Graphs of simplex codes

Mariusz Kwiatkowski

Uniwersity of Warmia and Mazury in Olsztyn (joint work with M.Pankov, A.Pasini, A.Tyc)

September 5, 2025

Basic definitions

- $V = \mathbb{F}_q^n$, $q = p^m$;
- α -primitive element of \mathbb{F}_q ;
- $[n, k]_q$ -code, k-dimensional subspace of V;
- $\bullet [n]_q = \frac{q^n 1}{q 1};$
- $C_i = \{(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n); x_j \in \mathbb{F}_q\}$, (Coordinate hyperplane) Kernel of the coordinate functional $c_i((x_1, x_2, \dots, x_n)) = x_i$;
- $X = \langle v_1, \dots, v_k \rangle [n, k]_q$ -code, G_X -generator matrix;

$$G_{x} = \left[\begin{array}{c} v_{1} \\ \vdots \\ v_{k} \end{array} \right]$$

Basic definitions

- $C_{i,j} = C_i \cap C_j$
- Code X such that $dim(X \cap C_{i,j}) = k 2$ for all i, j is called a projective code.
- The columns of a generator matrix of a projective code are distinct points of a projective space i.e. every two columns are linearly independent.

$$\left[\begin{array}{c}1011\\0112\end{array}\right]$$

$$\left[\begin{array}{cc}2022\\0112\end{array}\right]$$

simplex codes

Projective codes with maximal length $n = [k]_q$ are called simplex codes.

$$\left[\begin{array}{c}1011\\0112\end{array}\right]$$

$$\left[\begin{array}{cc} 1 \ 0 \ 1 \ 1 & 1 \\ 0 \ 1 \ 1 \ \alpha \ \alpha^2 \end{array}\right]$$

Generator matrices of simplex codes of dimension 2 over \mathbb{F}_3 and \mathbb{F}_4 .

- We say that $x \in V$ is a *simplex vector* if the Hamming weight of this vector is q^{k-1} .
- A non-zero vector is simplex if and only if it is a codeword of a certain q-ary simplex code of dimension k.
- A subspace of V is a q-ary simplex code of dimension k if and only if it is maximal with respect to the property that all non-zero vectors are simplex.

Theorem (K, Pankov, Pasini)

The simplex vectors form the algebraic variety defined by the equations

$$\sum_{i_1 < \dots < i_{p^j}} x_{i_1}^{q-1} \cdots x_{i_{p^j}}^{q-1} = 0$$

for $j \in \{0, ..., mk - m - 1\}$, where $q = p^m$ and p is a prime number. This variety is a quadric only if q = 2, k = 3 or q = 3, k = 2.

The group of monomial linear automorphisms of V acts transitively on the set of simplex codes and contains precisely $n!(q-1)^n$ elements. There are precisely

$$(q^k-1)(q^k-q)\dots(q^k-q^{k-1})$$

(the number of elements in $\mathrm{GL}(k,q)$) monomial linear automorphisms of V which preserve a fixed simplex code. Therefore the number of q-ary simplex codes of dimension k is equal to

$$\frac{n!(q-1)^n}{(q^k-1)(q^k-q)\dots(q^k-q^{k-1})}$$

subcodes of simplex code

Proposition (K, Pankov)

If X is an m-dimensional subcode of a simplex code, then every generator matrix M of X satisfies the following condition:

 $(*)_m$ M contains precisely $[k-m]_q$ zero columns and any non-zero column of M is proportional to precisely q^{k-m} columns including itself.

If a generator matrix M of an m-dimensional code $X \subset V$ satisfies $(*)_m$, then X is a subcode of a simplex code.

M is a generator matrix of a subcode of simplex code with generator matrix

$$\left[\begin{array}{c} 1012012012012\\ 01110001111111\\ 00001111111222 \end{array}\right]$$

subcodes of simplex code

Theorem (K, Pankov)

Let $m \in \{0,1,\ldots,k-1\}$. Every m-dimensional subcode of a simplex code is contained in precisely

$$\frac{[k-m]_q!(q-1)^{[k-m]_q}(q^{k-m}!)^{[m]_q}}{(q^{k-m}-1)(q^{k-m}-q)\cdots(q^{k-m}-q^{k-m-1})q^{m(k-m)}}$$

distinct simplex codes. Furthermore, there are two simplex codes whose intersection is precisely this subcode except the case when q = k = 2.

