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2-designs

Definition

A 2-(v , k , λ) design D = (P,B) consists of a set P of v points, and a set
B of k-element subsets of P, called blocks, such that every pair of distinct
points is contained in exactly λ blocks.

- In general, the number of blocks b := |B| is at least v by Fisher’s
inequality, and D is said to be symmetric if b = v ;

- r = (v−1)λ
k−1 is the number of blocks of D containing any fixed point,

and it is called the replication number of D. It results bk = vr ;

- D is non-trivial if 2 < k < v − 1.

- A flag is any incident point-block pair of D.
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Automorphisms of 2-designs

Definition

An automorphism of D = (P,B) is a permutation of the point-set P
preserving the block-set B.

The set of all automorphisms of D is a group,
called the full automorphism group of D, denoted by Aut(D).

G acts point-transitively on D if for any x , x ′ ∈ P there is α ∈ G
such that xα = x ′.

G acts block-transitively on D if for any B,B ′ ∈ P there is β ∈ G
such that Bβ = B ′.

G acts flag-transitively on D if for any flags (x ,B) and (x ′,B ′) of D
there is γ ∈ G such that (xγ ,Bγ) = (x ′,B ′).

flag-transitivity ⇒block-transitivity ⇒point-transitivity
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A Classical Problem

Problem

Determine/classify the pairs (D,G ), where D is a 2-design admitting
G as an automorphism group,

provided some conditions on

D (for instance, on its parameters), or

G (like some transitivity property of G on some subset of
points, blocks or flags of D).

We are interested in the case where G acts flag-transitively on D.
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Flag-transitivity & Point-primitivity

Definition

A point-transitive automorphism group G of D is said to be
point-imprimitive if G preserves a partition Σ of the point-set of D in
classes of size v0 with 1 < v0 < v .

Otherwise, G is said to be
point-primitive.
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Flag-transitivity & Point-primitivity

flag-transitivity block-transitivity point-transitivity

point-primitivity

point-imprimitivity

G acts flag-transitively and point-imprimitively on D;

G acts flag-transitively and point-primitively on D.
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The Higman-McLaughlin Theorem

Theorem (Higman-McLaughlin, 1961)

Any flag-transitive automorphism group of a 2-design with λ = 1 acts
point-primitively.
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Flag-Transitive Point-Imprimitive Examples

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for λ > 1:

D is one of the two (16, 6, 2) biplanes with G isomorphic to (Z2)
4 : S4

or (Z2 × Z8).(S4.Z2), respectively, (Husain (1945) and, independently,
by Nandi (1946), and O’Relly-Reguerio (2005));

D is the complementary design of PGn(2), n odd, and
G ∼= PΓL(n+1)/2(4) (Cameron-Kantor, 1978);

D is the 2-(45, 12, 3) design and G ≤ AΓL1(3
4) (Praeger, 2007);

D is one of the four 2-(96, 20, 4) designs (several G )
(Law-Praeger-Reichard, 2009).

Theorem (Davies, 1987)

For any fixed λ, there are only finitely many 2-(v , k, λ) designs with a
flag-transitive point-imprimitive automorphism group.
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Conditions ensuring point-primitivity

Theorem

Let G be any flag-transitive automorphism group of a 2-(v , k, λ) design D.
Then G acts point-primitively on D, provided that at least one of the
following conditions on the parameters of D holds:

Line Condition Author(s)
1 λ > (r , λ) · ((r , λ)− 1) Dembowski, 1968, or
2 (r , λ) = 1 Kantor, 1969
3 (r − λ, k) = 1
4 r > λ(k − 3)
5 (v − 1, k − 1) = 1 or 2
6 k > 2λ2(λ− 1) Devillers-Praeger, 2021–2023

7 v >
(
2λ2(λ− 1)− 2

)2
8 λ ≤ 4 and except for eleven specific D
9 (v − 1, k − 1)2 ≤ v − 1 Zhong-Zhou, 2023
10 (v − 1, k − 1) = 3 or 4
11 k prime
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The Higman-McLaughlin theorem for 2-designs with λ
prime

