On the *Q*-polynomial property of bipartite graphs with a uniform structure

Giusy Monzillo

(Joint work with B. Fernández, R. Maleki, and Š. Miklavič)

Finite Geometries 2025 - 7th Irsee Conference August 31 - September 6, 2025

Notations and preliminaries

 $\Gamma=(X,\mathcal{R})$: (simple, connected, undirected) graph with vertex set X and edge set \mathcal{R}

$$\partial(x,y)$$
: distance between $x,y\in X$

$$\varepsilon(x) = \max\{\partial(x,y) \mid y \in X\}$$
: *eccentricity* of x

$$D = \max{\{\varepsilon(x) \mid x \in X\}}$$
: *diameter* of Γ

$$\Gamma_i(x) = \{ y \in X \mid \partial(x, y) = i \} \ (\Gamma(x) := \Gamma_1(x))$$

V : \mathbb{R} -vector space of column vectors indexed by X

 $M: \mathbb{R}$ -algebra of matrices with rows and columns indexed by X

The adjacency matrix

 $A \in M$ with

$$(A)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = 1, \\ 0 & \text{otherwise} \end{cases}$$

is called the *adjacency matrix* of Γ .

The adjacency matrix

 $A \in M$ with

$$(A)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = 1, \\ 0 & \text{otherwise} \end{cases}$$

is called the *adjacency matrix* of Γ .

An A*-type matrix

$$x \in X$$
, $\varepsilon := \varepsilon(x)$
 $\{\theta_i^*\}_{i=0}^{\varepsilon}$: pairwise distinct (real) scalars

$$A^* := A^*(\theta_0^*, \theta_1^*, \dots, \theta_{\varepsilon}^*; x) \in M$$
 is diagonal with

$$(A^*)_{yy} = \theta_i^* \iff \partial(x,y) = i \qquad (y \in X).$$

A generalized *Q*-polynomial property

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and V_i ($0 \le i \le \mathcal{D}$) the ith eigenspace of A.

A generalized *Q*-polynomial property

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and V_i ($0 \le i \le \mathcal{D}$) the ith eigenspace of A.

 Γ is *Q-polynomial* w.r.t. \times if

- (i) there is an A^* -type matrix (w.r.t. x),
- (ii) there is an **ordering** $V_{i_0}, V_{i_1}, \ldots, V_{i_D}$ of the eigenspaces of A such that

$$A^*V_{i_j} \subseteq V_{i_{j-1}} + V_{i_j} + V_{i_{j+1}} \qquad (0 \le j \le \mathcal{D}).$$

A generalized *Q*-polynomial property

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and V_i ($0 \le i \le \mathcal{D}$) the ith eigenspace of A.

 Γ is *Q-polynomial w.r.t.* x if

- (i) there is an A^* -type matrix (w.r.t. x),
- (ii) there is an **ordering** $V_{i_0}, V_{i_1}, \ldots, V_{i_D}$ of the eigenspaces of A such that

$$A^*V_{i_j} \subseteq V_{i_{j-1}} + V_{i_j} + V_{i_{j+1}} \qquad (0 \le j \le \mathcal{D}).$$

 $\Rightarrow A^*$ is a dual adjacency matrix of Γ w.r.t. \times and $\{V_{i_i}\}_{i=0}^{\mathcal{D}}$.

Where does it come from? What's new?

Fact: A distance-regular graph which is Q-polynomial in the standard sense has a dual adjacency matrix for every $x \in X$.

Where does it come from? What's new?

Fact: A distance-regular graph which is Q-polynomial in the standard sense has a dual adjacency matrix for every $x \in X$.

- ⇒ The *new* definition
 - (i) extends to any (simple, connected, undirected) graph,
 - (ii) requires that there is a dual adjacency matrix for a distinguished $x \in X$ (not for all $x \in X$).

Where does it come from? What's new?

Fact: A distance-regular graph which is Q-polynomial in the standard sense has a dual adjacency matrix for every $x \in X$.