Grassman graph

The Grassmann graph $\Gamma_k(V)$ is the simple graph whose points are k-dimensional subspaces (codes) of V and two such subspaces are adjacent if their intersection is (k-1)-dimensional. We assume that $n=[k]_q$, $k\geq 2$ and denote by $\Gamma^s(k,q)$ the subgraph of $\Gamma_k(V)$ induced by the set of q-ary simplex codes of dimension k. Examples:

- $\Gamma^s(2,2)$ is a single vertex;
- $\Gamma^s(2,3)$ is the complete bipartite graph $K_{4,4}$,
- $\Gamma^s(3,2)$ is isomorphic to the graph $\Gamma_{1,3}(\mathbb{F}_2^4)$ formed by 1-dimensional and 3-dimensional subspaces of \mathbb{F}_2^4 , where distinct subspaces are connected by an edge if they are incident.

maximal cliques

A clique is a complete subgraph. A clique $\mathcal X$ is said to be maximal if every clique containing $\mathcal X$ coincides with $\mathcal X$. Every maximal clique of $\Gamma_k(V)$ is of one of the following type:

- the star S(X) consisting of all k-dimensional subspaces containing a certain (k-1)-dimensional subspace X;
- the $top \mathcal{T}(Y)$ consisting of all k-dimensional subspaces contained in a certain (k+1)-dimensional subspace Y.

The intersections of $\mathcal{S}(X)$ and $\mathcal{T}(Y)$ with the set of simplex codes are denoted by $\mathcal{S}^s(X)$ and $\mathcal{T}^s(Y)$, respectively. Every such intersection is a clique in $\Gamma^s(k,q)$ (if it is non-empty), but we cannot assert that this clique is maximal. We say that $\mathcal{S}^s(X)$ or

 $\mathcal{T}^s(Y)$ is a star or a top of the simplex code graph $\Gamma^s(k,q)$ only in the case when it is a maximal clique of $\Gamma^s(k,q)$.

Since $\Gamma^s(2,3)$ and $\Gamma^s(3,2)$ are bipartite, every maximal clique in these graphs consists of two vertices which implies that it is a star and a top simultaneously. If X,Y are adjacent vertices in one of these graphs, then

$${X, Y} = S^s(X \cap Y) = T^s(X + Y).$$

Proposition (K, Pankov)

Suppose that one of the following possibilities is realized:

- q = 2 and $k \ge 4$;
- q = 3 and $k \ge 3$;
- $q \ge 4$.

Then $S^s(X)$ is a star of $\Gamma^s(k,q)$ if and only if X is a (k-1)-dimensional subcode of a simplex code. Furthermore, there are no maximal cliques of $\Gamma^s(k,q)$ which are stars and tops simultaneously.

It is clear that $S^s(X)$ is non-empty if and only if X is a (k-1)-dimensional subcode of a simplex code. We have that

$$|\mathcal{S}^s(X)| = \frac{(q!)^{[k-1]_q}}{q^{k-1}}$$

This number is greater than q + 1.

If $k = 2, q \ge 4$, then $S^s(X)$ consists of (q - 1)! elements and

$$(q-1)! \ge (q-2)(q-1) = q^2 - 3q + 2 > q + 1$$

(since $q^2 - 4q + 1 > 0$ for $q \ge 4$). If $k \ge 3$, then

$$[k-1]_q = q^{k-2} + q^{k-3} + \dots + 1 \ge q^{k-2} + k - 2 \ge k + 1$$

(we have $q^{k-2} \ge 3$, since $k \ge 4$ if q = 2). Therefore,

$$\frac{(q!)^{[k-1]_q}}{q^{k-1}} \ge \frac{q^{k+1}}{q^{k-1}} = q^2 > q+1.$$

So, $\mathcal{S}^s(X)$ contains more than q+1 elements and there is no $\mathcal{T}^s(Y)$ containing $\mathcal{S}^s(X)$ (since the intersection of a star and a top of the Grassmann graph is empty or contains precisely q+1 elements). This guarantees that $\mathcal{S}^s(X)$ is a maximal clique of $\Gamma^s(k,q)$, i.e. it is a star of $\Gamma^s(k,q)$ which is not a top.