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a
2-(v , k , λ) design D. If λ is a prime, then one of the following holds:

1 D is one of the two 2-(16, 6, 2) biplanes with G isomorphic to
(Z2)

4 : S4 or (Z2 × Z8).(S4.Z2);

2 D is the 2-(45, 12, 3) design and G ≤ AΓL1(3
4);

3 D is a 2-(22
j+1

(22
j
+ 2), 22

j
(22

j
+ 1), 22

j
+ 1) design when 22

j
+ 1 > 3

is a Fermat prime.

There are no known examples corresponding to case (3).
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The Higman-McLaughlin theorem for 2-designs with λ
prime: proof main ingredients.

apply the Theorem of Camina-Zieschang (1989);

determine (D0,G
∆
∆ ) using the Liebeck-Saxl result (1985) on primitive

permutation groups containing elements of large prime order;

determine (D1,G
Σ) using the above mentioned bounds by

Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

match the results obtained on (D0,G
∆
∆ ) and on (D1,G

Σ).

12 / 22



The Higman-McLaughlin theorem for 2-designs with λ
prime: proof main ingredients.

apply the Theorem of Camina-Zieschang (1989);

determine (D0,G
∆
∆ ) using the Liebeck-Saxl result (1985) on primitive

permutation groups containing elements of large prime order;

determine (D1,G
Σ) using the above mentioned bounds by

Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

match the results obtained on (D0,G
∆
∆ ) and on (D1,G

Σ).

12 / 22



The Higman-McLaughlin theorem for 2-designs with λ
prime: proof main ingredients.

apply the Theorem of Camina-Zieschang (1989);

determine (D0,G
∆
∆ ) using the Liebeck-Saxl result (1985) on primitive

permutation groups containing elements of large prime order;

determine (D1,G
Σ) using the above mentioned bounds by

Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

match the results obtained on (D0,G
∆
∆ ) and on (D1,G

Σ).

12 / 22



The Higman-McLaughlin theorem for 2-designs with λ
prime: proof main ingredients.

apply the Theorem of Camina-Zieschang (1989);

determine (D0,G
∆
∆ ) using the Liebeck-Saxl result (1985) on primitive

permutation groups containing elements of large prime order;

determine (D1,G
Σ) using the above mentioned bounds by

Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

match the results obtained on (D0,G
∆
∆ ) and on (D1,G

Σ).

12 / 22



The Higman-McLaughlin theorem for 2-designs with λ
prime: proof main ingredients.

apply the Theorem of Camina-Zieschang (1989);

determine (D0,G
∆
∆ ) using the Liebeck-Saxl result (1985) on primitive

permutation groups containing elements of large prime order;

determine (D1,G
Σ) using the above mentioned bounds by

Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

match the results obtained on (D0,G
∆
∆ ) and on (D1,G

Σ).

12 / 22



Indice

1 Preliminaries

2 Flag-transitive point-primitive 2-designs

13 / 22



Flag-transitive point-primitive 2-designs with small λ

Theorem

Let D be a non-trivial 2-(v , k , λ) design admitting a flag-transitive
point-primitive automorphism group G . If G ≰ AΓL1(v), v power of a
prime, then (D,G ) is classified in the following cases:

Conditions on D Conditions on G Author(s)

λ = 1 Buekenhout, Delandtsheer,
Doyen, Kleidman, Liebeck
Saxl, 1990

λ = 2, v = b O’Relly-Reguerio, 2005

λ = 2, v < b G almost simple Alavi, Devillers,
Daneshkah, Liang,
M., Praeger, Xia,
Zhou et. al 2016–2025

λ = 2, v < b G affine Liang-M., 2025

2 < λ ≤ 10, v = b G affine Alavi-Daneshkhah-M., 2025+
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Example 2 ( from SLn(q) or Cj ∪ S-subgroups, j = 3, 8)

