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Notations and preliminaries

Γ = (X , R) : (simple, connected, undirected) graph with vertex set
X and edge set R

∂(x , y) : distance between x , y ∈ X

ε(x) = max{∂(x , y) | y ∈ X} : eccentricity of x

D = max{ε(x) | x ∈ X} : diameter of Γ

Γi(x) = {y ∈ X | ∂(x , y) = i} (Γ(x) := Γ1(x))

V : R-vector space of column vectors indexed by X

M : R-algebra of matrices with rows and columns indexed by X
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The adjacency matrix

A ∈ M with

(A)xy =
{

1 if ∂(x , y) = 1,
0 otherwise

is called the adjacency matrix of Γ.

An A∗-type matrix

x ∈ X , ε := ε(x)
{θ∗

i }ε
i=0 : pairwise distinct (real) scalars

A∗ := A∗(θ∗
0, θ∗

1, . . . , θ∗
ε ; x) ∈ M is diagonal with

(A∗)yy = θ∗
i ⇐⇒ ∂(x , y) = i (y ∈ X ).
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A generalized Q-polynomial property

Let θ0 > θ1 > . . . > θD be the eigenvalues of A and
Vi (0 ≤ i ≤ D) the ith eigenspace of A.

Γ is Q-polynomial w.r.t. x if

(i) there is an A∗-type matrix (w.r.t. x),

(ii) there is an ordering Vi0 , Vi1 , . . . , ViD of the eigenspaces of A

such that

A∗Vij ⊆ Vij−1 + Vij + Vij+1 (0 ≤ j ≤ D).

⇒ A∗ is a dual adjacency matrix of Γ w.r.t. x and {Vij }D
i=0.
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Where does it come from? What’s new?

Fact: A distance-regular graph which is Q-polynomial in the
standard sense has a dual adjacency matrix for every x ∈ X .

⇒ The new definition

(i) extends to any (simple, connected, undirected) graph,

(ii) requires that there is a dual adjacency matrix for a distinguished
x ∈ X (not for all x ∈ X ).

Purpose: find examples of graphs which are Q-polynomial in the
new sense.
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A dual adjacency matrix candidate

Often an A∗-type matrix is a dual adjacency matrix of Γ if A and
A∗ satisfy a tridiagonal relation:

A3A∗ − A∗A3 + (β + 1)(AA∗A2 − A2A∗A) =
=γ(A2A∗ − A∗A2) + ρ(AA∗ − A∗A)

for β, γ, ρ ∈ R.

⇒ A∗ is a dual adjacency matrix candidate w. r. t. x if there are
β, γ, ρ ∈ R such that a tridiagonal relation is satisfied.

⇒ β, γ, ρ are the corresponding parameters of the dual adjacency
matrix candidate.
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Finding a dual adjacency matrix (candidate)

Assumption: Γ is bipartite and uniform w. r. t. x (definition is
coming soon).

Our project:

(i) provide sufficient conditions on the uniform structure of Γ
such that Γ has a dual adjacency matrix candidate w.r.t. x ;

(ii) produce graphs which are Q-polynomial in the sense of the
new definition using (i).
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On the graph in question: Γ bipartite and uniform

If Γ is bipartite, there are three possible 3-walk shapes from y to z :
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On the graph in question: Γ bipartite and uniform
Γ (bipartite) is uniform w.r.t. x if there are e−

i , e+
i , fi ∈ R such that

e−
i a + b + e+

i c =
{

fi if ∂(z , y) = 1,
0 otherwise (1 ≤ i ≤ ε).

(+ some technical conditions on e−
i , e+

i , fi)
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Theorem (restrictions on e+
i , e−

i , fi , and θ∗
i )

Let Γ be a uniform (bipartite) graph and A∗ = A∗(θ∗
0, . . . , θ∗

ε)
(θ∗

i ̸= θ∗
j , i ̸= j). If there are scalars β, ρ ∈ R such that

β + 1 =
θ∗

i−2 − θ∗
i+1

θ∗
i−1 − θ∗

i
(2 ≤ i ≤ ε − 1),

e−
i (β + 2) = 1 + (β + 1)

θ∗
i−1 − θ∗

i−2
θ∗

i−1 − θ∗
i

(2 ≤ i ≤ ε),

e+
i (β + 2) = 1 + (β + 1)

θ∗
i − θ∗

i+1
θ∗

i − θ∗
i−1

(1 ≤ i ≤ ε − 1),

fi(β + 2) = ρ (1 ≤ i ≤ ε);

then A∗ is a dual adjacency matrix candidate (w.r.t. x) with
corresponding parameters β, ρ.
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Applications of our algorithm

Full bipartite graph
Assume that G = (X , R) is a non-bipartite graph, and x ∈ X .
Consider the graph

Gf := Gf (x) = (X , Rf ),

where
Rf = R \ {yz | ∂(x , y) = ∂(x , z)}.

