On the flag-transitive automorphism groups of 2-designs with λ prime

Alessandro Montinaro

Finite Geometries 2025 – 7th Irsee Conference Irsee (Germany), June 4, 2025

Indice

Preliminaries

2 Flag-transitive point-primitive 2-designs

Definition

Definition

Definition

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ consists of a set \mathcal{P} of v points, and a set \mathcal{B} of k-element subsets of \mathcal{P} , called **blocks**, such that every pair of distinct points is contained in exactly λ blocks.

- In general, the number of blocks $b := |\mathcal{B}|$ is at least v by Fisher's inequality, and \mathcal{D} is said to be **symmetric** if b = v;

Definition

- In general, the number of blocks $b := |\mathcal{B}|$ is at least v by Fisher's inequality, and \mathcal{D} is said to be **symmetric** if b = v;
- $r = \frac{(v-1)\lambda}{k-1}$ is the number of blocks of \mathcal{D} containing any fixed point, and it is called the **replication number** of \mathcal{D} . It results bk = vr;

Definition

- In general, the number of blocks $b := |\mathcal{B}|$ is at least v by Fisher's inequality, and \mathcal{D} is said to be **symmetric** if b = v;
- $r = \frac{(v-1)\lambda}{k-1}$ is the number of blocks of \mathcal{D} containing any fixed point, and it is called the **replication number** of \mathcal{D} . It results bk = vr;
- \mathcal{D} is non-trivial if 2 < k < v 1.

Definition

- In general, the number of blocks $b := |\mathcal{B}|$ is at least v by Fisher's inequality, and \mathcal{D} is said to be **symmetric** if b = v;
- $r = \frac{(v-1)\lambda}{k-1}$ is the number of blocks of \mathcal{D} containing any fixed point, and it is called the **replication number** of \mathcal{D} . It results bk = vr;
- \mathcal{D} is non-trivial if 2 < k < v 1.
- A flag is any incident point-block pair of \mathcal{D} .

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} .

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} . The set of all automorphisms of \mathcal{D} is a group, called **the full automorphism group of** \mathcal{D} , denoted by $Aut(\mathcal{D})$.

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} . The set of all automorphisms of \mathcal{D} is a group, called **the full automorphism group of** \mathcal{D} , denoted by $Aut(\mathcal{D})$.

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} . The set of all automorphisms of \mathcal{D} is a group, called **the full automorphism group of** \mathcal{D} , denoted by $Aut(\mathcal{D})$.

• G acts **point-transitively** on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} . The set of all automorphisms of \mathcal{D} is a group, called **the full automorphism group of** \mathcal{D} , denoted by $Aut(\mathcal{D})$.

- G acts **point-transitively** on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.
- G acts block-transitively on \mathcal{D} if for any $B, B' \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta} = B'$.

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} . The set of all automorphisms of \mathcal{D} is a group, called **the full automorphism group of** \mathcal{D} , denoted by $Aut(\mathcal{D})$.

- G acts **point-transitively** on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.
- G acts block-transitively on \mathcal{D} if for any $B, B' \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta} = B'$.
- G acts flag-transitively on \mathcal{D} if for any flags (x,B) and (x',B') of \mathcal{D} there is $\gamma \in G$ such that $(x^{\gamma},B^{\gamma})=(x',B')$.

Definition

An automorphism of $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a permutation of the point-set \mathcal{P} preserving the block-set \mathcal{B} . The set of all automorphisms of \mathcal{D} is a group, called **the full automorphism group of** \mathcal{D} , denoted by $Aut(\mathcal{D})$.

- G acts **point-transitively** on \mathcal{D} if for any $x, x' \in \mathcal{P}$ there is $\alpha \in G$ such that $x^{\alpha} = x'$.
- G acts block-transitively on \mathcal{D} if for any $B, B' \in \mathcal{P}$ there is $\beta \in G$ such that $B^{\beta} = B'$.
- G acts flag-transitively on \mathcal{D} if for any flags (x,B) and (x',B') of \mathcal{D} there is $\gamma \in G$ such that $(x^{\gamma},B^{\gamma})=(x',B')$.

flag-transitivity \Rightarrow block-transitivity \Rightarrow point-transitivity

Problem

Determine/classify the pairs (\mathcal{D}, G) , where \mathcal{D} is a 2-design admitting G as an automorphism group,

