. If X ,Y are
adjacent vertices in one of these graphs, then

{X ,Y } = Ss (X ∩ Y ) = T s (X + Y ).
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stars

Proposition (K, Pankov)

Suppose that one of the following possibilities is realized:
• q = 2 and k ≥ 4;
• q = 3 and k ≥ 3;
• q ≥ 4.

Then Ss (X) is a star of Γs (k, q) if and only if X is a (k − 1)-dimensional subcode of a
simplex code. Furthermore, there are no maximal cliques of Γs (k, q) which are stars
and tops simultaneously.

It is clear that Ss (X) is non-empty if and only if X is a (k − 1)-dimensional subcode
of a simplex code. We have that

|Ss (X)| =
(q!)[k−1]q

qk−1

This number is greater than q + 1.
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stars

If k = 2, q ≥ 4, then Ss (X) consists of (q − 1)! elements and

(q − 1)! ≥ (q − 2)(q − 1) = q2 − 3q + 2 > q + 1

(since q2 − 4q + 1 > 0 for q ≥ 4).
If k ≥ 3, then

[k − 1]q = qk−2 + qk−3 · · ·+ 1 ≥ qk−2 + k − 2 ≥ k + 1

(we have qk−2 ≥ 3, since k ≥ 4 if q = 2). Therefore,

(q!)[k−1]q

qk−1 ≥
qk+1

qk−1 = q2 > q + 1.

So, Ss (X) contains more than q + 1 elements and there is no T s (Y ) containing
Ss (X) (since the intersection of a star and a top of the Grassmann graph is empty or
contains precisely q + 1 elements). This guarantees that Ss (X) is a maximal clique of
Γs (k, q), i.e. it is a star of Γs (k, q) which is not a top.
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tops

There exist non-empty T s (Y ) which is not a top of Γs (k, q).
Let us take x, y , z ∈ V such that[

x
y
z

]
=

[
0 1 1 α α2 · · · αq−2

1 0 1 1 1 · · · 1
1 0 α α α · · · α

]
.

Then 〈x, y〉 and 〈x, z〉 are adjacent q-ary simplex codes of dimension 2. Assume that
there is a simplex code intersecting 〈x, y〉 and 〈x, z〉 in distinct 1-dimensional
subcodes 〈x + αj z〉, 〈x + αi y〉, respectively. Its generator matrix is[

x + αj z
x + αi y

]
=
[
αj 1 1 + αj+1 α+ αj+1 α2 + αj+1 · · · αq−2 + αj+1

αi 1 1 + αi α+ αi α2 + αi · · · αq−2 + αi

]
and αi 6= αj (since the first and second columns are non-proportional).
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tops

We choose t ∈ {0, 1, . . . , q − 2} such that

αt =
αi (αj+1 − αj )

αj − αi .

Then the determinant∣∣∣ αj αt + αj+1

αi αt + αi

∣∣∣ = αt (αj − αi )− αi (αj+1 − αj )

is zero, i.e. the first and (t + 3)-th columns are proportional which is impossible.
Therefore, every simplex code adjacent to both 〈x, y〉, 〈x, z〉 belongs to the star
Ss (〈x〉). Then T s (〈x, y , z〉) is a non-empty proper subset of Ss (〈x〉) and,
consequently, it is not a top.
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tops

Recall that every maximal clique of Γs (2, 3) and Γs (3, 2) is a star and a top
simultaneously. Every maximal clique of Γs (2, 4) is a star. The graph Γs (k, q) contains
tops in all remaining cases.

Theorem (K, Pankov)

Suppose that one of the following possibilities is realized:
• k = 2 and q ≥ 5,
• k ≥ 4 and q = 2,
• k ≥ 3 and q ≥ 3.

Then Γs (k, q) contains tops. If k ≥ 4 and q ≥ 3, then there are tops of Γs (k, q)
containing different numbers of elements. If k ≥ 5 and q ≥ 3, then there is a top of
Γs (k, q) consisting of precisely three elements.

Mariusz Kwiatkowski Graphs of simplex codes



The case k = 2 and q ≥ 5

Consider x, y , z ∈ V such that[
x
y
z

]
=

[
0 1 1 1 1 · · · 1 1
1 0 α0 α1 α2 · · · αq−3 αq−2

1 1
1+0

1
1+α0

1
1+α−1

1
1+α−2 · · · 1

1+α−(q−3)
1

1+α−(q−2)

]
;

if 1 + α−i = 0, then we put 0 instead of 1
1+α−i . It is clear that the columns of

[
x
y

]
and
[

x
z

]
are mutually non-proportional, and 〈x, y〉 and 〈x, z〉 are simplex codes. With

some calculations 〈y , z〉 is also a simplex code.
And T s (〈x, y , z〉) is a top.

