On Intersection Families in Projective Hjelmslev Spaces

Ivan Landjev

Institute of Mathematics and Informatics, BAS

(joint work with Emiliyan Rogachev and Assia Rousseva)

1. Projective Hjelmslev Geometries

Theorem. Let R be a finite chain ring with radical $N = \operatorname{rad} R$. The following conditions are equivalent

- (1) R is a left chain ring;
- (2) the principle left ideals of R form a chain;
- (3) R is local ring and $N=R\theta$ for any $\theta\in N/N^2$;
- (4) R is a right chain ring.

- $\mathbb{F}_q \cong R/N$ the residue field of R.
- m the nilpotency index of R.
- \bullet $|R| = q^m$
- $\Gamma=\{\gamma_0=0,\gamma_1=1,\gamma_2,\ldots,\gamma_{q-1}\}$ a set of representatives modulo N, i.e. $\gamma_i\not\equiv\gamma_j\pmod N$

For every $r \in R$:

$$r = r_0 + r_1 \theta + \ldots + r_{m-1} \theta^{m-1}, \ r_i \in \Gamma,$$

where r_i are uniquely determined.

Natural homomorphism:

$$\eta_i : \begin{cases}
R & \to R/N^i \\
r_0 + r_1\theta + \dots + r_{m-1}\theta^{m-1} & \to (r_0 + \dots + r_{i-1}\theta^{i-1}) + N^i
\end{cases}$$

Theorem.

Let R be a finite chain ring of length m. For any finite module RM there exists a uniquely determined sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with

$$m \geq \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k > 0$$
,

such that $_RM$ is a direct sum of cyclic modules:

$$_RM \cong R/(\operatorname{rad} R)^{\lambda_1} \oplus R/(\operatorname{rad} R)^{\lambda_2} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_k}.$$

The sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ is called the **shape** of ${}_RM$.

The sequence $\lambda' = (\lambda'_1, \dots, \lambda'_m)$, where λ'_i is the number of λ_j 's with $\lambda_j \geq i$ is called the **dual shape** of $_RM$.

The integer k is called the **rank** of $_RM$.

The integer λ'_m is called the **free rank** of $_RM$.

The sequence
$$\lambda=(\underbrace{m,\cdots,m}_{a_m}),\underbrace{m-1,\cdots,m-1}_{a_{m-1}},\cdots,\underbrace{1,\cdots,1}_{a_1})$$
 is written as
$$m^{a_m}(m-1)^{a_{m-1}}\cdots 1^{a_1}$$

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem.

Let R be a chain ring of length m with residue field of order q. Let RM be an R-module of shape $\lambda=(\lambda_1,\ldots,\lambda_n)$. For every sequence $\mu=(\mu_1,\ldots,\mu_n)$, $\mu_1\geq\ldots\geq\mu_n\geq 0$, satisfying $\mu\leq\lambda$ (i.e. $\mu_i\leq\lambda_i$ for all i) the module RM has exactly

$$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} = \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$

submodules of shape μ . Here

$${n \brack k}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}.$$

are the Gaussian coefficients.

- \bullet $M = {}_{R}R^{n}$;
- \mathcal{P} all free submodules of M of rank 1;
- \mathcal{L} all free submodules of M of rank 2;
- $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- $\bullet \bigcirc_i$ neighbour relation: $X \bigcirc_i Y$ iff $\eta_i(X) = \eta_i(Y)$
- $[U]^{(i)} = \{X \in \mathcal{P} \mid \exists Y \in U, X \bigcirc_i Y\}$, U is a subspace
- Hjelmslev subspaces of dimension k free submodules of rank k+1;
- subspaces of shape λ submodules of shape λ ;
- Notation: $PHG(_RR^n)$, or PHG(n-1,R).

Let
$$\Sigma = (\mathcal{P}, \mathcal{L}, I) = \mathrm{PHG}(n-1, R)$$
.

Fix a Hjelmslev subspace S of (projective) dimension s-1.