- ⇒ The *new* definition
 - (i) extends to any (simple, connected, undirected) graph,
 - (ii) requires that there is a dual adjacency matrix for a distinguished $x \in X$ (not for all $x \in X$).

Purpose: find examples of graphs which are *Q*-polynomial in the *new* sense.

A dual adjacency matrix candidate

Often an A^* -type matrix is a dual adjacency matrix of Γ if A and A^* satisfy a *tridiagonal relation*:

$$A^{3}A^{*} - A^{*}A^{3} + (\beta + 1)(AA^{*}A^{2} - A^{2}A^{*}A) =$$

$$= \gamma(A^{2}A^{*} - A^{*}A^{2}) + \rho(AA^{*} - A^{*}A)$$

for $\beta, \gamma, \rho \in \mathbb{R}$.

A dual adjacency matrix candidate

Often an A^* -type matrix is a dual adjacency matrix of Γ if A and A^* satisfy a *tridiagonal relation*:

$$A^{3}A^{*} - A^{*}A^{3} + (\beta + 1)(AA^{*}A^{2} - A^{2}A^{*}A) =$$

$$= \gamma(A^{2}A^{*} - A^{*}A^{2}) + \rho(AA^{*} - A^{*}A)$$

for $\beta, \gamma, \rho \in \mathbb{R}$.

 \Rightarrow A^* is a *dual adjacency matrix candidate* w. r. t. x if there are $\beta, \gamma, \rho \in \mathbb{R}$ such that a tridiagonal relation is satisfied.

 $\Rightarrow \beta, \gamma, \rho$ are the *corresponding parameters* of the dual adjacency matrix candidate.

Finding a dual adjacency matrix (candidate)

Assumption: Γ is bipartite and *uniform* w. r. t. x (definition is coming soon).

Finding a dual adjacency matrix (candidate)

Assumption: Γ is bipartite and *uniform* w. r. t. x (definition is coming soon).

Our project:

(i) provide sufficient conditions on the *uniform structure* of Γ such that Γ has a dual adjacency matrix candidate w.r.t. x;

Finding a dual adjacency matrix (candidate)

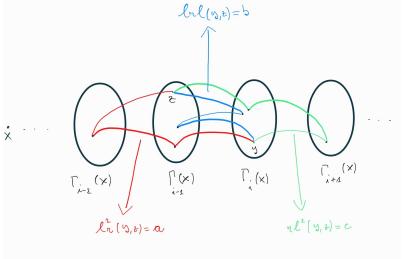
Assumption: Γ is bipartite and *uniform* w. r. t. \times (definition is coming soon).

Our project:

- (i) provide sufficient conditions on the uniform structure of Γ such that Γ has a dual adjacency matrix candidate w.r.t. x;
- (ii) produce graphs which are Q-polynomial in the sense of the new definition using (i).

On the graph in question: Γ bipartite and uniform

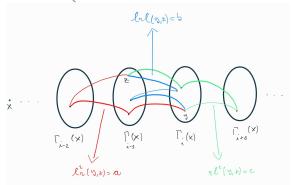
If Γ is bipartite, there are three possible 3-walk shapes from y to z:



On the graph in question: Γ bipartite and uniform

 Γ (bipartite) is *uniform* w.r.t. x if there are $e_i^-, e_i^+, f_i \in \mathbb{R}$ such that

$$e_i^- \mathbf{a} + \mathbf{b} + e_i^+ c = \begin{cases} f_i & \text{if } \partial(z, y) = 1, \\ 0 & \text{otherwise} \end{cases}$$
 $(1 \le i \le \varepsilon).$



 $(+ \text{ some } technical \ conditions \ on \ e_i^-, e_i^+, f_i)$

Theorem (restrictions on e_i^+, e_i^-, f_i , and θ_i^*)