Problem

Determine/classify the pairs $(\mathcal{D}, \mathcal{G})$, where \mathcal{D} is a 2-design admitting \mathcal{G} as an automorphism group, provided some conditions on

Problem

Determine/classify the pairs (\mathcal{D}, G) , where \mathcal{D} is a 2-design admitting G as an automorphism group, provided some conditions on

ullet ${\cal D}$ (for instance, on its parameters), or

Problem

Determine/classify the pairs (\mathcal{D}, G) , where \mathcal{D} is a 2-design admitting G as an automorphism group, provided some conditions on

- ullet ${\cal D}$ (for instance, on its parameters), or
- G (like some transitivity property of G on some subset of points, blocks or flags of \mathcal{D}).

Problem

Determine/classify the pairs $(\mathcal{D}, \mathcal{G})$, where \mathcal{D} is a 2-design admitting \mathcal{G} as an automorphism group, provided some conditions on

- ullet ${\cal D}$ (for instance, on its parameters), or
- G (like some transitivity property of G on some subset of points, blocks or flags of \mathcal{D}).

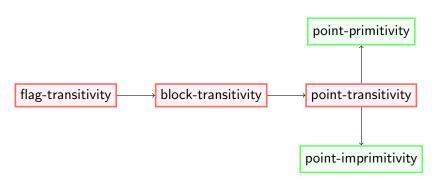
We are interested in the case where G acts flag-transitively on \mathcal{D} .

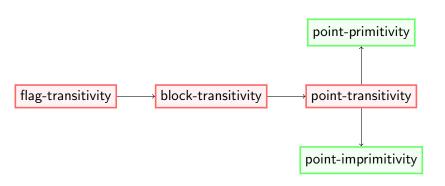
Definition

A point-transitive automorphism group G of \mathcal{D} is said to be **point-imprimitive** if G preserves a partition Σ of the point-set of \mathcal{D} in classes of size v_0 with $1 < v_0 < v$.

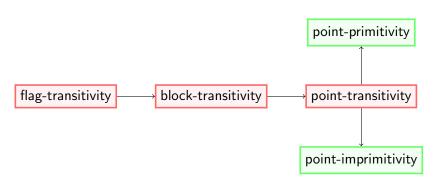
Definition

A point-transitive automorphism group G of \mathcal{D} is said to be **point-imprimitive** if G preserves a partition Σ of the point-set of \mathcal{D} in classes of size v_0 with $1 < v_0 < v$. Otherwise, G is said to be **point-primitive**.





ullet G acts flag-transitively and point-imprimitively on ${\cal D}$;



- G acts flag-transitively and point-imprimitively on \mathcal{D} ;
- ullet G acts flag-transitively and point-primitively on \mathcal{D} .

The Higman-McLaughlin Theorem

The Higman-McLaughlin Theorem

Theorem (Higman-McLaughlin, 1961)

Any flag-transitive automorphism group of a 2-design with $\lambda=1$ acts point-primitively.

Flag-Transitive Point-Imprimitive Examples

Flag-Transitive Point-Imprimitive Examples

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

Flag-Transitive Point-Imprimitive Examples

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

• \mathcal{D} is one of the two (16,6,2) biplanes with G isomorphic to $(Z_2)^4:S_4$ or $(Z_2\times Z_8).(S_4.Z_2)$, respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Relly-Reguerio (2005));

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

- \mathcal{D} is one of the two (16,6,2) biplanes with G isomorphic to $(Z_2)^4:S_4$ or $(Z_2\times Z_8).(S_4.Z_2)$, respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Relly-Reguerio (2005));
- \mathcal{D} is the complementary design of $PG_n(2)$, n odd, and $G \cong P\Gamma L_{(n+1)/2}(4)$ (Cameron-Kantor, 1978);

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

- \mathcal{D} is one of the two (16,6,2) biplanes with G isomorphic to $(Z_2)^4:S_4$ or $(Z_2\times Z_8).(S_4.Z_2)$, respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Relly-Reguerio (2005));
- \mathcal{D} is the complementary design of $PG_n(2)$, n odd, and $G \cong P\Gamma L_{(n+1)/2}(4)$ (Cameron-Kantor, 1978);
- \mathcal{D} is the 2-(45, 12, 3) design and $G \leq A\Gamma L_1(3^4)$ (Praeger, 2007);

