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Notations and preliminaries

= (X,R) : (simple, connected, undirected) graph with vertex set
X and edge set R

J(x,y) : distance between x,y € X

e(x) = max{d(x,y) | y € X} : eccentricity of x

D = max{e(x) | x € X} : diameter of [

Fi(x) = {y € X | 8(x,y) = 1} (T(x) = F1(x))

V : R-vector space of column vectors indexed by X

M : R-algebra of matrices with rows and columns indexed by X
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The adjacency matrix

A e M with

0 otherwise

(A { 1 ifd(x,y) =1,

is called the adjacency matrix of I
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The adjacency matrix

A e M with

0 otherwise

(A { 1 ifd(x,y) =1,

is called the adjacency matrix of I

An A*-type matrix

x e X, e:=¢(x)
{07 }5_, : pairwise distinct (real) scalars

A* = A*(05,07,...,0% x) € M is diagonal with

(A%)yy =0 = OJ(x,y)=i (y € X).
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A generalized Q-polynomial property

Let Op > 01 > ... > Op be the eigenvalues of A and
Vi (0 < i < D) the ith eigenspace of A.
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A generalized Q-polynomial property

Let Op > 01 > ... > Op be the eigenvalues of A and
Vi (0 < i < D) the ith eigenspace of A.

I is Q-polynomial w.r.t. x if

(i) there is an A*-type matrix (w.r.t. x),

(i) there is an ordering Vj,, Vi, ..., Vi, of the eigenspaces of A

such that

AV, CVi  +Vi+ Vi, (0<j<D).
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A generalized Q-polynomial property

Let Op > 01 > ... > Op be the eigenvalues of A and
Vi (0 < i < D) the ith eigenspace of A.

I is Q-polynomial w.r.t. x if

(i) there is an A*-type matrix (w.r.t. x),

(i) there is an ordering Vj,, Vi, ..., Vi, of the eigenspaces of A

such that

AV, CVi  +Vi+ Vi, (0<j<D).

= A" is a dual adjacency matrix of [ w.r.t. x and {V; }/.
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Where does it come from? What’s new?

Fact: A distance-regular graph which is Q-polynomial in the
standard sense has a dual adjacency matrix for every x € X.
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Where does it come from? What’s new?

Fact: A distance-regular graph which is Q-polynomial in the
standard sense has a dual adjacency matrix for every x € X.

= The new definition

(i) extends to any (simple, connected, undirected) graph,

(ii) requires that there is a dual adjacency matrix for a distinguished
x € X (not for all x € X).
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Where does it come from? What’s new?

Fact: A distance-regular graph which is Q-polynomial in the
standard sense has a dual adjacency matrix for every x € X.

= The new definition

(i) extends to any (simple, connected, undirected) graph,

(ii) requires that there is a dual adjacency matrix for a distinguished
x € X (not for all x € X).

Purpose: find examples of graphs which are Q-polynomial in the
new sense.
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A dual adjacency matrix candidate

Often an A*-type matrix is a dual adjacency matrix of I if A and
A* satisfy a tridiagonal relation:

ASA* — A*A3 1 (B4 1)(AA*A? — A2A*A) =
=~(A2A* — A*A?) 4+ p(AA* — A*A)

for B,v,p € R.
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A dual adjacency matrix candidate

Often an A*-type matrix is a dual adjacency matrix of I if A and
A* satisfy a tridiagonal relation:

ASA* — A*A3 4+ (B +1)(AA*A? — A2A%A) =
=~(A2A* — A*A?) 4+ p(AA* — A*A)

for B,v,p € R.

= A" is a dual adjacency matrix candidate w. r. t. x if there are
58,7, p € R such that a tridiagonal relation is satisfied.

= (3,7, p are the corresponding parameters of the dual adjacency
matrix candidate.



Finding a dual adjacency matrix (candidate)

Assumption: [ is bipartite and uniform w. r. t. x (definition is
coming soon).
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Finding a dual adjacency matrix (candidate)

Assumption: [ is bipartite and uniform w. r. t. x (definition is
coming soon).

