On sets of points of PG(n, q) with few intersection numbers

Vito Napolitano

Department of Matematics and Physics Università degli Studi della Campania "Luigi Vanvitelli"

> 05 September 2025 FINITE GEOMETRIES 2025 Seventh Irsee Conference

Outline

- A combinatorial problem in finite geometries
- 2 Type of a set of PG(n, q)
- Recent results on the parameters of a set of hyperplane–type $(m, h)_{n-1}$
- A combinatorial characterization of the the complement of a hyperbolic quadric

A combinatorial problem in finite projective spaces

- A set of points of PG(2, q), q odd, no three of which are collinear has size $k \le q + 1$ and equality occurs iff it is a (irreducible) conic (B. Segre, 1954)
- A set of points of PG(3, q), q odd, no three of which are collinear has size $k \le q^2 + 1$ with equality iff it is an elliptic quadric (A. Barlotti, 1955; G. Panella, 1955)
- A set K of points of PG(n,q) intersected by any hyperplane in 1 or h points either is a line or n=3 and K is an ovoid (J. Thas, 1973)

Study k—sets of points of PG(n, q) with respect to their intersection with one (or more than one) prescribed family of subspaces of PG(d, q):

- Admissibility of parameters and Examples
- Classification and characterization results

A characterization problem: B.Segre point of view in finite geometries

Geometric and algebraic properties of certain structures may be be derived from seemingly superficial and very few data:

- In the classes of arcs and caps conics and elliptic quadrics are characterized by their sizes.
- Elliptic quadrics are characterized as sets of non–collinear points of PG(3,q) via their intersections with respect to hyperplanes.
- B. Segre point of view: Characterize classical stuctures by their combinatorial properties. (A. Beutelspacher, 1988).

The type of a k-set in PG(n, q)

Let $\mathbb{P} = \operatorname{PG}(n, q)$ and m_1, m_2, \dots, m_s be s integers such that $0 \le m_1 < m_2 < \dots < m_s \le q+1$.

A subset $\mathcal K$ of points of $\mathbb P$ is of type $(m_1,m_2,\ldots,m_s)_h$ with respect to the family $\mathcal P_h$ of all h-dimensional subspaces of $\mathbb P$ if $|H\cap\mathcal K|\in\{m_1,m_2,\ldots,m_s\}$ for every $H\in\mathcal P_h$ and any m_j (intersection number), $(j=1,\ldots,h)$, occurs as the size of intersection of $\mathcal K$ with a member of $\mathcal P_h$.

If h=1 or h=n-1 $\mathcal K$ is of line—type $(m_1,m_2,\ldots,m_s)_1$ and of hyperplane—type $(m_1,m_2,\ldots,m_s)_{n-1}$, respectively.

In PG(2, q) (non—degenerate) conics are of line—type $(0, 1, 2)_1$ and in PG(3, q) elliptic quadrics are of line type $(0, 1, 2)_1$ and of plane—type $(1, q + 1)_2$.

 $c_j^h :=$ the number of h-dimensional subspaces intersecting \mathcal{K} in exactly j points: \mathcal{K} is of type $(m_1, m_2, \ldots, m_s)_h$ if $c_{m_j}^h \neq 0$ for every $j \in 1, \ldots, s$ (characters of \mathcal{K}).

Let \mathcal{K} be a set of points of PG(n, q), a line ℓ is external(tangent) to \mathcal{K} if $|\ell \cap \mathcal{K}| = 0(|\ell \cap \mathcal{K}| = 1)$.

Let K be a non–empty set of points of PG(r, q) (with $K \neq PG(r, q)$), P_h be the family of all the h–dimensional subspaces of PG(r, q) and

$$m := \min\{|H \cap \mathcal{K}|, H \in \mathcal{P}_h, H \cap \mathcal{K} \neq \emptyset\}$$

$$n := \max\{|H \cap \mathcal{K}|, H \in \mathcal{P}_h\}$$

$$\sum_{s=m}^{m}(n-s)(m-s)=-\mathbf{f}_{h}(\mathbf{k},\mathbf{m},\mathbf{n})+m\cdot\mathbf{h}\cdot\mathbf{c}_{0}(\mathbf{h})$$

If $c_0(h) = 0$ then

 $f_h(k, m, n) \le 0$ and equality holds iff K is of type $(m, n)_h$

The hyperplane-type case

k—sets of PG(n, q) of hyperplane—type are the geometric counterpart of a class of linear codes and the distribution of the intersection numbers is associated with the distribution of the weights of the corresponding code.

Sets of points of PG(n, q) of hyperplane—type $(m, h)_{n-1}$ are associated with strongly regular graphs and (I, m)—difference sets.

