

Intersection of irreducible curves and the Hermitian curve

Peter Beelen, Mrinmoy Datta, Maria Montanucci and Jonathan Niemann

Technical University of Denmark (DTU)



DTU Compute

Department of Applied Mathematics and Computer Science

Introduction and motivation

Motivation: Understanding the intersection of projective algebraic varieties is relevant, e.g., in coding theory.

Introduction and motivation

Motivation: Understanding the intersection of projective algebraic varieties is relevant, e.g., in coding theory.

Theorem (Bézout)

Let \mathcal{X} and \mathcal{Y} be plane projective curves of degree d_1 and d_2 respectively, and suppose that they do not share a common component. Then,

$$|\mathcal{X} \cap \mathcal{Y}| \leq d_1 \cdot d_2$$
.

Introduction and motivation

Motivation: Understanding the intersection of projective algebraic varieties is relevant, e.g., in coding theory.

Theorem (Bézout)

Let \mathcal{X} and \mathcal{Y} be plane projective curves of degree d_1 and d_2 respectively, and suppose that they do not share a common component. Then,

$$|\mathcal{X} \cap \mathcal{Y}| \le d_1 \cdot d_2.$$

Question

Let $\mathcal{H}_q \subseteq \mathbb{P}^2$ denote the Hermitian curve and let $\mathcal{C}_d \subseteq \mathbb{P}^2$ be another irreducible curve of degree d, both defined over \mathbb{F}_{q^2} .

Is it possible that \mathcal{H}_q and \mathcal{C}_d intersect in d(q+1) distinct \mathbb{F}_{q^2} -rational points?

For higher dimensional Hermitian varieties, it seems the number of rational intersection points is largest for highly reducible hypersurfaces:

For higher dimensional Hermitian varieties, it seems the number of rational intersection points is largest for highly reducible hypersurfaces:

Conjecture (Sørensen, 1991)

For $d \leq q$, we have

$$|(S \cap \mathcal{H}_q^{(2)})(\mathbb{F}_{q^2})| \le d(q^3 + q^2 - q) + q + 1,$$

and equality holds if and only if S is the union of d planes.

- ullet $\mathcal{H}_q^{(2)}$: A nondegenerate Hermitian surface in \mathbb{P}^3 defined over \mathbb{F}_{q^2} .
- S: A surface of degree d in \mathbb{P}^3 , also defined over \mathbb{F}_{q^2} .

For higher dimensional Hermitian varieties, it seems the number of rational intersection points is largest for highly reducible hypersurfaces:

Conjecture (Sørensen, 1991)

For $d \leq q$, we have

$$|(S \cap \mathcal{H}_q^{(2)})(\mathbb{F}_{q^2})| \le d(q^3 + q^2 - q) + q + 1,$$

and equality holds if and only if S is the union of d planes.

- $\mathcal{H}_q^{(2)}$: A nondegenerate Hermitian surface in \mathbb{P}^3 defined over \mathbb{F}_{g^2} .
- S: A surface of degree d in \mathbb{P}^3 , also defined over \mathbb{F}_{q^2} .

Theorem (Beelen, Datta and Homma, 2021)

Sørensen's conjecture holds.

For higher dimensional Hermitian varieties, it seems the number of rational intersection points is largest for highly reducible hypersurfaces:

Conjecture (Edoukou, 2009)

For $d \leq q$, we have

$$|(S \cap \mathcal{H}_q^{(3)})(\mathbb{F}_{q^2})| \le d(q^5 + q^2) + q^3 + 1,$$

and equality holds if and only if S is the union of d hyperplanes.

- $\mathcal{H}_q^{(3)}$: A nondegenerate Hermitian threefold in \mathbb{P}^4 defined over \mathbb{F}_{q^2} .
- S: A hypersurface of degree d in \mathbb{P}^4 , also defined over \mathbb{F}_{q^2} .

For higher dimensional Hermitian varieties, it seems the number of rational intersection points is largest for highly reducible hypersurfaces:

Conjecture (Edoukou, 2009)

For $d \leq q$, we have

$$|(S \cap \mathcal{H}_q^{(3)})(\mathbb{F}_{q^2})| \le d(q^5 + q^2) + q^3 + 1,$$

and equality holds if and only if S is the union of d hyperplanes.

- $\mathcal{H}_q^{(3)}$: A nondegenerate Hermitian threefold in \mathbb{P}^4 defined over \mathbb{F}_{q^2} .
- S: A hypersurface of degree d in \mathbb{P}^4 , also defined over \mathbb{F}_{q^2} .

Theorem (Edoukou, 2009 & Datta and Manna, 2024)

The conjecture holds for d=2, and for d=3, $q\geq 7$.

The main question

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

- \mathcal{H}_q : The Hermitian curve in \mathbb{P}^2 defined over \mathbb{F}_{q^2} .
- \mathcal{C}_d : An irreducible plane projective curve of degree d in \mathbb{P}^2 , also defined over \mathbb{F}_{q^2} .