Let V = Vn(q), where q = pd/n, and let G = T : G0, x ∈ V ∗, F∗
q = ⟨ω⟩

and σ : (y1, ..., yn) 7→ (yp1 , ..., y
p
n ). Then the following hold:

(v , k, r , b, λ) Base Block G0 Aut(D)(
pd , 3, pd − 1, pd (pd−1)

3
, 2
) 〈

ω
(pd−1)j

3

〉
x SLn(q)⊴ G0 AΓLn(q)

Spn(q)⊴ G0

G2(q)⊴ G0

n = 6, q even
GL1(q

n)⊴ G0

(pd , pt , 2 pd−1
pt−1

, 2pd−t pd−1
pt−1

, 2) ⟨x⟩GF (pt ) GLn(q) :
〈
σt/2

〉
G

Note that, pd ≡ 1 (mod 3) in the first family of examples, t is a proper
even divisor of d/n in the second one.
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Example 3 (from C6-subgroups)

Line (v, k, r, b, λ) Base Block G0

1 (52, 4, 16, 100, 2)
{
(0, 0), (0, 1), (ω, ω3), (ω3, ω3)

}
(Z4 × Z4) : Z2

2 (72, 3, 48, 784, 2) {(0, 0), (0, 1), (1, ω)} Z3 × Z2.S
−
4

3 Z2.S
−
4

4 Z3 × Q16

5 (112, 3, 120, 4840, 2)
{
(0, 0), (0, 1), (ω3, ω4)

}
Z5 × GL2(3)

6
{
(0, 0), (0, 1), (ω4, ω2)

}
7

{
(0, 0), (0, 1), (ω2, ω2)

}
Z5 × SL2(3)

8 (112, 4, 80, 2420, 2)
{
(0, 0), (0, 1), (ω4, ω), (ω9, ω5)

}
Z5 × SD16

9 (192, 6, 144, 8664, 2)
{
(0, 0), (0, 1), (ω4, ω5), (ω4, ω14), (ω7, ω), (ω7, ω17)

}
Z9 × GL2(3)

10 Z9 × SD16

11
{
(0, 0), (0, 1), (ω5, ω11), (ω5, ω13), (ω8, ω10), (ω8, ω14)

}
Z9 × GL2(3)

12 Z9 × SD16

13
{
(0, 0), (0, 1), (1, ω12), (1, ω13), (ω15, ω9), (ω15, ω14)

}
Z9 × SD16

14
{
(0, 0), (0, 1), (ω, ω10), (ω, ω17), (ω4, ω2), (ω4, ω11)

}
15

{
(0, 0), (0, 1), (ω2, ω2), (ω2, ω12), (ω5, ω5), (ω5, ω16)

}
16

{
(0, 0), (0, 1), (ω3, ω9), (ω3, ω12), (ω6, ω2), (ω6, ω15)

}
17 (232, 3, 528, 93104, 2)

{
(0, 0), (0, 1), (ω6, ω7)

}
Z11 × Z2.S

−
4

18
{
(0, 0), (0, 1), (ω7, ω17)

}
19

{
(0, 0), (0, 1), (ω8, ω17)

}
20

{
(0, 0), (0, 1), (ω10, ω17)

}
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Example 4 (from Cj ∪ S-subgroups, j = 4, 6)