Set

$$\mathfrak{P} = \{ T \cap [P]^{(m-i)} \mid T \bigcirc_i S, T \cap [P]^{(m-i)} \neq \emptyset \}.$$

 $\mathcal{L}(S)$ the set of all lines from \mathcal{L} that are contained as a set of points in some Hjelmslev subspace T with $T \bigcirc_i S$.

$$\mathfrak{I} \subset \mathfrak{P} \times \mathcal{L}(S)$$
 by $(T \cap [P]^{(m-i)}, L) \in \mathfrak{J}$ iff $T \cap [P]^{(m-i)} \cap L \neq \emptyset$.

 \mathfrak{L} a maximal family of lines from $\mathcal{L}(S)$ that are different as subsets of \mathfrak{P} .

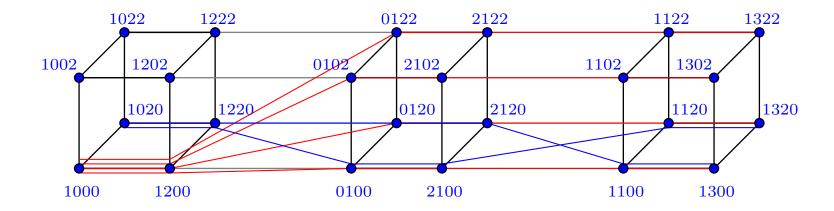
Theorem. The incidence structure $(\mathfrak{P},\mathfrak{L},\mathfrak{I})$ can be imbedded isomorphically into $PHG(n-1,R/N^{m-i})$. The missing part is a subspace of shape

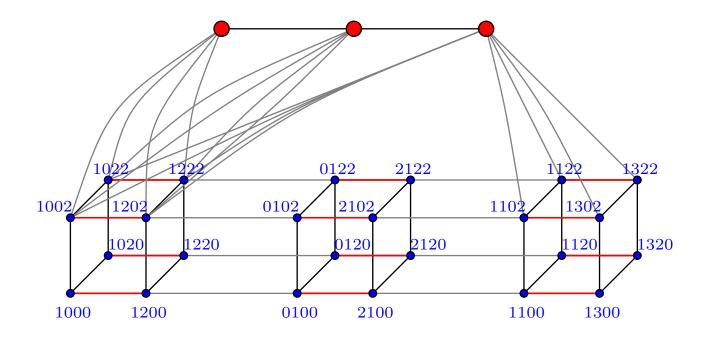
$$(m-i)^{n-s}(m-i-1)^s$$

(i.e. a neighbour class $[U]^{(1)}$ where U is a Hjelmslev subspace of the projective geometry $PHG(n-1,R/N^{m-i})$ of dimension n-s-1).

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

A Neighbour class of lines in $PHG(3, \mathbb{Z}_4)$

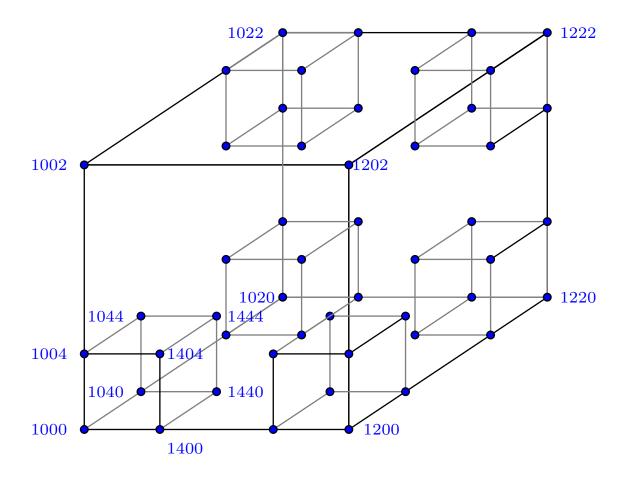




The structure is ismorphic to PG(3,2) - PG(1,q).

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

A Neighbour class of points in $PHG(3, \mathbb{Z}_8)$



2. Intersection families of subspaces

Let $\Sigma = \mathrm{PHG}(n-1,R)$ be the (left) (n-1)-dimensional projective geometry over the chain ring R with

$$R/N \cong \mathbb{F}_q, |R| = q^m$$

Definition. A family \mathcal{F} of subspaces of Σ of a given fixed shape κ is said to be τ -intersecting if the intersection of every two subspaces from \mathcal{F} contains a subspace fo shape τ .