Let Γ be a uniform (bipartite) graph and $A^* = A^*(\theta_0^*, \dots, \theta_{\varepsilon}^*)$ $(\theta_i^* \neq \theta_j^*, i \neq j)$. If there are scalars $\beta, \rho \in \mathbb{R}$ such that

$$\beta + 1 = \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}$$
 (2 \le i \le \varepsilon - 1),

$$e_i^-(\beta+2) = 1 + (\beta+1)\frac{\theta_{i-1}^* - \theta_{i-2}^*}{\theta_{i-1}^* - \theta_i^*}$$
 (2 \le \epsilon),

$$e_{i}^{+}(\beta+2) = 1 + (\beta+1)\frac{\theta_{i}^{*} - \theta_{i+1}^{*}}{\theta_{i}^{*} - \theta_{i-1}^{*}}$$
 $(1 \le i \le \varepsilon - 1),$

$$f_i(\beta+2)=\rho$$
 $(1 \le i \le \varepsilon);$

then A^* is a dual adjacency matrix candidate (w.r.t. x) with corresponding parameters β, ρ .

Applications of our algorithm

Applications of our algorithm

Full bipartite graph

Assume that $G = (X, \mathbb{R})$ is a non-bipartite graph, and $x \in X$. Consider the graph

$$G_f := G_f(x) = (X, \mathcal{R}_f),$$

where

$$\mathcal{R}_f = \mathcal{R} \setminus \{yz \mid \partial(x,y) = \partial(x,z)\}.$$

 \Rightarrow G_f (connected and bipartite) is called the *full bipartite graph* of G w.r.t. x.

Applications of our algorithm

Full bipartite graph

Assume that $G = (X, \mathbb{R})$ is a non-bipartite graph, and $x \in X$. Consider the graph

$$G_f := G_f(x) = (X, \mathcal{R}_f),$$

where

$$\mathcal{R}_f = \mathcal{R} \setminus \{yz \mid \partial(x,y) = \partial(x,z)\}.$$

 \Rightarrow G_f (connected and bipartite) is called the *full bipartite graph* of G w.r.t. x.

Theorem (B. Fernández, R. Maleki, G.M., Š. Miklavič, 2023)

If G is either a *Hamming* or a *dual polar graph*, then G_f is uniform (w.r.t. x).

Hamming graph

The full bipartite graph of the Hamming graph H(D, n), $n \neq 2$, is uniform w.r.t. \times with coefficients

$$e_i^- = -\frac{1}{2} \ (2 \le i \le D), \qquad e_i^+ = -\frac{1}{2} \ (1 \le i \le D - 1),$$
 $f_i = n - 1 \ (1 \le i \le D).$

Hamming graph

The full bipartite graph of the Hamming graph H(D, n), $n \neq 2$, is uniform w.r.t. x with coefficients

$$e_i^- = -\frac{1}{2} \ (2 \le i \le D), \qquad e_i^+ = -\frac{1}{2} \ (1 \le i \le D - 1),$$

$$f_i = n - 1 \ (1 \le i \le D).$$

Theorem 2

Let $\Gamma = H(D, n)_f$, $n \neq 2$, (w.r.t. x). Pick $\theta_0^*, \theta_1^* \in \mathbb{R}$ such that $\theta_0^* \neq \theta_1^*$, and set

$$\theta_{i+1}^* = \theta_1^* + (\theta_1^* - \theta_0^*)i \quad (1 \le i \le D - 1).$$

Then $A^* = A^*(\theta_0^*, \theta_1^*, \dots, \theta_D^*)$ is a dual adjacency matrix candidate of Γ w.r.t. \times , with $\beta = 2$, $\rho = 4(n-1)$.