Line (v, k, r, b, λ) Base Block G0

1 (26, 22, 42, 672, 2)
〈
e1 ⊗ e

′
1 , e2 ⊗ e

′
1 + e3 ⊗ e

′
2

〉
F2

Z7 × S3

2
〈
e1 ⊗ e′1, e2 ⊗ e′1 + (e2 + e3) ⊗ e

′
2

〉
F2

Z7 × S3

3 (26, 7, 21, 192, 2) ⟨e1, e2, e3⟩∗F2 ⊗ e
′
1 Z21

4 F21 × Z3
5 PSL2(7) × Z3

6 (26, 7, 21, 192, 2) {eγ
i

1 ⊗ e
′
1 + e

γi

2 ⊗ e
′
2}

6
i=0 Z21

7 (34, 6, 16, 216, 2) ⟨e1⟩F3 ∪
(
⟨e1⟩F3 + e2 + e3

) ((
Z2.S

−
4

)
: Z2

)
: Z2

8
(
Z2.S

−
4

)
: Z2

9 ((Z8 × Z2) : Z2) : Z3
10 (((Z4 × Z2) : Z2) : Z3) : Z2
11 (Z2 × SD16) : Z2
12 Z2 × SD16
13 (Z8 × Z2) : Z2
14 (Z8 : Z2) : Z2
15 (Z2 × Z2) . (Z4 × Z2)
16 Z4.D8
17 (Z8 × Z2) : Z2
18 Z8 : (Z2 × Z2)
19 (Z2 × Q8) : Z2

20 (34, 32, 20, 180, 2) ⟨e1, e2⟩F3 (Z8 ◦ SL2(5)) : Z2

21 Z8 ◦ SL2(5)
22 (Z4 ◦ SL2(5)) : Z2 (two copies)
23 (D8 ◦ Q8).F10
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λ Prime: Reduction & Alternating Case

Theorem (Zhang-Chen, 2023)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G . Then the socle
T of G is either nonabelian simple, or an elementary abelian p-group for
some prime p.

Theorem (Zhang-Chen-Zhou, 2024)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G with socle
T ∼= An, n ≥ 5. Then one of the following holds:

1 D is a 2-(6, 3, 2) design and G ∼= A5;

2 D is a 2-(10, 4, 2) design and G ∼= A5,S5,A6,PΣL2(9);

3 D is a 2-(10, 6, 5) design and G ∼= A5,S5,A6,S6;

4 D is a 2-(15, 7, 3) design and G ∼= A7,A8.
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Sporadic Groups

Theorem (Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
simple sporadic group. Then (D,G ) is (up to isomorphism) as one of the
rows in the following table.

Table: Sporadic simple groups and flag-transitive 2-designs with λ prime.

Line v b r k λ G Gα GB

1 12 22 11 6 5 M11 PSL2(11) A6

2 22 77 21 6 5 M22 PSU3(4) 24:A6

22 77 21 6 5 M22:2 PSU3(4):2 24:S6
3 176 1100 50 8 2 HS PSU3(5):2 S8
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Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
finite exceptional simple group. Then one of the following holds

1 T is 2B2(q) with q − 1 > 3 is a Mersenne prime, and D is the
2-(q2 + 1, q, q − 1) design arising from the Suzuki-Tits ovoid;

2 T is G2(q) with q + 1 ≥ 5 a Fermat prime, and D is the

2-
(
q3

2 (q
3 − 1), q

3

2 , q + 1
)
design

and it is identified with the coset

geometry cos(T ,H,K ), where H = SU3(q) : Z2 and K = [q6] : Zq−1;

Example 5

Using the Higman-McLaughlin setting: cos(T ,H,K ) = (P,B, I), where
P = {Hx : x ∈ T}, B = {Ky : y ∈ T};
Hx I Ky if and only if Hx ∩ Ky ̸= ∅.
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The Affine Case

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let D be a nontrivial symmetric design with λ prime admitting a
flag-transitive and point-primitive automorphism group G of affine type.
Then G ≤ AΓL1(q), or D is a symmetric 2-(16, 6, 2) design with full
automorphism group 24 : S6 and point-stabilizer S6.

Examples occur in the non-symmetric design case:

Example 6 (Buratti-Martinović-Nakić, 2025)

There are two non isomorphic flag-transitive 2-(33, 6, 5) designs with
AGL1(3

3)⊴ G ≤ AΓL1(3
3).
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