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Problems:

- (1) What is the maximal size of a τ -intersecting family of subspaces of shape κ in PHG(n-1,R)?
- (2) What is the structure fo a τ -intersecting family of maximal cardinality in Σ ?

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem. (Hsieh, Frankl, Wilson, Tanaka)

Let t and k be integers with $0 \le t \le k$. Let \mathcal{F} be a set of k-dimensional subspaces in PG(n,q) pairwise intersecting in at least a t-dimensional subspace.

If
$$n \geq 2k+1$$
, then $|\mathcal{F}| \leq {n-t \brack k-t}_q$

Equality holds if and only if \mathcal{F} is the set of all k-dimensional subspaces, containing a fixed t-dimensional subspace of $\mathrm{PG}(n,q)$, or in case of n=2k+1, \mathcal{F} is the set of all k-dimensional subspaces in a fixed (2k-t)-dimensional subspace.

If $2k-t \leq n \leq 2k$, then $|\mathcal{F}| \leq {2k-t+1 \brack k-t}_q$. Equality holds if and only if \mathcal{F} is the set of all k-dimensional subspaces in a fixed (2k-t)-dimensional subspace.

Consider PG(n-1,q).

Let $d \leq e$ be integers with d + e = n.

Fix a subspace W with $\dim W = e - 1$.

Let \mathcal{U} be the set of all subspaces U in $\mathrm{PG}(n-1,q)$ with $\dim U=d-1$, $U\cap W=\varnothing$.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem. (Tanaka, 2006)

Let $1 \leq t \leq d$ be an integer and let \mathcal{F} be a family of subspaces from \mathcal{U} with $\dim(U' \cap U'') \geq t-1$ for every two $U', U'' \in \mathcal{U}$. Then

$$|\mathcal{F}| \le q^{(d-t)e}$$
.

Equality holds iff

- (a) \mathcal{F} consists of all subspaces U through a fixed (t-1)-dimensional subspace T with $T\cap W=\varnothing$;
- (b) in case of e=d, $\mathcal F$ is the set of all elements of $\mathcal U$ contained in a fixed (2d-t-1)-dimensional subspace V with $\dim V\cap W=d-t-1$.

Erdős-Ko-Rado-Type Theorems in Projective Hjelmslev Geometries

Theorem. Let $\mathcal{F} = \{F_1, \dots, F_M\}$ be a τ -intersecting family of subspaces in Σ of shape κ , where

$$\kappa = m^{k_m} (m-1)^{k_{m-1}} \dots 1^{k_1}, \ \tau = m^{t_m} (m-1)^{t_{m-1}} \dots 1^{t_1}.$$

Then $\eta_i(\mathcal{F}) = \{\eta_i(F_1), \dots, \eta_i(F_M)\}$ is a τ' -intersecting family of subspaces in $\Sigma' = \mathrm{PHG}(n-1,R/N^i)$ of shape κ' , where

$$\kappa' = i^{k_m} (i-1)^{k_{m-1}} \dots 1^{k_{m-i+1}}, \ \tau' = i^{t_m} (i-1)^{t_{m-1}} \dots 1^{t_{m-i+1}}.$$

Theorem. (analogue of Tanaka's theorem) Let t, k, n be integers with $1 \le t < k \le n/2$, and let $\tau = m^t$, $\kappa = m^k$. Let further $\mathcal F$ be a τ -intersecting family of subspaces of shape κ in Σ with the additional property that the subspaces from $\mathcal F$ do have no common points with a neighbor calass [W], where W is a Hjelmslew subspace with $\dim W = n - k - 1$. Then

$$|\mathcal{F}| \le q^{(k-t)(m(n-k-1)+1)}.$$

In case of equality, \mathcal{F} is one of the following:

- (a) the set of all subspaces through a fixed (t-1)-dimensional (Hjlemslev) subspace (U) with $U\cap [W]=\varnothing$;
- (b) in the case k=n/2, \mathcal{F} can also be the set of all (k-1)-dimensional subspaces on a fixed (2k-t-1)-dimensional subspace U with $\dim U \cap W = k-t-1$.