Dual polar graph

The full bipartite graph of the dual polar graph $\Delta(D, b, e)$, $e \neq 0$, is uniform w.r.t. \times with coefficients

$$e_i^- = -\frac{b^2}{b+1}$$
 $(2 \le i \le D),$ $e_i^+ = -\frac{b^{-1}}{b+1}$ $(1 \le i \le D-1),$ $f_i = b^{e+D-1}$ $(1 \le i \le D).$

Dual polar graph

The full bipartite graph of the dual polar graph $\Delta(D, b, e)$, $e \neq 0$, is uniform w.r.t. \times with coefficients

$$e_i^- = -\frac{b^2}{b+1}$$
 $(2 \le i \le D),$ $e_i^+ = -\frac{b^{-1}}{b+1}$ $(1 \le i \le D-1),$ $f_i = b^{e+D-1}$ $(1 \le i \le D).$

Theorem 3

Let $\Gamma = \Delta(D, b, e)_f$, $e \neq 0$, (w.r.t. x). Pick $\theta_0^*, \theta_1^* \in \mathbb{R}$ such that $\theta_0^* \neq \theta_1^*$, and set

$$\theta_{i+1}^* = \theta_1^* + (\theta_1^* - \theta_0^*) \frac{b^i - 1}{b^i (b-1)} \quad (1 \le i \le D-1).$$

Then $A^* = A^*(\theta_0^*, \theta_1^*, \dots, \theta_D^*)$ is a dual adjacency matrix candidate of Γ w.r.t. \times , with $\beta = b + b^{-1}$, $\rho = b^{e+D-1}(b+b^{-1}+2)$.

The main result

Main Theorem

Let Γ be either $H(D, n)_f$ or $\Delta(D, b, e)_f$ (w.r.t. x). Then, there is a dual adjacency matrix of Γ w.r.t. x and the following orderings of eigenspaces of A:

(i)
$$V_0 < V_2 < \cdots < V_{2D} < V_1 < V_3 < \cdots < V_{2D-1}$$
;

(ii)
$$V_1 < V_3 < \cdots < V_{2D-1} < V_0 < V_2 < \cdots < V_{2D}$$

The main result

Main Theorem

Let Γ be either $H(D, n)_f$ or $\Delta(D, b, e)_f$ (w.r.t. x). Then, there is a dual adjacency matrix of Γ w.r.t. x and the following orderings of eigenspaces of A:

(i)
$$V_0 < V_2 < \cdots < V_{2D} < V_1 < V_3 < \cdots < V_{2D-1};$$

(ii)
$$V_1 < V_3 < \cdots < V_{2D-1} < V_0 < V_2 < \cdots < V_{2D-1}$$

Corollary

Let Γ be either $H(D, n)_f$ or $\Delta(D, b, e)_f$ (w.r.t. \times). Then Γ is Q-polynomial w.r.t. \times .

Thank you for your attention!

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and E_i $(0 \le i \le \mathcal{D})$ the corresponding *primitive idempotent*. Assume A^* is a dual adjacency matrix candidate.

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and E_i $(0 \le i \le \mathcal{D})$ the corresponding *primitive idempotent*. Assume A^* is a dual adjacency matrix candidate.

Then, for some $\beta, \gamma, \rho \in \mathbb{R}$,

$$E_{i}(A^{3}A^{*} - A^{*}A^{3})E_{j} + (\beta + 1)E_{i}(AA^{*}A^{2} - A^{2}A^{*}A)E_{j} =$$

$$= \gamma E_{i}(A^{2}A^{*} - A^{*}A^{2})E_{j} + \rho E_{i}(AA^{*} - A^{*}A)E_{j},$$

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and E_i $(0 \le i \le \mathcal{D})$ the corresponding *primitive idempotent*. Assume A^* is a dual adjacency matrix candidate.

Then, for some $\beta, \gamma, \rho \in \mathbb{R}$,

$$E_{i}(A^{3}A^{*} - A^{*}A^{3})E_{j} + (\beta + 1)E_{i}(AA^{*}A^{2} - A^{2}A^{*}A)E_{j} =$$

$$= \gamma E_{i}(A^{2}A^{*} - A^{*}A^{2})E_{j} + \rho E_{i}(AA^{*} - A^{*}A)E_{j},$$

that is,

$$(\theta_i - \theta_j) \left(\theta_i^2 + \theta_j^2 - \beta \theta_i \theta_j - \gamma (\theta_i + \theta_j) - \rho\right) E_i A^* E_j = 0$$

since $E_i A = \theta_i E_i = A E_i$ (0 $\leq i \leq \mathcal{D}$).