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is YES for

ullet d=1: Any \mathbb{F}_{q^2} -secant of \mathcal{H}_q will do.

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is YES for

- d=1: Any \mathbb{F}_{q^2} -secant of \mathcal{H}_q will do.
- d = q + 1 and $q \ge 3$: Two distinct Hermitian curves (Donati and Durante, 2003).

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is YES for

- d=1: Any \mathbb{F}_{q^2} -secant of \mathcal{H}_q will do.
- d = q + 1 and $q \ge 3$: Two distinct Hermitian curves (Donati and Durante, 2003).
- d=2 and $q\geq 4$: Intersection is known (Donati, Durante and Korchmáros, 2009).

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is YES for

- d=1: Any \mathbb{F}_{q^2} -secant of \mathcal{H}_q will do.
- d = q + 1 and $q \ge 3$: Two distinct Hermitian curves (Donati and Durante, 2003).
- d=2 and $q\geq 4$: Intersection is known (Donati, Durante and Korchmáros, 2009).

The answer is NO for

• $(q, d) \in \{(2, 2), (3, 2), (2, 3)\}$, by an exhaustive computer search.

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is also YES for

• $q \le d \le q^2 - q + 1$, for $q \ge 3$.

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is also YES for

- $q \le d \le q^2 q + 1$, for $q \ge 3$.
- $d = \lfloor (q+1)/2 \rfloor$.

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is also YES for

- $q \le d \le q^2 q + 1$, for $q \ge 3$.
- $d = \lfloor (q+1)/2 \rfloor$.
- d=3 and $q\geq 3$.

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is also YES for

- $q \le d \le q^2 q + 1$, for $q \ge 3$.
- $d = \lfloor (q+1)/2 \rfloor$.
- d=3 and $q\geq 3$.

Remark (Partial results)

We show that the answer is also often yes for d=4,5,6 and generally for d small compared to q.

The answer is NO for $d > q^2 - q + 1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

The answer is $\boxed{\mbox{NO}}$ for $d>q^2-q+1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

Theorem (Beelen, Datta, Montanucci, N.)

If $q+1 \le d \le q^2-q$, then there exists an absolutely irreducible curve \mathcal{C}_d of degree d intersecting \mathcal{H}_q in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points.

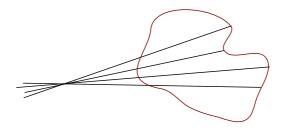
The answer is $\boxed{\mbox{NO}}$ for $d>q^2-q+1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

Theorem (Beelen, Datta, Montanucci, N.)

If $q+1 \leq d \leq q^2-q$, then there exists an absolutely irreducible curve \mathcal{C}_d of degree d intersecting \mathcal{H}_q in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points.

Proof idea:



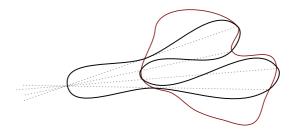
The answer is NO for $d > q^2 - q + 1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

Theorem (Beelen, Datta, Montanucci, N.)

If $q+1 \leq d \leq q^2-q$, then there exists an absolutely irreducible curve \mathcal{C}_d of degree d intersecting \mathcal{H}_q in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points.

Proof idea:



The answer is NO for $d > q^2 - q + 1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

Theorem (Beelen, Datta, Montanucci, N.)

If $q+1 \leq d \leq q^2-q$, then there exists an absolutely irreducible curve \mathcal{C}_d of degree d intersecting \mathcal{H}_q in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points.

Proof idea:

• Let \mathcal{H}_q be given by $Y^qZ + YZ^q = X^{q+1}$.

The answer is NO for $d > q^2 - q + 1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

Theorem (Beelen, Datta, Montanucci, N.)

If $q+1 \leq d \leq q^2-q$, then there exists an absolutely irreducible curve \mathcal{C}_d of degree d intersecting \mathcal{H}_q in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points.

Proof idea:

- Let \mathcal{H}_q be given by $Y^qZ + YZ^q = X^{q+1}$.
- Choose b_1, \ldots, b_d to be distinct elements from the set

$$S := \{ b \in \mathbb{F}_{q^2} \mid b^q + b \neq 0 \}.$$

The answer is NO for $d > q^2 - q + 1$, since

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = (q+1)(q^2 - q + 1).$$

Theorem (Beelen, Datta, Montanucci, N.)

If $q+1 \leq d \leq q^2-q$, then there exists an absolutely irreducible curve \mathcal{C}_d of degree d intersecting \mathcal{H}_q in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points.

Proof idea:

- Let \mathcal{H}_a be given by $Y^qZ + YZ^q = X^{q+1}$.
- Choose b_1, \ldots, b_d to be distinct elements from the set

$$S := \{ b \in \mathbb{F}_{q^2} \mid b^q + b \neq 0 \}.$$

• For $\alpha \in \mathbb{F}_{q^2} \setminus \{0\}$ consider the curve given by the equation

$$(X^{q+1} - Y^q Z - Y Z^q) Z^{d-q-1} = \alpha \prod_{i=1}^d (Y - b_i Z).$$

Consider

$$\mathcal{H}_q: \ X^{q+1} + Y^{q+1} + Z^{q+1} = 0 \quad \text{ and } \quad \mathcal{C}_d^{(\alpha)}: \ XZ^{d-1} = \alpha Y^d,$$

for $\alpha \in \mathbb{F}_{q^2} \setminus \{0\}$.