For F3 and F4 this vectors are linearly dependent.
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The case k ≥ 4 and q = 2

A =

[
0 1 1
1 0 1
1 1 0

]
and B =

[
1 0 0 1
0 1 0 1
0 0 1 1

]
For every i ∈ {1, . . . , [k − 2]2} we denote by Di the (k − 2, 4)-matrix whose columns
are i-th non-zero vectors of Fk−2

2 (in lexicografical order). and consider the
(k + 1, n)-matrix

M =
[

A B . . . B
0 D1 . . . D[k−2]2

]
.

Let v1, v2 and v3 be the first, second and third rows of M (respectively). Denote by C
the (k − 2)-dimensional subspace whose generator matrix is [0,D1, . . . ,D[k−2]2 ]. then
X1 = 〈C , v2, v3〉,X2 = 〈C , v1, v3〉,X3 = 〈C , v1, v2〉 are simplex codes C is a subcode of
every Xi and Xi ∩ Xj = C
T s (〈X1,X2,X3〉) is a top.
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example


0 1 1 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1


 0 1 1 1 0 0 1

1 0 1 0 1 0 1
1 1 0 0 0 1 1
0 0 0 1 1 1 1


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The case q ≥ 3 and k ≥ 3

We take x, y ∈ Fq+1
q spanning a q-ary simplex code of dimension 2. For any non-zero

scalars a, b ∈ F the (3, q + 1)-matrix[
x
y

ax + by

]
will be denote by Aa,b . and denote by Ba,b the (3, q2)-matrix

[Aa,b αAa,b . . . αq−2Aa,b 0]

For every i ∈ {1, . . . , [k − 2]2} we denote by Di the (k − 2, 4)-matrix whose columns
are i-th non-zero vectors of Fk−2

q with first non-zero coordinate equal to 1 (in
lexicografical order).
Let us take any collection of non-zero scalars

a0, b0, a1, b1, . . . , a[k−2]q , b[k−2]q ∈ F

such that for some i , j we have (ai , bi ) 6= (aj , bj )
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The case k = 2 and q ≥ 5

consider the (k + 1, n)-matrix

M =
[

Aa0,b0 Ba1,b1 . . . Ba[k−2]q ,b[k−2]q
0 D1 . . . D[k−2]q

]
.

Let v1, v2 and v3 be the first, second and third rows of M (respectively). Denote by C
the (k − 2)-dimensional subspace whose generator matrix is [0,D1, . . . ,D[k−2]2 ]. then
X1 = 〈C , v2, v3〉,X2 = 〈C , v1, v3〉,X3 = 〈C , v1, v2〉 are simplex codes C is a subcode of
every Xi and Xi ∩ Xj = C

Lemma

A non-zero vector of 〈v1, v2, v3〉 is not a code word of a simplex code if and only if it
is a scalar multiple of

ai v1 + bi v2 − v3

for a certain i ∈ {0, 1, . . . , [k − 2]q}.
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simplex lines

Γs (2, q)-the restriction of the Grassmann graph to the set of simplex lines.
We will use a projective terminology (1-dimensional subspaces are points and
2-dimensional are lines).

Proposition

(1) Every simplex point is contained in precisely (q − 1)! simplex lines.
(2) The degree of every vertex of the graph Γs (2, q) is equal to (q + 1)[(q − 1)!− 1].

A simplex point 〈1, a1, . . . , aq〉 is adjacent to simplex point P = 〈0, 1, . . . , 1〉 if and
only if all columns of the matrix [

0 1 . . . 1
1 a1 . . . aq

]
are mutually non-proportional; the latter is equivalent to the fact that a1, . . . , aq are
mutually distinct. Therefore, there are precisely q! simplex points adjacent to P.
Every simplex line passing through P contains q points distinct from P which means
that P is contained in precisely (q − 1)! simplex lines.
Each simplex line L consists of q + 1 simplex points. Every such point is contained in
precisely (q − 1)!− 1 simplex lines distinct from L.
For q = 4, k = 2 the degree is 25
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sum of non-zero elements

For q = 3, 4 the sum of q − 1 non-zero elements is zero if and only if these elements
are mutually distinct.

For every q ≥ 5 there are non-zero a1, . . . , aq−1 ∈ Fq whose sum is zero and ai = aj
for some distinct i , j. In the case when q is odd, we take any a 6= 0 and b 6= 0, a,−a
and replace the pair a,−a in the sum of all non-zero elements by the pair b,−b. If
q = 2m with m > 2, then 1 + α+ α2 6= 0 and we replace the pair 1, α+ α2 in the sum
of all non-zero elements by the pair 1 + α, α2.
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Two distinct simplex points are said to be adjacent if they are connected by a simplex
line.