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and E_i the corresponding primitive idempotent.

Assume A^* is a dual adjacency matrix candidate.

Then, for some $\beta, \gamma, \rho \in \mathbb{R}$,

$$(\theta_i - \theta_j) \left(\theta_i^2 + \theta_j^2 - \beta \theta_i \theta_j - \gamma (\theta_i + \theta_j) - \rho\right) E_i A^* E_j = 0.$$

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and E_i the corresponding primitive idempotent.

Assume A^* is a dual adjacency matrix candidate.

Then, for some $\beta, \gamma, \rho \in \mathbb{R}$,

$$(\theta_i - \theta_j) \left(\theta_i^2 + \theta_j^2 - \beta \theta_i \theta_j - \gamma (\theta_i + \theta_j) - \rho \right) E_i A^* E_j = 0.$$

 \Rightarrow What are the i, j such that $E_i A^* E_j = 0$?

Let $\theta_0 > \theta_1 > \ldots > \theta_{\mathcal{D}}$ be the eigenvalues of A and E_i the corresponding primitive idempotent.

Assume A^* is a dual adjacency matrix candidate.

Then, for some $\beta, \gamma, \rho \in \mathbb{R}$,

$$(\theta_i - \theta_j) \left(\theta_i^2 + \theta_j^2 - \beta \theta_i \theta_j - \gamma (\theta_i + \theta_j) - \rho\right) E_i A^* E_j = 0.$$

 \Rightarrow What are the i, j such that $E_i A^* E_j = 0$?

The best (for our aim):

$$E_i A^* E_j = 0$$
 for all i, j with $i - j \notin \{-a, 0, a\}$ $(a \in \mathbb{N})$.

Let V_i be the eigenspace of θ_i and E_i the corresponding primitive idempotent (A^* is a dual adjacency matrix candidate).

Let V_i be the eigenspace of θ_i and E_i the corresponding primitive idempotent (A^* is a dual adjacency matrix candidate).

$$E_i A^* E_j = 0$$
 for all i, j with $i - j \notin \{-a, 0, a\}$ $(a \in \mathbb{N})$,

then

lf

$$A^*V_j \subseteq V_{j-a} + V_j + V_{j+a}$$
 $(0 \le j \le \mathcal{D})$

since $E_i V = V_i$ and $\sum_{i=0}^{\mathcal{D}} E_i = I$.

Let V_i be the eigenspace of θ_i and E_i the corresponding primitive idempotent (A^* is a dual adjacency matrix candidate).

$$E_i A^* E_i = 0$$
 for all i, j with $i - j \notin \{-a, 0, a\}$ $(a \in \mathbb{N})$,

then

$$A^*V_j = \sum_{i=0}^{\mathcal{D}} E_i A^* E_j V \subseteq V_{j-a} + V_j + V_{j+a} \qquad (0 \le j \le \mathcal{D})$$

since $E_i V = V_i$ and $\sum_{i=0}^{\mathcal{D}} E_i = I$.

Let V_i be the eigenspace of θ_i and E_i the corresponding primitive idempotent (A^* is a dual adjacency matrix candidate).

lf

$$E_i A^* E_j = 0$$
 for all i, j with $i - j \notin \{-a, 0, a\}$ $(a \in \mathbb{N})$,

then

$$A^*V_j \subseteq V_{j-a} + V_j + V_{j+a}$$
 $(0 \le j \le D)$

since $E_i V = V_i$ and $\sum_{i=0}^{\mathcal{D}} E_i = I$.

Let V_i be the eigenspace of θ_i and E_i the corresponding primitive idempotent (A^* is a dual adjacency matrix candidate).

lf

$$E_i A^* E_j = 0$$
 for all i, j with $i - j \notin \{-a, 0, a\}$ $(a \in \mathbb{N})$,

then

$$A^*V_j \subseteq V_{j-a} + V_j + V_{j+a}$$
 $(0 \le j \le D)$

since $E_i V = V_i$ and $\sum_{i=0}^{\mathcal{D}} E_i = I$.