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

- \mathcal{D} is one of the two (16,6,2) biplanes with G isomorphic to $(Z_2)^4:S_4$ or $(Z_2\times Z_8).(S_4.Z_2)$, respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Relly-Reguerio (2005));
- \mathcal{D} is the complementary design of $PG_n(2)$, n odd, and $G \cong P\Gamma L_{(n+1)/2}(4)$ (Cameron-Kantor, 1978);
- \mathcal{D} is the 2-(45, 12, 3) design and $G \leq A\Gamma L_1(3^4)$ (Praeger, 2007);
- \mathcal{D} is one of the four 2-(96, 20, 4) designs (several G) (Law-Praeger-Reichard, 2009).

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for $\lambda > 1$:

- \mathcal{D} is one of the two (16,6,2) biplanes with G isomorphic to $(Z_2)^4:S_4$ or $(Z_2\times Z_8).(S_4.Z_2)$, respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Relly-Reguerio (2005));
- \mathcal{D} is the complementary design of $PG_n(2)$, n odd, and $G \cong P\Gamma L_{(n+1)/2}(4)$ (Cameron-Kantor, 1978);
- \mathcal{D} is the 2-(45, 12, 3) design and $G \leq A\Gamma L_1(3^4)$ (Praeger, 2007);
- \mathcal{D} is one of the four 2-(96, 20, 4) designs (several G) (Law-Praeger-Reichard, 2009).

Theorem (Davies, 1987)

For any fixed λ , there are only finitely many 2- (v, k, λ) designs with a flag-transitive point-imprimitive automorphism group.

Conditions ensuring point-primitivity

Conditions ensuring point-primitivity

Theorem

Let G be any flag-transitive automorphism group of a 2- (v, k, λ) design \mathcal{D} . Then G acts point-primitively on \mathcal{D} , provided that at least one of the following conditions on the parameters of \mathcal{D} holds:

Line	Condition	Author(s)
1	$\lambda > (r,\lambda) \cdot ((r,\lambda)-1)$	Dembowski, 1968, or
2	$(r,\lambda)=1$	Kantor, 1969
3	$(r-\lambda,k)=1$	
4	$r > \lambda(k-3)$	
5	(v-1, k-1) = 1 or 2	
6	$k > 2\lambda^2(\lambda - 1)$	Devillers-Praeger, 2021–2023
7	$v > \left(2\lambda^2(\lambda - 1) - 2\right)^2$	
8	$\lambda \leq 4$ and except for eleven specific \mathcal{D}	
9	$(\nu - 1, k - 1)^2 \le \nu - 1$	Zhong-Zhou, 2023
10	(v-1, k-1) = 3 or 4	
11	k prime	

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a 2- (v, k, λ) design \mathcal{D} . If λ is a prime, then one of the following holds:

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a 2- (v, k, λ) design \mathcal{D} . If λ is a prime, then one of the following holds:

• \mathcal{D} is one of the two 2-(16,6,2) biplanes with G isomorphic to $(Z_2)^4: S_4$ or $(Z_2 \times Z_8).(S_4.Z_2)$;

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a 2- (v, k, λ) design \mathcal{D} . If λ is a prime, then one of the following holds:

- \mathcal{D} is one of the two 2-(16, 6, 2) biplanes with G isomorphic to $(Z_2)^4: S_4$ or $(Z_2 \times Z_8).(S_4.Z_2)$;
- ② \mathcal{D} is the 2-(45, 12, 3) design and $G \leq A\Gamma L_1(3^4)$;

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a 2- (v, k, λ) design \mathcal{D} . If λ is a prime, then one of the following holds:

- ① \mathcal{D} is one of the two 2-(16,6,2) biplanes with G isomorphic to $(Z_2)^4: S_4$ or $(Z_2 \times Z_8).(S_4.Z_2)$;
- ② \mathcal{D} is the 2-(45, 12, 3) design and $G \leq A\Gamma L_1(3^4)$;
- **3** \mathcal{D} is a 2- $(2^{2^{j+1}}(2^{2^j}+2), 2^{2^j}(2^{2^j}+1), 2^{2^j}+1)$ design when $2^{2^j}+1>3$ is a Fermat prime.