There exist non-empty $\mathcal{T}^s(Y)$ which is not a top of $\Gamma^s(k,q)$. Let us take $x,y,z\in V$ such that

$$\left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{array}\right] = \left[\begin{array}{cccccc} 0 & 1 & 1 & \alpha & \alpha^2 & \cdots & \alpha^{q-2} \\ 1 & 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & \alpha & \alpha & \alpha & \cdots & \alpha \end{array}\right].$$

Then $\langle x,y \rangle$ and $\langle x,z \rangle$ are adjacent q-ary simplex codes of dimension 2. Assume that there is a simplex code intersecting $\langle x,y \rangle$ and $\langle x,z \rangle$ in distinct 1-dimensional subcodes $\langle x+\alpha^jz\rangle, \langle x+\alpha^iy\rangle$, respectively. Its generator matrix is

$$\left[\begin{array}{c} \mathbf{x} + \alpha^j \mathbf{z} \\ \mathbf{x} + \alpha^i \mathbf{y} \end{array} \right] = \left[\begin{array}{cccc} \alpha^j & 1 & 1 + \alpha^{j+1} & \alpha + \alpha^{j+1} & \alpha^2 + \alpha^{j+1} & \cdots & \alpha^{q-2} + \alpha^{j+1} \\ \alpha^i & 1 & 1 + \alpha^i & \alpha + \alpha^i & \alpha^2 + \alpha^i & \cdots & \alpha^{q-2} + \alpha^i \end{array} \right]$$

and $\alpha^i \neq \alpha^j$ (since the first and second columns are non-proportional).

We choose $t \in \{0, 1, \dots, q-2\}$ such that

$$\alpha^t = \frac{\alpha^i (\alpha^{j+1} - \alpha^j)}{\alpha^j - \alpha^i}.$$

Then the determinant

$$\begin{vmatrix} \alpha^{j} & \alpha^{t} + \alpha^{j+1} \\ \alpha^{i} & \alpha^{t} + \alpha^{i} \end{vmatrix} = \alpha^{t} (\alpha^{j} - \alpha^{i}) - \alpha^{i} (\alpha^{j+1} - \alpha^{j})$$

is zero, i.e. the first and (t+3)-th columns are proportional which is impossible. Therefore, every simplex code adjacent to both $\langle x,y\rangle,\langle x,z\rangle$ belongs to the star $\mathcal{S}^s(\langle x\rangle)$. Then $\mathcal{T}^s(\langle x,y,z\rangle)$ is a non-empty proper subset of $\mathcal{S}^s(\langle x\rangle)$ and, consequently, it is not a top.

Recall that every maximal clique of $\Gamma^s(2,3)$ and $\Gamma^s(3,2)$ is a star and a top simultaneously. Every maximal clique of $\Gamma^s(2,4)$ is a star. The graph $\Gamma^s(k,q)$ contains tops in all remaining cases.

Theorem (K, Pankov)

Suppose that one of the following possibilities is realized:

- k = 2 and $q \ge 5$,
- $k \ge 4$ and q = 2,
- $k \ge 3$ and $q \ge 3$.

Then $\Gamma^s(k,q)$ contains tops. If $k\geq 4$ and $q\geq 3$, then there are tops of $\Gamma^s(k,q)$ containing different numbers of elements. If $k\geq 5$ and $q\geq 3$, then there is a top of $\Gamma^s(k,q)$ consisting of precisely three elements.

The case k = 2 and $q \ge 5$

Consider $\emph{\textbf{x}}, \emph{\textbf{y}}, \emph{\textbf{z}} \in \emph{V}$ such that

$$\left[\begin{array}{c} \textbf{x} \\ \textbf{y} \\ \textbf{z} \end{array}\right] = \left[\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \alpha^0 & \alpha^1 & \alpha^2 & \cdots & \alpha^{q-3} & \alpha^{q-2} \\ 1 & \frac{1}{1+0} & \frac{1}{1+\alpha^0} & \frac{1}{1+\alpha^{-1}} & \frac{1}{1+\alpha^{-2}} & \cdots & \frac{1}{1+\alpha^{-(q-3)}} & \frac{1}{1+\alpha^{-(q-2)}} \end{array}\right];$$

if $1+\alpha^{-i}=0$, then we put 0 instead of $\frac{1}{1+\alpha^{-i}}$. It is clear that the columns of $\begin{bmatrix} x \\ y \end{bmatrix}$ and $\begin{bmatrix} x \\ z \end{bmatrix}$ are mutually non-proportional, and $\langle x,y \rangle$ and $\langle x,z \rangle$ are simplex codes. With some calculations $\langle y,z \rangle$ is also a simplex code. And $\mathcal{T}^s(\langle x,y,z \rangle)$ is a top.