Our project:

(1) provide sufficient conditions on the uniform structure of I
such that I has a dual adjacency matrix candidate w.r.t. x;
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Finding a dual adjacency matrix (candidate)

Assumption: [ is bipartite and uniform w. r. t. x (definition is
coming soon).

Our project:

(1) provide sufficient conditions on the uniform structure of I
such that I has a dual adjacency matrix candidate w.r.t. x;

(ii) produce graphs which are Q-polynomial in the sense of the
new definition using (i).

/15



On the graph in question: [ bipartite and uniform

If [ is bipartite, there are three possible 3-walk shapes from y to z:

/Em((vb’ﬂ =h

o




On the graph in question: I bipartite and uniform
[ (bipartite) is uniform w.r.t. x if there are e , e;", f; € R such that

i

fi if 0(z,y)=1
e at+b+ec= ! i ' 1<i<e).
jatbte {O otherwise I=i<e)
Ll (p)=b
X
T Mo (9 P
A (9,2)=

(+ some technical conditions on e/, e;"

, i)
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Theorem (restrictions on e/, e, f;, and 07)

Let ' be a uniform (bipartite) graph and A* = A*(6§,...,0%)
(0F # 07, i # j). If there are scalars 3, p € R such that

Bil=-2— (2<i<e—1),

-1 Vi

e (B+2)=1+(8 +1)9*7’0*2 (2<i<e),
i—1

+ 97(_ ;'k+1 .

& (B+2) =1+ (B+1)p—p (1<i<e-1),
i Vi-1

fi(B+2)=p (1<i<e)

then A* is a dual adjacency matrix candidate (w.r.t. x) with
corresponding parameters [, p.
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Applications of our algorithm
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Applications of our algorithm

Full bipartite graph
Assume that G = (X, R) is a non-bipartite graph, and x € X.
Consider the graph

Gr = Gr(x) = (X, Rr),

where
Re =R\ {yz | d(x,y) = d(x, 2)}.

= Gr (connected and bipartite) is called the full bipartite graph of
G w.r.t. x.
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Applications of our algorithm

Full bipartite graph
Assume that G = (X, R) is a non-bipartite graph, and x € X.
Consider the graph

Gr = Gr(x) = (X, Rr),
where
Re=R\{yz | 0(x,y) = 0(x,2)}.
= Gr (connected and bipartite) is called the full bipartite graph of

G w.r.t. x.

Theorem (B. Fernandez, R. Maleki, G.M., S. Miklavi¢, 2023)

If G is either a Hamming or a dual polar graph, then Gy is uniform
(w.r.t. x).
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Hamming graph

The full bipartite graph of the Hamming graph H(D,n), n # 2, is
uniform w.r.t. x with coefficients
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Hamming graph

The full bipartite graph of the Hamming graph H(D,n), n # 2, is
uniform w.r.t. x with coefficients

Theorem 2
Let ' = H(D, n)f, n # 2, (w.r.t. x). Pick 65,07 € R such that
0 # 07, and set

=01+ (01 —6p)i (1<i<D-1)

Then A* = A*(60§,675,...,0p) is a dual adjacency matrix candidate
of Twrt. x, with =2, p=4(n—1).
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Dual polar graph

The full bipartite graph of the dual polar graph A(D, b, e), e # 0,

is uniform w.r.t. x with coefficients
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Dual polar graph

The full bipartite graph of the dual polar graph A(D, b, e), e # 0,
is uniform w.r.t. x with coefficients

b2 N b1
= _ 2 <i<D). == 1<i<D-1),
o =—pog (2<i<D). e =—7 5 (1<i<D-1),
f_be+D—1 (1<I§
Theorem 3

Let I = A(D, b, e)f, e #0, (w.r.t. x). Pick 65,07 € R such that
05 # 07, and set

b —1

i1 =01+ (0] - Qé)m

(1<i<D-1).

Then A* = A*(65,07,...,05) is a dual adjacency matrix candidate
of Fw.rt. x, with B=b+ b7t p=btPYb+ b1 42).
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The main result

Main Theorem

Let ' be either H(D, n)f or A(D, b, e)f (w.r.t. x).