Proposition (K, Pankov)

Let P = 〈x1, . . . , xq+1〉 be a simplex point and xi = 0. If a simplex point
Q = 〈y1, . . . , yq+1〉 is adjacent to P, then

a1y1 + · · ·+ aq+1yq+1 = 0, where aj = x−1
j for j 6= i and ai = 0 . (1)

In the case when q = 4, a simplex point Q = 〈y1, . . . , yq+1〉 is adjacent to P if and
only if it satisfies (1) and yi 6= 0.
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adjacent points

The simplex points P,Q are adjacent if and only if yi 6= 0 and the columns of the
matrix [

x1 . . . xq+1
y1 . . . yq+1

]
are mutually non-proportional. i.e. the determinants∣∣∣ xi xj

yi yj

∣∣∣
are non-zero. The latter is equivalent to the fact that yi 6= 0 and

x−1
1 y1, . . . , x−1

i−1yi−1, x−1
i+1yi+1, . . . , x−1

q+1yq+1

are mutually distinct elements of Fq (one of them is zero). The sum of all q − 1
non-zero elements of Fq is zero and we obtain (1).
In the case when q = 4, the sum of three non-zero elements of Fq is zero if and only if
these elements are mutually distinct. This implies the second statement.
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Geometry of Γs(2, 4)

Theorem (K, Pankov)

Let q = 4. Then Γs (2, 4) is a connected graph of diameter 3 consisting of 162 simplex
lines and the degree of every vertex of Γ is equal to 25. Furthermore, for each simplex
line L:
(1) There are precisely 6 simplex lines L1, . . . , L6 which are at distance 3 from L in

the graph Γs (2, 4).
(2) There are precisely 130 simplex lines which are at distance 2 from L in the graph

Γs (2, 4). The set of all such lines is the union of three mutually disjoint subsets
denoted by X 3

20,X
1
90,X

0
20, where

• X 3
20 is formed by 20 simplex lines and each of these lines is adjacent to precisely three

distinct Li ,
• X 1

90 consists of 90 lines and every such line is adjacent to a unique Li ,
• X 0

20 consists of 20 simplex lines disjoint with all Li .

(3) {L, L1, . . . , L6} ∪ X 0
20 is a spread of the set of all 135 simplex points, i.e. this set

consists of 27 mutually disjoint lines which cover the set of simplex points.
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the group G(L)

For every simplex line L we denote by G(L) the group of all projective transformations
induced by monomial semilinear automorphisms of V preserving L, i.e. the extensions
of automorphisms of the corresponding simplex code (recall that every such extension
is unique).
The group G(L) is isomorphic to PΓL(2, 4) (since the automorphism group of the
corresponding code is isomorphic to ΓL(2, 4))
PΓL(2, 4) is a subgroup of the permutation group S5 acting on the points of L. These
groups both are of order 120 which means that they are coincident.
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orbits of G(L)

Theorem (K, Pankow)

Suppose that q = 4 and L is a simplex line. Let L1, . . . , L6 and X 3
20,X

1
90,X

0
20 be as in

previous theorem and let A be the set of all simplex lines adjacent to L. The action of
the group G(L) on the set of all simplex lines has the following properties:
(1) The sets {L1, . . . , L6}, X 3

20 and X 0
20 are orbits of this action; moreover, the action

of G(L) on the set {L1, . . . , L6} is sharply 3-transitive.
(2) The set A is the union of two orbits consisting of 10 and 15 simplex lines.
(3) The set X 1

90 is the union of two orbits consisting of 30 and 60 simplex lines.
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f (x , y) = x1yq−2
1 + x2yq−2

2 + . . .+ xq+1yq−2
q+1

f (ax + bx ′, y) = af (x , y) + bf (x ′, y)

f (x , ay) = aq−2f (x , y)

f (y , x) = f (xq−2, yq−2)

f (x , x) = 0 gives first equation defining simplex vectors.

f (x , y) = 0 for simplex vectors x , y that give a simplex line.
for q = 4 we get a Hermitian form
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S(k,q) geometry

Geometry S(k, q): point-line geometry whose maximal singular subspaces
correspond to q-ary simplex codes of dimension k.
Points: 1-dimensional subcodes of simplex codes.
Lines: 2-dimensional subcodes of simplex codes.
Collinearity graph: vertices = simplex points, edges = collinear points.
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Proposition 4 and Remark 5

Lemma (Fisher’s inequality)

if X1, . . . ,Xm are subsets of {1, . . . , n} such that |Xi ∩ Xj | is constant for all pairs of
distinct i, j, then m ≤ n.