For \mathbb{F}_3 and \mathbb{F}_4 this vectors are linearly dependent.

The case $k \ge 4$ and q = 2

$$A = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right] \text{ and } B = \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

For every $i\in\{1,\dots,[k-2]_2\}$ we denote by D_i the (k-2,4)-matrix whose columns are i-th non-zero vectors of \mathbb{F}_2^{k-2} (in lexicografical order). and consider the (k+1,n)-matrix

$$M = \left[\begin{array}{cccc} A & B & \dots & B \\ \mathbf{0} & D_1 & \dots & D_{[k-2]_2} \end{array} \right].$$

Let $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 be the first, second and third rows of M (respectively). Denote by C the (k-2)-dimensional subspace whose generator matrix is $[\mathbf{0},D_1,\ldots,D_{[k-2]_2}]$. then $X_1=\langle C,\mathbf{v}_2,\mathbf{v}_3\rangle, X_2=\langle C,\mathbf{v}_1,\mathbf{v}_3\rangle, X_3=\langle C,\mathbf{v}_1,\mathbf{v}_2\rangle$ are simplex codes C is a subcode of every X_i and $X_i\cap X_j=C$ $\mathcal{T}^s(\langle X_1,X_2,X_3\rangle)$ is a top.

example

```
\begin{bmatrix} 0.11 & 1.001 & 1.001 & 1.001 \\ 1.01 & 0.101 & 0.101 & 0.101 \\ 1.10 & 0.011 & 0.011 & 0.011 \\ \hline 0.00 & 0.000 & 1.111 & 1.111 \\ 0.00 & 1.11 & 0.000 & 1.111 \end{bmatrix} \\ \begin{bmatrix} 0.11 & 1.001 \\ 1.01 & 0.101 \\ 1.10 & 0.011 \\ \hline 0.00 & 1.111 \end{bmatrix}
```

The case $q \ge 3$ and $k \ge 3$

We take $x,y\in\mathbb{F}_q^{q+1}$ spanning a q-ary simplex code of dimension 2. For any non-zero scalars $a,b\in\mathbb{F}$ the (3,q+1)-matrix

$$\left[\begin{array}{c} x \\ y \\ ax + by \end{array}\right]$$

will be denote by $A_{a,b}$. and denote by $B_{a,b}$ the $(3,q^2)$ -matrix

$$[A_{a,b} \alpha A_{a,b} \dots \alpha^{q-2} A_{a,b} \mathbf{0}]$$

For every $i \in \{1, \dots, [k-2]_2\}$ we denote by D_i the (k-2, 4)-matrix whose columns are i-th non-zero vectors of \mathbb{F}_q^{k-2} with first non-zero coordinate equal to 1 (in lexicografical order).

Let us take any collection of non-zero scalars

$$a_0, b_0, a_1, b_1, \ldots, a_{[k-2]_q}, b_{[k-2]_q} \in \mathbb{F}$$

such that for some i, j we have $(a_i, b_i) \neq (a_j, b_j)$

The case k = 2 and $q \ge 5$

consider the (k+1, n)-matrix

$$M = \begin{bmatrix} A_{a_0,b_0} & B_{a_1,b_1} & \dots & B_{a_{[k-2]_q},b_{[k-2]_q}} \\ \mathbf{0} & D_1 & \dots & D_{[k-2]_q} \end{bmatrix}.$$

Let $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 be the first, second and third rows of M (respectively). Denote by C the (k-2)-dimensional subspace whose generator matrix is $[\mathbf{0}, D_1, \ldots, D_{[k-2]_2}]$. then $X_1 = \langle C, \mathbf{v}_2, \mathbf{v}_3 \rangle, X_2 = \langle C, \mathbf{v}_1, \mathbf{v}_3 \rangle, X_3 = \langle C, \mathbf{v}_1, \mathbf{v}_2 \rangle$ are simplex codes C is a subcode of every X_i and $X_i \cap X_j = C$

Lemma

A non-zero vector of $\langle v_1,v_2,v_3\rangle$ is not a code word of a simplex code if and only if it is a scalar multiple of

$$a_i v_1 + b_i v_2 - v_3$$

for a certain $i \in \{0, 1, \dots, [k-2]_q\}$.

simplex lines

 $\Gamma^s(2,q)$ -the restriction of the Grassmann graph to the set of simplex lines. We will use a projective terminology (1-dimensional subspaces are points and 2-dimensional are lines).