Then, there is a dual adjacency matrix of [ w.r.t. x and the
following orderings of eigenspaces of A:

U) Vo< W< - < Vop<s Vi< V3< - < Vop_q;

(I Vi<Vg<---<Vop 1 < Vo< Vo< - < Vyp.
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The main result

Main Theorem

Let ' be either H(D, n)f or A(D, b, e)f (w.r.t. x).

Then, there is a dual adjacency matrix of [ w.r.t. x and the
following orderings of eigenspaces of A:

U) Vo< W< - < Vop<s Vi< V3< - < Vop_q;

(H) Vi<Vi< o< Vop 1< Vo< Vo< - < Vop.

Corollary

Let [ be either H(D, n)¢ or A(D, b, e)f (w.rt. x).
Then " is Q-polynomial w.r.t. x.
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Thank you for your attention!
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Appendix A: Why a tridiagonal relation is the key

Let 6y > 01 > ... > Op be the eigenvalues of A and E;
(0 <7 < D) the corresponding primitive idempotent.
Assume A™ is a dual adjacency matrix candidate.
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Appendix A: Why a tridiagonal relation is the key

Let 6y > 01 > ... > Op be the eigenvalues of A and E;
(0 <7 < D) the corresponding primitive idempotent.
Assume A" is a dual adjacency matrix candidate.

Then, for some 3,7, p € R,
Ei(A3A* — A*A3E+(B + 1)E/(AAA? — A2A*A)E; =
= YE(A?A* — A*A?)E; + pE;(AA* — A*A)E;,
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Appendix A: Why a tridiagonal relation is the key

Let 6y > 01 > ... > Op be the eigenvalues of A and E;
(0 <7 < D) the corresponding primitive idempotent.
Assume A" is a dual adjacency matrix candidate.

Then, for some 3,7, p € R,
Ei(A3A* — A*A3E+(B + 1)E/(AAA? — A2A*A)E; =
= YE(A?A* — A*A?)E; + pE;(AA* — A*A)E;,
that is,
(0 — 0;) (607 + 07 — BO:0; — (0, + 0;) — p) EA'E; = 0

since E;A = 0,E; = AE; (0 < i <D).
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Appendix A: Why a tridiagonal relation is the key

Let Op > 01 > ... > Op be the eigenvalues of A and E; the
corresponding primitive idempotent.
Assume A* is a dual adjacency matrix candidate.

Then, for some 3,7, p € R,

(0 — 0;) (67 + 67 — BO:0; — (0, + 0;) — p) EA'E; = 0.
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Appendix A: Why a tridiagonal relation is the key

Let Op > 01 > ... > Op be the eigenvalues of A and E; the
corresponding primitive idempotent.
Assume A* is a dual adjacency matrix candidate.

Then, for some 3,7, p € R,

(0 — 0;) (67 + 67 — BO:0; — (0, + 0;) — p) EA'E; = 0.

= What are the /,j such that E;A*E; = 07
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Appendix A: Why a tridiagonal relation is the key

Let Op > 01 > ... > Op be the eigenvalues of A and E; the
corresponding primitive idempotent.
Assume A* is a dual adjacency matrix candidate.

Then, for some 3,7, p € R,
(0 — 0;) (67 + 67 — BO:0; — (0, + 0;) — p) EA'E; = 0.

= What are the /,j such that E;A*E; = 07

The best (for our aim):

EA*E; =0 forall i,j with i —j ¢ {—a,0,a} (acN).



Appendix A: Why a tridiagonal relation is the key

Let V; be the eigenspace of #; and E; the corresponding primitive
idempotent (A* is a dual adjacency matrix candidate).
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Appendix A: Why a tridiagonal relation is the key

Let V; be the eigenspace of #; and E; the corresponding primitive
idempotent (A* is a dual adjacency matrix candidate).

If
EA*E; =0 forall i,j with i —j ¢ {—a,0,a} (acN),

then
AV, CViat+ Vit Ve (0=)=D)

since E;V = V; and Z;D:o E =1
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Appendix A: Why a tridiagonal relation is the key

Let V; be the eigenspace of 6; and E; the corresponding primitive
idempotent (A* is a dual adjacency matrix candidate).