⇒ Gf (connected and bipartite) is called the full bipartite graph of
G w.r.t. x .

Theorem (B. Fernández, R. Maleki, G.M., Š. Miklavič, 2023)
If G is either a Hamming or a dual polar graph, then Gf is uniform
(w.r.t. x).
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Hamming graph

The full bipartite graph of the Hamming graph H(D, n), n ̸= 2, is
uniform w.r.t. x with coefficients

e−
i = −1

2 (2 ≤ i ≤ D), e+
i = −1

2 (1 ≤ i ≤ D − 1),

fi = n − 1 (1 ≤ i ≤ D).

Theorem 2
Let Γ = H(D, n)f , n ̸= 2, (w.r.t. x). Pick θ∗

0, θ∗
1 ∈ R such that

θ∗
0 ̸= θ∗

1, and set

θ∗
i+1 = θ∗

1 + (θ∗
1 − θ∗

0)i (1 ≤ i ≤ D − 1).

Then A∗ = A∗(θ∗
0, θ∗

1, . . . , θ∗
D) is a dual adjacency matrix candidate

of Γ w.r.t. x , with β = 2, ρ = 4(n − 1).
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Dual polar graph

The full bipartite graph of the dual polar graph ∆(D, b, e), e ̸= 0,
is uniform w.r.t. x with coefficients

e−
i = − b2

b + 1 (2 ≤ i ≤ D), e+
i = − b−1

b + 1 (1 ≤ i ≤ D − 1),

fi = be+D−1 (1 ≤ i ≤ D).

Theorem 3
Let Γ = ∆(D, b, e)f , e ̸= 0, (w.r.t. x). Pick θ∗

0, θ∗
1 ∈ R such that

θ∗
0 ̸= θ∗

1, and set

θ∗
i+1 = θ∗

1 + (θ∗
1 − θ∗

0) bi − 1
bi(b − 1) (1 ≤ i ≤ D − 1).

Then A∗ = A∗(θ∗
0, θ∗

1, . . . , θ∗
D) is a dual adjacency matrix candidate

of Γ w.r.t. x , with β = b + b−1, ρ = be+D−1(b + b−1 + 2).

13 / 15



Dual polar graph

The full bipartite graph of the dual polar graph ∆(D, b, e), e ̸= 0,
is uniform w.r.t. x with coefficients

e−
i = − b2

b + 1 (2 ≤ i ≤ D), e+
i = − b−1

b + 1 (1 ≤ i ≤ D − 1),

fi = be+D−1 (1 ≤ i ≤ D).

Theorem 3
Let Γ = ∆(D, b, e)f , e ̸= 0, (w.r.t. x). Pick θ∗

0, θ∗
1 ∈ R such that

θ∗
0 ̸= θ∗

1, and set

θ∗
i+1 = θ∗

1 + (θ∗
1 − θ∗

0) bi − 1
bi(b − 1) (1 ≤ i ≤ D − 1).

Then A∗ = A∗(θ∗
0, θ∗

1, . . . , θ∗
D) is a dual adjacency matrix candidate

of Γ w.r.t. x , with β = b + b−1, ρ = be+D−1(b + b−1 + 2).
13 / 15



The main result

Main Theorem
Let Γ be either H(D, n)f or ∆(D, b, e)f (w.r.t. x).
Then, there is a dual adjacency matrix of Γ w.r.t. x and the
following orderings of eigenspaces of A:

(i) V0 < V2 < · · · < V2D < V1 < V3 < · · · < V2D−1;

(ii) V1 < V3 < · · · < V2D−1 < V0 < V2 < · · · < V2D.

Corollary
Let Γ be either H(D, n)f or ∆(D, b, e)f (w.r.t. x).
Then Γ is Q-polynomial w.r.t. x .
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Thank you for your attention!
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Appendix A: Why a tridiagonal relation is the key

Let θ0 > θ1 > . . . > θD be the eigenvalues of A and Ei
(0 ≤ i ≤ D) the corresponding primitive idempotent.
Assume A∗ is a dual adjacency matrix candidate.