If K is a set of hyperplane—type $(m,h)_{n-1}$ then $h-m|q^{n-1}$ (so $h \le m+q^{n-1}$). (Tallini Scafati 1976)

Sets of PG(3, q) of plane type $(m, h)_2$

$$h \leq m + q^2$$

$$\mathcal{K}$$
 a plane $\Rightarrow h = m + q^2 = (q+1) + q^2$

Some classical objects, such as e.g. Hyperbolic quadrics and Hermitian surfaces, satisfy h = m + q.

If
$$m \le q$$
 then $h \le m + q$.

If there are both an external line and a tangent line then $h \le m + q$.

For n = 3 the result of J. Thas shows that h = m + q = 1 + q

A set of points of PG(3, q) of plane—type $(2, h)_2$ points is the union of two skew lines, and so h = m + q = 2 + q. (N.Durante—D.Olanda 2006)

- If $\mathcal K$ is a set of points of $\operatorname{PG}(3,q), q>2$, of plane–type $(3,h)_2$ then $h\leq q+3$, and if equality occurs then if q>4 $\mathcal K$ is the union of three skew lines. If q=4 $\mathcal K$ is either the union of three skew lines or $\operatorname{PG}(3,2)$ embedded in $\operatorname{PG}(3,4)$. If q=3 then $\mathcal K$ is the union of three skew lines or $k\in\{12,15\}$ and there are three examples of such sets of plane type $(3,6)_2$ (of which one with k=12). (V.N.–D.Olanda, 2012)
- If h < q + 3 for q = 8 there is an example of a set of plane–type (3,7).

For q = 2 K is either a plane, or the whole space PG(3,2) or the set of points on three pairwise skew lines.

If K is a set of points of PG(3,q) of plane–type $(3,h)_2$, then

- K is the set of the points of a plane of PG(3,2)
- h = q + 3
- q = 8 and h = 7. (F. Zuanni, 2023)

In PG(3, q), apart from the planes of PG(3,3), for sets of plane–type $(4, h)_2$ we have h = 4 + q. (S.Innamorati, 2024)

The general case

The planar case:

 \mathcal{K} a set of points of a finite projective plane of order q of line—type $(m, n)_1$ then

If
$$(m, n)_1 = 1 = (m - 1, n - 1)_1$$
, $m \ge 2$, then either $n - m < \sqrt{q}$ or q is a square, $n - m = \sqrt{q}$ and $k = m(q + \sqrt{q} + 1)$ or $k = q\sqrt{q} + \sqrt{q}(\sqrt{q} - 1)(m - 1) + m$. [G. Tallini, J. Geom. (1987)]

The general case

Higher dimensions:

Let K be a k-set of points of PG(r,q) of hyperplane-type $(m,n)_{r-1}, r \geq 2, q = p^h$ and $h \geq 1$. Assume $n-m > q^{\frac{r-1}{2}}$. Then either $m \equiv n \equiv k \equiv 0 \mod p$ or $m \equiv n \equiv k \equiv 1 \mod p$. [V.N. Austral. J. Combin. 2022]

Thus, if K is a k-set of hyperplane-type $(m, n)_{r-1}$, $r \ge 2$, then either $n - m \le q^{\frac{r-1}{2}}$ or p divides m and n or p divides m-1 and n-1, where p is the prime number such that $q=p^h$ and $h \ge 1$.

Variations and generalizations of the characterization problem

- Extra geometric and/or combinatorial conditions: e.g. intersection sizes with all the members of another family of subspaces, conditions on some sets of subspaces, existence of special sets of subspaces,...
- Extra algebraic conditions: e.g. being an algebraic (hyper)surface of a precribed order.
- Characterizations of a family of subspaces of PG(n, q) which behaves as a family of subspaces of the space with respect to a classical object of PG(n, q) and so reconstructions of classical objects.

Theorem (B. Sahu, Austral. J. Combin. (2022))

Let Σ be a non–empty family of planes of PG(3, q), for which the following properties are satisfied:

- (P1) Every point of PG(3, q) is contained in $q^2 q$ or q^2 planes of Σ .
- (P2) Every line of PG(3, q) is contained in 0, q-1, q or q+1 planes of Σ .

Then Σ is the set of all planes of PG(3, q) meeting a hyperbolic quadric in an irreducible conic.

Theorem (V.N., submitted)

Let q be a prime power and m be a positive integer with $m \le q$. Assume that $\mathcal K$ is a set of points of $\operatorname{PG}(3,q)$ intersected by any plane in q^2-m or q^2 points such that there is at least one external line to $\mathcal K$. Then, $\mathcal K$ is of plane—type $(q^2-m,q^2)_2$, m=q, (q+1)—lines, q—lines and (q-1)—lines do exist and if $\mathcal K$ is of line—type $(0,q-1,q,q+1)_1$ then it is the complement of the set of points of a hyperbolic quadric of $\operatorname{PG}(3,q)$.