If
EA*E; =0 forall i,j with i —j ¢ {—a,0,a} (acN),

then

AV =3 EAEV C Vi 4+ Vi+ V. (05 <D)

D
i=0

since E;V = V; and Y2 0 E = 1.
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Appendix A: Why a tridiagonal relation is the key

Let V; be the eigenspace of 6; and E; the corresponding primitive
idempotent (A* is a dual adjacency matrix candidate).

If
EA*E; =0 forall i,j with i —j ¢ {—a,0,a} (acN),

then
AV C Vit Vit Visa (0] <D)

since E;V = V; and Y2 0 E; = 1.

12/15



Appendix A: Why a tridiagonal relation is the key

Let V; be the eigenspace of 6; and E; the corresponding primitive
idempotent (A* is a dual adjacency matrix candidate).

If
EA*E; =0 forall i,j with i —j ¢ {—a,0,a} (acN),

then
AV C Vit Vit Visa (0] <D)

since E;V = V; and Y2 0 E; = 1.

= A* is a dual adjacency matrix, and I is Q-polynomial (w.r.t. x).
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Appendix B: On the graph in question (I bipartite and
uniform)

Why do we choose a uniform (bipartite) graph?
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Appendix B: On the graph in question (I bipartite and
uniform)

Why do we choose a uniform (bipartite) graph?

= For such a graph the Terwilliger algebra (w.r.t. x), say T, has
some very useful, interesting properties:

() every irreducible T-module, say W, is thin;

(ii) the isomorphism class of W only depends on the endpoint and
diameter of .
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Appendix B: On the graph in question (I bipartite and
uniform)

Why do we choose a uniform (bipartite) graph?

= For such a graph the Terwilliger algebra (w.r.t. x), say T, has
some very useful, interesting properties:

() every irreducible T-module, say W, is thin;

(ii) the isomorphism class of W only depends on the endpoint and
diameter of .

= This helps us to understand
- the algebraic structure (eigenvalues),
- the combinatorial properties (3-walks)

of a potentially @-polynomial graph.
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Appendix C: More on dual polar graphs

Let U be a finite-dimensional vector space over [Fy, (b prime
power) with one of the nondegenerate forms below:

name dim U form e

Cp(b) 2D symplectic 1

Bp(b) 2D +1 quadratic 1

Dp(b) 2D quadratic 0
(Witt index D)

2DDJrl(b) 2D +2 quadratic 2
(Witt index D)

2 400(q) 2041 | Hermitean (b - q2) 3

2Ap_1(q) | 2D Hermitean (b = q2) %

The dual polar graph A(D, b, e) has as points the maximal
isotropic subspaces (dimension D), and two points x, y are
adjacent if dim(xNy)=D —1.
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Appendix D: From tridiagonal relation to Q-polynomial
property

If I is either H(D, n)s or A(D, b, €)f, there are 3, p € R such that
ASA* — A*A3 + (B + 1)(AA*A2 — A2A*A) = p(AA* — A*A),

where A* is a dual adjacency matrix candidate of T.
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Appendix D: From tridiagonal relation to Q-polynomial
property

If I is either H(D, n)s or A(D, b, €)f, there are 3, p € R such that
ASA* — A*A3 £ (B 4 1)(AATA% — A2A%A) = p(AA* — A*A),

where A* is a dual adjacency matrix candidate of T.

Proposition 2

EiA*E; =0 for 0 < i,j < 2D such that |i — j| ¢ {0,2}.
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Appendix D: From tridiagonal relation to Q-polynomial
property

If I is either H(D, n)s or A(D, b, €)f, there are 3, p € R such that
ASA* — A*A3 £ (B 4 1)(AATA% — A2A%A) = p(AA* — A*A),

where A* is a dual adjacency matrix candidate of T.

Proposition 2

EiA*E; =0 for 0 < i,j < 2D such that |i — j| ¢ {0,2}.

Proposition 3

AV, C Vi o+ Vi+ Vi (0<i<2D).

(V; is the ith eigenspace of A and E; is the ith primitive idempotent)
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