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a 2- (v, k, λ) design \mathcal{D} . If λ is a prime, then one of the following holds:

- ① \mathcal{D} is one of the two 2-(16,6,2) biplanes with G isomorphic to $(Z_2)^4: S_4$ or $(Z_2 \times Z_8).(S_4.Z_2)$;
- ② \mathcal{D} is the 2-(45, 12, 3) design and $G \leq A\Gamma L_1(3^4)$;
- **3** \mathcal{D} is a 2- $(2^{2^{j+1}}(2^{2^j}+2), 2^{2^j}(2^{2^j}+1), 2^{2^j}+1)$ design when $2^{2^j}+1>3$ is a Fermat prime.

There are no known examples corresponding to case (3).

• apply the Theorem of Camina-Zieschang (1989);

- apply the Theorem of Camina-Zieschang (1989);
- determine $(\mathcal{D}_0, G_{\Delta}^{\Delta})$ using the Liebeck-Saxl result (1985) on primitive permutation groups containing elements of large prime order;

- apply the Theorem of Camina-Zieschang (1989);
- determine $(\mathcal{D}_0, G_{\Delta}^{\Delta})$ using the Liebeck-Saxl result (1985) on primitive permutation groups containing elements of large prime order;
- determine $(\mathcal{D}_1, \mathcal{G}^{\Sigma})$ using the above mentioned bounds by Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group theory;

- apply the Theorem of Camina-Zieschang (1989);
- determine $(\mathcal{D}_0, G_{\Delta}^{\Delta})$ using the Liebeck-Saxl result (1985) on primitive permutation groups containing elements of large prime order;
- determine $(\mathcal{D}_1, G^{\Sigma})$ using the above mentioned bounds by Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group theory;
- match the results obtained on $(\mathcal{D}_0, G_{\Delta}^{\Delta})$ and on $(\mathcal{D}_1, G^{\Sigma})$.

Indice

Preliminaries

2 Flag-transitive point-primitive 2-designs

Flag-transitive point-primitive 2-designs with small λ

Flag-transitive point-primitive 2-designs with small λ

Theorem

Let \mathcal{D} be a non-trivial 2- (v, k, λ) design admitting a flag-transitive point-primitive automorphism group G. If $G \nleq A\Gamma L_1(v)$, v power of a prime, then (\mathcal{D}, G) is classified in the following cases:

Conditions on \mathcal{D}	Conditions on G	Author(s)	
$\lambda = 1$		Buekenhout, Delandtsheer,	
		Doyen, Kleidman, Liebeck	
		Saxl, 1990	
$\lambda = 2, v = b$		O'Relly-Reguerio, 2005	
$\lambda = 2, v < b$	G almost simple	Alavi, Devillers,	
		Daneshkah, Liang,	
		M., Praeger, Xia,	
		Zhou et. al 2016–2025	
$\lambda = 2, v < b$	G affine	Liang-M., 2025	
$2 < \lambda \le 10, v = b$	G affine	Alavi-Daneshkhah-M., 2025+	

Example 2 (from $SL_n(q)$ or $C_j \cup S$ -subgroups, j = 3, 8)

Let $V = V_n(q)$, where $q = p^{d/n}$, and let $G = T : G_0$, $x \in V^*$, $\mathbb{F}_q^* = \langle \omega \rangle$ and $\sigma : (y_1, ..., y_n) \mapsto (y_1^p, ..., y_n^p)$. Then the following hold:

$$\begin{array}{c|cccc} (v,k,r,b,\lambda) & \text{Base Block} & G_0 & Aut(\mathcal{D}) \\ \left(p^d,3,p^d-1,\frac{p^d(p^d-1)}{3},2\right) & \left\langle \omega^{\frac{(p^d-1)j}{3}}\right\rangle x & SL_n(q) \unlhd G_0 & A\Gamma L_n(q) \\ & & Sp_n(q) \unlhd G_0 & \\ & G_2(q) \unlhd G_0 & \\ & n=6,\ q \ \text{even} & \\ & GL_1(q^n) \unlhd G_0 & \\ & \left(p^d,p^t,2\frac{p^d-1}{p^t-1},2p^{d-t}\frac{p^d-1}{p^t-1},2\right) & \left\langle x\right\rangle_{GF(p^t)} & GL_n(q):\left\langle \sigma^{t/2}\right\rangle & G \\ \end{array}$$

Note that, $p^d \equiv 1 \pmod{3}$ in the first family of examples, t is a proper even divisor of d/n in the second one.