Proposition

- (1) Every simplex point is contained in precisely (q-1)! simplex lines.
- $(2) \ \textit{The degree of every vertex of the graph $\Gamma^s(2,q)$ is equal to $(q+1)[(q-1)!-1]$.}$

A simplex point $\langle 1,a_1,\ldots,a_q\rangle$ is adjacent to simplex point $P=\langle 0,1,\ldots,1\rangle$ if and only if all columns of the matrix

$$\left[\begin{array}{cc}0\ 1\ \dots\ 1\\1\ a_1\ \dots\ a_q\end{array}\right]$$

are mutually non-proportional; the latter is equivalent to the fact that a_1,\ldots,a_q are mutually distinct. Therefore, there are precisely q! simplex points adjacent to P. Every simplex line passing through P contains q points distinct from P which means that P is contained in precisely (q-1)! simplex lines.

Each simplex line L consists of q+1 simplex points. Every such point is contained in precisely (q-1)!-1 simplex lines distinct from L.

For q = 4, k = 2 the degree is 25

sum of non-zero elements

For q=3,4 the sum of q-1 non-zero elements is zero if and only if these elements are mutually distinct.

For every $q \geq 5$ there are non-zero $a_1, \ldots, a_{q-1} \in \mathbb{F}_q$ whose sum is zero and $a_i = a_j$ for some distinct i,j. In the case when q is odd, we take any $a \neq 0$ and $b \neq 0, a, -a$ and replace the pair a, -a in the sum of all non-zero elements by the pair b, -b. If $q = 2^m$ with m > 2, then $1 + \alpha + \alpha^2 \neq 0$ and we replace the pair $1, \alpha + \alpha^2$ in the sum of all non-zero elements by the pair $1 + \alpha, \alpha^2$.

Two distinct simplex points are said to be *adjacent* if they are connected by a simplex line.

Proposition (K, Pankov)

Let $P = \langle x_1, \dots, x_{q+1} \rangle$ be a simplex point and $x_i = 0$. If a simplex point $Q = \langle y_1, \dots, y_{q+1} \rangle$ is adjacent to P, then

$$a_1y_1 + \dots + a_{q+1}y_{q+1} = 0$$
, where $a_j = x_j^{-1}$ for $j \neq i$ and $a_i = 0$. (1)

In the case when q=4, a simplex point $Q=\langle y_1,\ldots,y_{q+1}\rangle$ is adjacent to P if and only if it satisfies (1) and $y_i\neq 0$.

adjacent points

The simplex points P,Q are adjacent if and only if $y_i \neq 0$ and the columns of the matrix

$$\left[\begin{array}{c} x_1 \dots x_{q+1} \\ y_1 \dots y_{q+1} \end{array}\right]$$

are mutually non-proportional. i.e. the determinants

are non-zero. The latter is equivalent to the fact that $y_i \neq 0$ and

$$x_1^{-1}y_1, \dots, x_{i-1}^{-1}y_{i-1}, x_{i+1}^{-1}y_{i+1}, \dots, x_{q+1}^{-1}y_{q+1}$$

are mutually distinct elements of \mathbb{F}_q (one of them is zero). The sum of all q-1 non-zero elements of \mathbb{F}_q is zero and we obtain (1).

In the case when q=4, the sum of three non-zero elements of \mathbb{F}_q is zero if and only if these elements are mutually distinct. This implies the second statement.