 \Rightarrow A^* is a dual adjacency matrix, and Γ is Q-polynomial (w.r.t. \times).

Appendix B: On the graph in question (Γ bipartite and uniform)

Why do we choose a uniform (bipartite) graph?

Appendix B: On the graph in question (Γ bipartite and uniform)

Why do we choose a uniform (bipartite) graph?

- \Rightarrow For such a graph the *Terwilliger algebra* (w.r.t. \times), say T, has some very useful, interesting properties:
 - (i) every irreducible T-module, say W, is thin;
 - (ii) the isomorphism class of W only depends on the endpoint and diameter of W.

Appendix B: On the graph in question (Γ bipartite and uniform)

Why do we choose a uniform (bipartite) graph?

- \Rightarrow For such a graph the *Terwilliger algebra* (w.r.t. \times), say T, has some very useful, interesting properties:
 - (i) every irreducible T-module, say W, is thin;
 - (ii) the isomorphism class of W only depends on the endpoint and diameter of W.
- ⇒ This helps us to understand
 - the algebraic structure (eigenvalues),
 - the combinatorial properties (3-walks)
- of a *potentially Q*-polynomial graph.

Appendix C: More on dual polar graphs

Let U be a finite-dimensional vector space over \mathbb{F}_b (b prime power) with one of the nondegenerate forms below:

name	dim <i>U</i>	form	e
$C_D(b)$	2D	symplectic	1
$B_D(b)$	2D + 1	quadratic	1
$D_D(b)$	2D	quadratic	0
		(Witt index D)	
$^{2}D_{D+1}(b)$	2D + 2	quadratic	2
		(Witt index D)	
$^2A_{2D}(q)$	2D + 1	Hermitean $\left(b=q^2\right)$	<u>3</u>
$^2A_{2D-1}(q)$	2 <i>D</i>	Hermitean $\left(b=q^2\right)$	1/2

The dual polar graph $\Delta(D,b,e)$ has as points the maximal isotropic subspaces (dimension D), and two points x, y are adjacent if $\dim(x \cap y) = D - 1$.

Appendix D: From tridiagonal relation to *Q***-polynomial property**

If Γ is either $H(D,n)_f$ or $\Delta(D,b,e)_f$, there are $\beta,\rho\in\mathbb{R}$ such that

$$A^3A^* - A^*A^3 + (\beta + 1)(AA^*A^2 - A^2A^*A) = \rho(AA^* - A^*A),$$

where A^* is a dual adjacency matrix candidate of Γ .

Appendix D: From tridiagonal relation to *Q***-polynomial property**

If Γ is either $H(D, n)_f$ or $\Delta(D, b, e)_f$, there are $\beta, \rho \in \mathbb{R}$ such that

$$A^3A^* - A^*A^3 + (\beta + 1)(AA^*A^2 - A^2A^*A) = \rho(AA^* - A^*A),$$

where A^* is a dual adjacency matrix candidate of Γ .

Proposition 2

$$E_i A^* E_j = 0$$
 for $0 \le i, j \le 2D$ such that $|i - j| \notin \{0, 2\}$.

Appendix D: From tridiagonal relation to Q-polynomial property

If Γ is either $H(D,n)_f$ or $\Delta(D,b,e)_f$, there are $\beta,\rho\in\mathbb{R}$ such that

$$A^3A^* - A^*A^3 + (\beta + 1)(AA^*A^2 - A^2A^*A) = \rho(AA^* - A^*A),$$

where A^* is a dual adjacency matrix candidate of Γ .

Proposition 2

$$E_iA^*E_j=0$$
 for $0 \leq i,j \leq 2D$ such that $|i-j| \notin \{0,2\}$.

Proposition 3

$$A^*V_i \subseteq V_{i-2} + V_i + V_{i+2} \qquad (0 \le i \le 2D).$$

(V_i is the *i*th eigenspace of A and E_i is the *i*th primitive idempotent)