Example 3 (from C_6 -subgroups)

Line	(v, k, r, b, λ)	Base Block	G ₀
1	(5 ² , 4, 16, 100, 2)	$\{(0,0),(0,1),(\omega,\omega^3),(\omega^3,\omega^3)\}$	$(Z_4 \times Z_4): Z_2$
2	(7 ² , 3, 48, 784, 2)	$\{(0,0),(0,1),(1,\omega)\}$	$Z_3 \times Z_2.S_4^-$
3 4			$Z_2.S_4^-$
5	(112 2 120 4040 2)	[(0,0),(0,1),(3,4)]	$Z_3 \times Q_{16}$
	$(11^2, 3, 120, 4840, 2)$	$\{(0,0),(0,1),(\omega^3,\omega^4)\}$	$Z_5 \times GL_2(3)$
6		$\{(0,0),(0,1),(\omega^4,\omega^2)\}$	
7		$\left\{(0,0),(0,1),(\omega^2,\omega^2)\right\}$	$Z_5 \times SL_2(3)$
8	$(11^2, 4, 80, 2420, 2)$	$\left\{(0,0),(0,1),(\omega^4,\omega),(\omega^9,\omega^5)\right\}$	$Z_5 \times SD_{16}$
9	(19 ² , 6, 144, 8664, 2)	$\{(0,0),(0,1),(\omega^4,\omega^5),(\omega^4,\omega^{14}),(\omega^7,\omega),(\omega^7,\omega^{17})\}$	$Z_9 \times GL_2(3)$
10			$Z_9 imes SD_{16}$
11		$\{(0,0),(0,1),(\omega^5,\omega^{11}),(\omega^5,\omega^{13}),(\omega^8,\omega^{10}),(\omega^8,\omega^{14})\}$	$Z_9 \times GL_2(3)$
12			$Z_9 \times SD_{16}$
13		$\{(0,0),(0,1),(1,\omega^{12}),(1,\omega^{13}),(\omega^{15},\omega^{9}),(\omega^{15},\omega^{14})\}$	$Z_9 \times SD_{16}$
14		$\{(0,0),(0,1),(\omega,\omega^{10}),(\omega,\omega^{17}),(\omega^4,\omega^2),(\omega^4,\omega^{11})\}$	
15		$\{(0,0),(0,1),(\omega^2,\omega^2),(\omega^2,\omega^{12}),(\omega^5,\omega^5),(\omega^5,\omega^{16})\}$	
16		$\{(0,0),(0,1),(\omega^3,\omega^9),(\omega^3,\omega^{12}),(\omega^6,\omega^2),(\omega^6,\omega^{15})\}$	
17	(23 ² , 3, 528, 93104, 2)	$\{(0,0),(0,1),(\omega^6,\omega^7)\}$	$Z_{11} \times Z_2.S_4^-$
18		$\{(0,0),(0,1),(\omega^7,\omega^{17})\}$	
19		$\{(0,0),(0,1),(\omega^8,\omega^{17})\}$	
20		$\left\{(0,0),(0,1),(\omega^{10},\omega^{17})\right\}$	

Example 4 (from $C_j \cup S$ -subgroups, j = 4, 6)