Theorem. Let t, k, n be integers with $1 \le t < k \le n/2$, and let $\tau = m^t$, $\kappa = m^k$. Let $\mathcal F$ be a τ -intersecting family of κ -subspaces in $\Sigma = \operatorname{PHG}(n-1,R)$. Then

$$|\mathcal{F}| \le {m^{n-t} \brack m^{k-t}}_{q^m} = q^{(m-1)(k-t)(n-k)} {n-t \brack 1}_q.$$

In case of equality, \mathcal{F} is one of the following:

- (a) all Hjelmslev subspaces of dimension k-1 through a fixed Hjelmslev subspace of dimension t-1;
- (b) in the case $k \leq n/2$, \mathcal{F} can also be the family of all Hjelmslev subspaces in Σ of dimension k-1 through a fixed subspace of dimension n-t-1.

4. Families of intersecting non-free subspaces

Example.

R -chain ring : $R\cong \mathbb{F}_q, |R|=q^2$

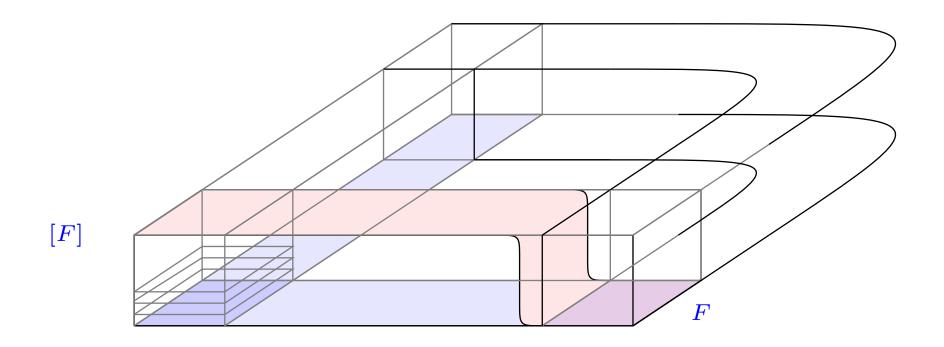
n = 4 PHG(3, R)

 $\kappa=2^21^1$ (line stripes), $\tau=2^1$ (points)

 \mathcal{F} – a maximal τ -intersecting family of κ -subspaces

- $\eta(\mathcal{F})$: (a) a pencil of lines, or
 - (b) all lines in a fixed plane of PG(3,q)

$$|\mathcal{F}| \le q^2(q+1)(q^2+q+1)$$



 $n_F=\#$ of neighbor classes of planes through [F] containing subspaces from ${\mathcal F}$ that are not entirely contained in [F].

Then
$$|\mathcal{F} \cap [F]| \leq q^2(q+1-n_F) + qn_F$$
.

For
$$n_F = 1$$
: $|\mathcal{F} \cap [F]| \le q^3 + q$.

$$|\mathcal{F}| \le (q^2 + q + 1)(q^3 + q).$$

In fact, for a maximal family we have:

$$|\mathcal{F}| = (q^2 + q + 1)(q^3 + 1).$$

Theorem. Let R be finite chain ring with $|R|=q^2$, $R/N\cong \mathbb{F}_q$. Let $k\geq 1$ be an integer and let $\tau=2^1$, $\kappa=2^k1^{k-1}$, and n=2k. Let \mathcal{F} be a τ -intersecting family of κ -subspaces in $\Sigma-\mathrm{PHG}(2k-1,R)$. Then

$$|\mathcal{F}| \le \left(q^{k+1} \begin{bmatrix} k-1 \\ 1 \end{bmatrix}_q + 1\right) \begin{bmatrix} 2k-1 \\ k-1 \end{bmatrix}_q.$$

In case of equality, \mathcal{F} is the following:

all subspaces of shape κ contained in [F], where F is a hyperplane in Σ , apart from those that have the "direction" of F, plus all κ -subspaces contained in F.