Proposition (K,Pankov,Tyc)

Every clique of the collinearity graph of S(k, q) contains no more than n elements.

Proof
For a clique of simplex points 〈v1〉, . . . , 〈vm〉, define Xi as the set of indices where
the i-th coordinate of vi is zero.
Then |Xi ∩ Xj | = [k − 2]q for distinct i, j.
By Fisher’s inequality, m ≤ n.
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Power Transformation (Definition)

Definition (Power Transformation)

Let Fq be a finite field and s a positive integer.
The s-th power map on Fq :

φs : a 7→ as , a ∈ Fq .

φs is bijective iff gcd(s, q − 1) = 1.
Induces a map on Fn

q :

Fs (x1, . . . , xn) = (x s
1 , . . . , x s

n ).

Theorem (K,Pankov,Tyc)

If Fs is bijective and s 6= pm (not a Frobenius automorphism), then Fs sends every
maximal singular subspace of S(k, q) to an n-clique of the collinearity graph which is
not a singular subspace.

No three points of these cliques are collinear. Under additional conditions those
cliques form normal rational curves.
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Conditions for Normal Rational Curves

Theorem (K,Pankov,Tyc)

Let k = 2, q = pr , and let Fs be the s-th power map on F q+1
q :

Fs (x1, . . . , xq+1) = (x s
1 , . . . , x s

q+1).

If the following hold:
1 gcd(s, q − 1) = 1 (so Fs is bijective),
2 s 6= pm (not a Frobenius automorphism),
3 Condition (A): the p-cyclotomic coset of s modulo q − 1 contains upm − 1 for

some 0 < u < p,
then Fs sends every line of S(2, q) to a normal rational curve in a projective space
PG(s, q).

Mariusz Kwiatkowski Graphs of simplex codes



Examples

q = p, s = p − 2; Fp−2 sends lines to normal rational curves in PG(p − 2, p).
For k = 2, q = 5: only s = 3 works and we have 2 types of maximal cliques:
simplex lines and their images under F3.
For k = 2, q = 7: only s = 5 works but we have additional cliques that are not
obtained by the power map.
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Near Orthomorphism: Definition

Definition
A near orthomorphism of a group G is a bijection

θ : G \ {a} −→ G \ {b}

such that the map
δ(x) = x−1θ(x)

is also a bijection
δ : G \ {a} −→ G \ {c}

for some a, b, c ∈ G.

The elements (a, b, c) are called the ex elements of θ.

Theorem (K)

Every top can be obtained from near-orthomorphism of the multiplicative group of the
field.
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Geometric Configuration

Setup:
Top T contains 3 lines L1 = 〈v2, v3〉, L2 = 〈v1, v3〉, L3 = 〈v1, v2〉.
Lines intersect at points P1 = L2 ∩ L3 = 〈v1〉, P2 = L1 ∩ L3 = 〈v2〉,
P3 = L1 ∩ L2 = 〈v3〉.

Hyperplane intersections:
For i ∈ {1, . . . , q − 2}:

Ci ∩ L3 = 〈v1 + ai v2〉, ai 6= aj for i 6= j
Ci ∩ L2 = 〈v1 + bi v3〉, bi 6= bj for i 6= j
Ci ∩ L1 = 〈v2 − bi a−1

i v3〉, −bi a−1
i 6= −bj a−1

j for i 6= j

Remaining intersections:
Cq−1 ∩ T = 〈v1, v2 + s1v3〉, s1 6= −bi a−1

i
Cq ∩ T = 〈v2, v1 + s2v3〉, s2 6= bi
Cq+1 ∩ T = 〈v3, v1 + s3v2〉, s3 6= ai

Generator Matrix for T :[ 1 1 · · · 1 0 1 1
−a−1

1 −a−1
2 · · · −a−1

q−2 1 0 −s−1
3

−b−1
1 −b−1

2 · · · −b−1
q−2 −s−1

1 −s−1
2 0

]
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Geometric Representation

L3 L2

L1

P1 = 〈v1〉

P2 = 〈v2〉 P3 = 〈v3〉〈v2 − a−1
i bi v3〉

〈v1 + bi v3〉〈v1 + ai v2〉

Ci ∩ T

〈v2 + s1v3〉

〈v1 + s2v3〉〈v1 + s3v2〉

C
q−

1
∩

T
Cq ∩ T Cq+1 ∩ T

If we put θ(ai ) = −bi then δ(ai ) = a−1
i θ(ai ) = −a−1

i bi and θ is a near orthomorphism
of the multiplicative group of the field with ex elements (s3, s2, s1).
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