Line	(v, k, r, b, λ)	Base Block	G_0
1	$(2^6, 2^2, 42, 672, 2)$	$\left\langle e_1 \otimes e_1^{\prime}, e_2 \otimes e_1^{\prime} + e_3 \otimes e_2^{\prime} \right\rangle_{\mathbb{F}_2}$	$Z_7 \times S_3$
2		$\left\langle e_1 \otimes e_1', e_2 \otimes e_1' + (e_2 + e_3) \otimes e_2' \right\rangle_{\mathbb{F}_2}$	$Z_7 \times S_3$
3	$(2^6, 7, 21, 192, 2)$	$\langle e_1, e_2, e_3 \rangle_{\mathbb{F}_2}^* \otimes e_1'$	Z_{21}
4 5		2	$F_{21} \times Z_3$ $PSL_2(7) \times Z_3$
6	$(2^6, 7, 21, 192, 2)$	$\frac{\{e_1^{\gamma^i} \otimes e_1' + e_2^{\gamma^i} \otimes e_2'\}_{i=0}^6}{\langle e_1 \rangle_{\mathbb{F}_3} \cup \left(\langle e_1 \rangle_{\mathbb{F}_3} + e_2 + e_3\right)}$	Z_{21}
7	(3 ⁴ , 6, 16, 216, 2)	$\langle e_1 \rangle_{\mathbb{F}_3} \cup \left(\langle e_1 \rangle_{\mathbb{F}_3} + e_2 + e_3 \right)$	$((Z_2.S_4^-):Z_2):Z_2$
8			$(Z_2.S_4^-)$: Z_2
9			$((Z_8 \times Z_2) : Z_2) : Z_3$
10			$(((Z_4 \times Z_2) : Z_2) : Z_3) : Z_2$
11 12			$(Z_2 \times SD_{16}): Z_2$
13			$Z_2 \times SD_{16}$ $(Z_8 \times Z_2) : Z_2$
14			$(Z_8 \wedge Z_2) : Z_2$ $(Z_8 : Z_2) : Z_2$
15			$(Z_2 \times Z_2) \cdot (Z_4 \times Z_2)$
16			$Z_4.D_8$
17			$(Z_8 \times Z_2) : Z_2$
18			$Z_8:(Z_2\times Z_2)$
19			$(Z_2 \times Q_8): Z_2$
20	$(3^4, 3^2, 20, 180, 2)$	$\langle e_1, e_2 \rangle_{\mathbb{F}_3}$	$(Z_8 \circ SL_2(5)): Z_2$
21			$Z_8 \circ SL_2(5)$
22			$(Z_4 \circ SL_2(5)) : Z_2 \text{ (two copies)}$
23			$(D_8 \circ Q_8).F_{10}$

λ Prime: Reduction & Alternating Case

λ Prime: Reduction & Alternating Case

Theorem (Zhang-Chen, 2023)

Let $\mathcal D$ be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G. Then the socle T of G is either nonabelian simple, or an elementary abelian p-group for some prime p.

λ Prime: Reduction & Alternating Case

Theorem (Zhang-Chen, 2023)

Let $\mathcal D$ be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G. Then the socle T of G is either nonabelian simple, or an elementary abelian p-group for some prime p.

Theorem (Zhang-Chen-Zhou, 2024)

Let \mathcal{D} be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle $T\cong A_n,\ n\geq 5$. Then one of the following holds:

- \mathcal{D} is a 2-(6,3,2) design and $G \cong A_5$;
- ② \mathcal{D} is a 2-(10, 4, 2) design and $G \cong A_5, S_5, A_6, P\Sigma L_2(9)$;
- **3** \mathcal{D} is a 2-(10, 6, 5) design and $G \cong A_5, S_5, A_6, S_6$;
- \mathcal{D} is a 2-(15, 7, 3) design and $G \cong A_7, A_8$.

Sporadic Groups

Sporadic Groups

Theorem (Alavi-Daneshkhah-M., 2025)

Let \mathcal{D} be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle T a simple sporadic group. Then (\mathcal{D},G) is (up to isomorphism) as one of the rows in the following table.

Table: Sporadic simple groups and flag-transitive 2-designs with λ prime.

Line	V	Ь	r	k	λ	G	G_{lpha}	G_B
1	12	22	11	6	5	M_{11}	$PSL_2(11)$	A_6
2	22	77	21	6	5	M_{22}	$PSU_3(4)$	$2^4:A_6$
	22	77	21	6	5	$M_{22}:2$	$PSU_{3}(4):2$	$2^4:S_6$
3	176	1100	50	8	2	$_{\mathrm{HS}}$	$PSU_3(5):2$	S_8

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let $\mathcal D$ be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle T a finite exceptional simple group. Then one of the following holds

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let $\mathcal D$ be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle T a finite exceptional simple group. Then one of the following holds