Geometry of $\Gamma^s(2,4)$

Theorem (K, Pankov)

Let q=4. Then $\Gamma^s(2,4)$ is a connected graph of diameter 3 consisting of 162 simplex lines and the degree of every vertex of Γ is equal to 25. Furthermore, for each simplex line L:

- (1) There are precisely 6 simplex lines L_1, \ldots, L_6 which are at distance 3 from L in the graph $\Gamma^s(2,4)$.
- (2) There are precisely 130 simplex lines which are at distance 2 from L in the graph $\Gamma^s(2,4)$. The set of all such lines is the union of three mutually disjoint subsets denoted by $\mathcal{X}^3_{20}, \mathcal{X}^0_{90}, \mathcal{X}^0_{20}$, where
 - X₂₀³ is formed by 20 simplex lines and each of these lines is adjacent to precisely three distinct L_i,
 - \mathcal{X}_{90}^1 consists of 90 lines and every such line is adjacent to a unique L_i ,
 - \mathcal{X}_{20}^0 consists of 20 simplex lines disjoint with all L_i .
- (3) $\{L, L_1, \ldots, L_6\} \cup \mathcal{X}_{20}^0$ is a spread of the set of all 135 simplex points, i.e. this set consists of 27 mutually disjoint lines which cover the set of simplex points.

the group G(L)

For every simplex line L we denote by $\mathrm{G}(L)$ the group of all projective transformations induced by monomial semilinear automorphisms of V preserving L, i.e. the extensions of automorphisms of the corresponding simplex code (recall that every such extension is unique).

The group $\mathrm{G}(L)$ is isomorphic to $\mathrm{P}\Gamma\mathrm{L}(2,4)$ (since the automorphism group of the corresponding code is isomorphic to $\mathrm{\Gamma}\mathrm{L}(2,4)$)

 $P\Gamma L(2,4)$ is a subgroup of the permutation group S_5 acting on the points of L. These groups both are of order 120 which means that they are coincident.

orbits of G(L)

Theorem (K, Pankow)

Suppose that q=4 and L is a simplex line. Let L_1,\ldots,L_6 and $\mathcal{X}^3_{20},\mathcal{X}^1_{90},\mathcal{X}^0_{20}$ be as in previous theorem and let \mathcal{A} be the set of all simplex lines adjacent to L. The action of the group G(L) on the set of all simplex lines has the following properties:

- (1) The sets $\{L_1, \ldots, L_6\}$, \mathcal{X}_{20}^3 and \mathcal{X}_{20}^0 are orbits of this action; moreover, the action of G(L) on the set $\{L_1, \ldots, L_6\}$ is sharply 3-transitive.
- (2) The set A is the union of two orbits consisting of 10 and 15 simplex lines.
- (3) The set \mathcal{X}_{90}^1 is the union of two orbits consisting of 30 and 60 simplex lines.

$$f(x,y) = x_1 y_1^{q-2} + x_2 y_2^{q-2} + \ldots + x_{q+1} y_{q+1}^{q-2}$$

- f(ax + bx', y) = af(x, y) + bf(x', y)
- $f(x, ay) = a^{q-2}f(x, y)$
- $f(y,x) = f(x^{q-2}, y^{q-2})$
- f(x,x) = 0 gives first equation defining simplex vectors.
- f(x, y) = 0 for simplex vectors x, y that give a simplex line.

for q = 4 we get a Hermitian form

S(k,q) geometry

- Geometry S(k, q): point-line geometry whose maximal singular subspaces correspond to q-ary simplex codes of dimension k.
- Points: 1-dimensional subcodes of simplex codes.
- Lines: 2-dimensional subcodes of simplex codes.
- Collinearity graph: vertices = simplex points, edges = collinear points.

Proposition 4 and Remark 5

Lemma (Fisher's inequality)

if X_1, \ldots, X_m are subsets of $\{1, \ldots, n\}$ such that $|X_i \cap X_j|$ is constant for all pairs of distinct i, j, then $m \le n$.

Proposition (K,Pankov,Tyc)

Every clique of the collinearity graph of S(k, q) contains no more than n elements.

Proof

- For a clique of simplex points $\langle v_1 \rangle, \ldots, \langle v_m \rangle$, define X_i as the set of indices where the i-th coordinate of v_i is zero.
- Then $|X_i \cap X_j| = [k-2]_q$ for distinct i, j.
- By Fisher's inequality, $m \le n$.

Power Transformation (Definition)

Definition (Power Transformation)

Let \mathbb{F}_q be a finite field and s a positive integer.