Then, for some β, γ, ρ ∈ R,

Ei(A3A∗ − A∗A3)Ej+(β + 1)Ei(AA∗A2 − A2A∗A)Ej =

= γEi(A2A∗ − A∗A2)Ej + ρEi(AA∗ − A∗A)Ej ,

that is,

(θi − θj)
(
θ2

i + θ2
j − βθiθj − γ(θi + θj) − ρ

)
EiA∗Ej = 0

since EiA = θiEi = AEi (0 ≤ i ≤ D).
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The best (for our aim):

EiA∗Ej = 0 for all i , j with i − j /∈ {−a, 0, a} (a ∈ N).
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Appendix A: Why a tridiagonal relation is the key

Let Vi be the eigenspace of θi and Ei the corresponding primitive
idempotent (A∗ is a dual adjacency matrix candidate).

If

EiA∗Ej = 0 for all i , j with i − j /∈ {−a, 0, a} (a ∈ N),

then
A∗Vj ⊆ Vj−a + Vj + Vj+a (0 ≤ j ≤ D)

since EiV = Vi and
∑D

i=0 Ei = I.
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Appendix B: On the graph in question (Γ bipartite and
uniform)

Why do we choose a uniform (bipartite) graph?

⇒ For such a graph the Terwilliger algebra (w.r.t. x), say T , has
some very useful, interesting properties:

(i) every irreducible T -module, say W , is thin;

(ii) the isomorphism class of W only depends on the endpoint and
diameter of W .

⇒ This helps us to understand
- the algebraic structure (eigenvalues),
- the combinatorial properties (3-walks)

of a potentially Q-polynomial graph.

13 / 15



Appendix B: On the graph in question (Γ bipartite and
uniform)

Why do we choose a uniform (bipartite) graph?

⇒ For such a graph the Terwilliger algebra (w.r.t. x), say T , has
some very useful, interesting properties:

(i) every irreducible T -module, say W , is thin;

(ii) the isomorphism class of W only depends on the endpoint and
diameter of W .

⇒ This helps us to understand
- the algebraic structure (eigenvalues),
- the combinatorial properties (3-walks)

of a potentially Q-polynomial graph.

13 / 15



Appendix B: On the graph in question (Γ bipartite and
uniform)

Why do we choose a uniform (bipartite) graph?

⇒ For such a graph the Terwilliger algebra (w.r.t. x), say T , has
some very useful, interesting properties:

(i) every irreducible T -module, say W , is thin;

(ii) the isomorphism class of W only depends on the endpoint and
diameter of W .

⇒ This helps us to understand
- the algebraic structure (eigenvalues),
- the combinatorial properties (3-walks)

of a potentially Q-polynomial graph.

13 / 15



Appendix C: More on dual polar graphs
Let U be a finite-dimensional vector space over Fb (b prime
power) with one of the nondegenerate forms below:

name dim U form e
CD(b) 2D symplectic 1

BD (b) 2D + 1 quadratic 1

DD(b) 2D quadratic 0
(Witt index D)

2DD+1(b) 2D + 2 quadratic 2
(Witt index D)

2A2D (q) 2D + 1 Hermitean
(

b = q2
)

3
2

2A2D−1(q) 2D Hermitean
(

b = q2
)

1
2

The dual polar graph ∆(D, b, e) has as points the maximal
isotropic subspaces (dimension D), and two points x , y are
adjacent if dim(x ∩ y) = D − 1.
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Appendix D: From tridiagonal relation to Q-polynomial
property

If Γ is either H(D, n)f or ∆(D, b, e)f , there are β, ρ ∈ R such that

A3A∗ − A∗A3 + (β + 1)(AA∗A2 − A2A∗A) = ρ(AA∗ − A∗A),

where A∗ is a dual adjacency matrix candidate of Γ.

Proposition 2

EiA∗Ej = 0 for 0 ≤ i , j ≤ 2D such that |i − j | /∈ {0, 2}.

Proposition 3

A∗Vi ⊆ Vi−2 + Vi + Vi+2 (0 ≤ i ≤ 2D).

(Vi is the ith eigenspace of A and Ei is the ith primitive idempotent)
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A3A∗ − A∗A3 + (β + 1)(AA∗A2 − A2A∗A) = ρ(AA∗ − A∗A),

where A∗ is a dual adjacency matrix candidate of Γ.

Proposition 2

EiA∗Ej = 0 for 0 ≤ i , j ≤ 2D such that |i − j | /∈ {0, 2}.

Proposition 3

A∗Vi ⊆ Vi−2 + Vi + Vi+2 (0 ≤ i ≤ 2D).

(Vi is the ith eigenspace of A and Ei is the ith primitive idempotent)
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