• T is ${}^2\mathrm{B}_2(\mathrm{q})$ with q-1>3 is a Mersenne prime, and $\mathcal D$ is the $2\text{-}(q^2+1,q,q-1)$ design arising from the Suzuki-Tits ovoid;

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let \mathcal{D} be a nontrivial 2- (v, k, λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle T a finite exceptional simple group. Then one of the following holds

- T is ${}^2\mathrm{B}_2(\mathrm{q})$ with q-1>3 is a Mersenne prime, and $\mathcal D$ is the $2\text{-}(q^2+1,q,q-1)$ design arising from the Suzuki-Tits ovoid;
- ② T is $G_2(q)$ with $q+1\geq 5$ a Fermat prime, and $\mathcal D$ is the 2- $\left(\frac{q^3}{2}(q^3-1),\frac{q^3}{2},q+1\right)$ design

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let $\mathcal D$ be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle T a finite exceptional simple group. Then one of the following holds

- T is ${}^2\mathrm{B}_2(\mathrm{q})$ with q-1>3 is a Mersenne prime, and $\mathcal D$ is the 2- $(q^2+1,q,q-1)$ design arising from the Suzuki-Tits ovoid;
- ② T is $G_2(q)$ with $q+1\geq 5$ a Fermat prime, and $\mathcal D$ is the 2- $\left(\frac{q^3}{2}(q^3-1),\frac{q^3}{2},q+1\right)$ design and it is identified with the coset geometry $\cos(T,H,K)$, where $H=\mathrm{SU}_3(q):\mathbb Z_2$ and $K=[q^6]:Z_{q-1};$

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let $\mathcal D$ be a nontrivial 2- (v,k,λ) design with λ prime admitting a flag-transitive and point-primitive automorphism group G with socle $\mathcal T$ a finite exceptional simple group. Then one of the following holds

- T is ${}^2\mathrm{B}_2(\mathrm{q})$ with q-1>3 is a Mersenne prime, and $\mathcal D$ is the 2- $(q^2+1,q,q-1)$ design arising from the Suzuki-Tits ovoid;
- ② T is $G_2(q)$ with $q+1\geq 5$ a Fermat prime, and $\mathcal D$ is the $2-\left(\frac{q^3}{2}(q^3-1),\frac{q^3}{2},q+1\right)$ design and it is identified with the coset geometry $\cos(\mathcal T,H,K)$, where $H=\mathrm{SU}_3(q):\mathbb Z_2$ and $K=[q^6]:Z_{q-1};$

Example 5

Using the Higman-McLaughlin setting: cos(T, H, K) = (P, B, I), where

- $\mathcal{P} = \{ Hx : x \in T \}, \ \mathcal{B} = \{ Ky : y \in T \};$
- $Hx \mathcal{I} Ky$ if and only if $Hx \cap Ky \neq \emptyset$.

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let \mathcal{D} be a nontrivial symmetric design with λ prime admitting a flag-transitive and point-primitive automorphism group G of affine type. Then $G \leq A\Gamma L_1(q)$, or \mathcal{D} is a symmetric 2-(16,6,2) design with full automorphism group $2^4 : S_6$ and point-stabilizer S_6 .

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let \mathcal{D} be a nontrivial symmetric design with λ prime admitting a flag-transitive and point-primitive automorphism group G of affine type. Then $G \leq A\Gamma L_1(q)$, or \mathcal{D} is a symmetric 2-(16, 6, 2) design with full automorphism group $2^4 : S_6$ and point-stabilizer S_6 .

Examples occur in the non-symmetric design case:

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let $\mathcal D$ be a nontrivial symmetric design with λ prime admitting a flag-transitive and point-primitive automorphism group G of affine type. Then $G \leq A\Gamma L_1(q)$, or $\mathcal D$ is a symmetric 2-(16, 6, 2) design with full automorphism group $2^4: S_6$ and point-stabilizer S_6 .

Examples occur in the non-symmetric design case:

Example 6 (Buratti-Martinović-Nakić, 2025)

There are two non isomorphic flag-transitive 2-(3³, 6, 5) designs with $AGL_1(3^3) \le G \le A\Gamma L_1(3^3)$.

THANK YOU FOR YOUR ATTENTION!