• The s-th power map on \mathbb{F}_q :

$$\phi_s: a \mapsto a^s, \ a \in \mathbb{F}_q.$$

- ϕ_s is bijective iff gcd(s, q 1) = 1.
- Induces a map on \mathbb{F}_q^n :

$$F_s(x_1,\ldots,x_n)=(x_1^s,\ldots,x_n^s).$$

Theorem (K,Pankov,Tyc)

If F_s is bijective and $s \neq p^m$ (not a Frobenius automorphism), then F_s sends every maximal singular subspace of S(k,q) to an n-clique of the collinearity graph which is **not** a singular subspace.

No three points of these cliques are collinear. Under additional conditions those cliques form normal rational curves.

Conditions for Normal Rational Curves

Theorem (K,Pankov,Tyc)

Let k = 2, $q = p^r$, and let F_s be the s-th power map on \mathbb{F}_q^{q+1} :

$$F_s(x_1,\ldots,x_{q+1})=(x_1^s,\ldots,x_{q+1}^s).$$

If the following hold:

② Condition (A): the p-cyclotomic coset of s modulo q-1 contains up^m-1 for some 0 < u < p,

then F_s sends every line of S(2,q) to a **normal rational curve** in a projective space $\mathrm{PG}(s,q)$.

Examples

- q = p, s = p 2; F_{p-2} sends lines to normal rational curves in PG(p 2, p).
- For k = 2, q = 5: only s = 3 works and we have 2 types of maximal cliques: simplex lines and their images under F_3 .
- For k=2, q=7: only s=5 works but we have additional cliques that are not obtained by the power map.

Near Orthomorphism: Definition

Definition

A near orthomorphism of a group G is a bijection

$$\theta: G \setminus \{a\} \longrightarrow G \setminus \{b\}$$

such that the map

$$\delta(x) = x^{-1}\theta(x)$$

is also a bijection

$$\delta: G \setminus \{a\} \longrightarrow G \setminus \{c\}$$

for some $a, b, c \in G$.

The elements (a, b, c) are called the *ex elements* of θ .

Theorem (K)

Every top can be obtained from near-orthomorphism of the multiplicative group of the field.

Geometric Configuration

Setup:

- Top T contains 3 lines $L_1=\langle v_2,v_3\rangle,\ L_2=\langle v_1,v_3\rangle,\ L_3=\langle v_1,v_2\rangle.$
- Lines intersect at points $P_1 = L_2 \cap L_3 = \langle v_1 \rangle$, $P_2 = L_1 \cap L_3 = \langle v_2 \rangle$, $P_3 = L_1 \cap L_2 = \langle v_3 \rangle$.

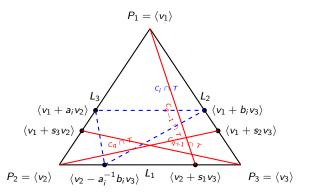
Hyperplane intersections:

- For $i \in \{1, \ldots, q-2\}$:
 - $C_i \cap L_3 = \langle v_1 + a_i v_2 \rangle, \ a_i \neq a_j \text{ for } i \neq j$
 - $C_i \cap L_2 = \langle v_1 + b_i v_3 \rangle$, $b_i \neq b_j$ for $i \neq j$
 - $C_i \cap L_1 = \langle v_2 b_i a_i^{-1} v_3 \rangle, \ -b_i a_i^{-1} \neq -b_j a_j^{-1} \text{ for } i \neq j$
- Remaining intersections:
 - $C_{q-1} \cap T = \langle v_1, v_2 + s_1 v_3 \rangle, \ s_1 \neq -b_i a_i^{-1}$
 - $C_q \cap T = \langle v_2, v_1 + s_2 v_3 \rangle, s_2 \neq b_i$
 - $\bullet \ \ C_{q+1} \cap T = \langle v_3, v_1 + s_3 v_2 \rangle, \ s_3 \neq a_i$

Generator Matrix for T:

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 0 & 1 & 1 \\ -a_1^{-1} & -a_2^{-1} & \cdots & -a_{q-2}^{-1} & 1 & 0 & -s_3^{-1} \\ -b_1^{-1} & -b_2^{-1} & \cdots & -b_{q-2}^{-1} & -s_1^{-1} & -s_2^{-1} & 0 \end{bmatrix}$$

Geometric Representation



If we put $\theta(a_i) = -b_i$ then $\delta(a_i) = a_i^{-1}\theta(a_i) = -a_i^{-1}b_i$ and θ is a near orthomorphism of the multiplicative group of the field with ex elements (s_3, s_2, s_1) .