Consider

$$\mathcal{H}_q:~X^{q+1}+Y^{q+1}+Z^{q+1}=0~~\text{and}~~\mathcal{C}_d^{(\alpha)}:~XZ^{d-1}=\alpha Y^d,$$
 for $\alpha\in\mathbb{F}_{q^2}\setminus\{0\}.$

ullet There are no intersection points at infinity (Z=0).

Consider

$$\mathcal{H}_q:\ X^{q+1}+Y^{q+1}+Z^{q+1}=0\quad \text{ and }\quad \mathcal{C}_d^{(\alpha)}:\ XZ^{d-1}=\alpha Y^d,$$
 for $\alpha\in\mathbb{F}_{q^2}\setminus\{0\}.$

- There are no intersection points at infinity (Z=0).
- There are d(q+1) rational intersection points if and only if

$$\alpha^{q+1} Y^{d(q+1)} + Y^{q+1} + 1 \in \mathbb{F}_{q^2}[Y]$$

has d(q+1) distinct roots in \mathbb{F}_{q^2} .

Consider

$$\mathcal{H}_q: \ X^{q+1} + Y^{q+1} + Z^{q+1} = 0 \quad \text{ and } \quad \mathcal{C}_d^{(\alpha)}: \ XZ^{d-1} = \alpha Y^d,$$

for $\alpha \in \mathbb{F}_{q^2} \setminus \{0\}$.

- There are no intersection points at infinity (Z=0).
- There are d(q+1) rational intersection points if and only if

$$\alpha^{q+1}Y^{d(q+1)} + Y^{q+1} + 1 \in \mathbb{F}_{q^2}[Y]$$

has d(q+1) distinct roots in \mathbb{F}_{q^2} .

Lemma

For
$$\alpha \in \mathbb{F}_{q^2} \setminus \{0\}$$
, let $A := \alpha^{q+1} \in \mathbb{F}_q \setminus \{0\}$. Then,

$$\left| (\mathcal{H}_q \cap \mathcal{C}_d^{(\alpha)})(\mathbb{F}_{q^2}) \right| = d(q+1) \iff At^d + t + 1 \in \mathbb{F}_q[t] \text{ splits over } \mathbb{F}_q.$$

Galois theory

Goal: Find $A \in \mathbb{F}_q \setminus \{0\}$ such that $At^d + t + 1 \in \mathbb{F}_q[t]$ splits over \mathbb{F}_q .

Galois theory

Goal: Find $A \in \mathbb{F}_q \setminus \{0\}$ such that $At^d + t + 1 \in \mathbb{F}_q[t]$ splits over \mathbb{F}_q .

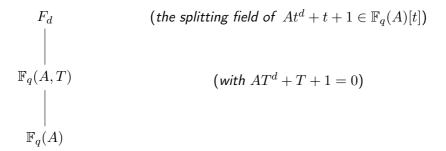
 ${\bf Strategy:} \ \ {\bf Consider} \ A \ \ {\bf as} \ \ {\bf a} \ \ {\bf transcendental} \ \ {\bf element} \ \ {\bf and} \ \ {\bf study} \ \ {\bf the} \ \ {\bf extension}$

$$\mathbb{F}_q(A,T)$$
 (with $AT^d+T+1=0$) $\mathbb{F}_q(A)$

Galois theory

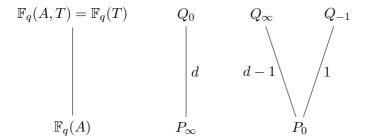
Goal: Find $A \in \mathbb{F}_q \setminus \{0\}$ such that $At^d + t + 1 \in \mathbb{F}_q[t]$ splits over \mathbb{F}_q .

 $\mbox{\bf Strategy:}\ \mbox{Consider}\ A$ as a transcendental element and study the extension



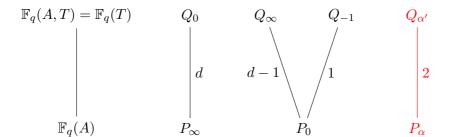
Adding one root

We have $A = -(1+T)/T^d$.



Adding one root

We have $A = -(1+T)/T^d$.



$$\gcd(q, d(d-1)) = 1$$

Adding two roots

Proposition

Let T_1 and T_2 be two distinct roots of the polynomial At^d+t+1 in an algebraic closure of the function field $\mathbb{F}_q(A)$. Then $\mathbb{F}_q(A,T_1,T_2)=\mathbb{F}_q(\rho)$, where $\rho=T_2/T_1$. Moreover,

$$T_1 = -\frac{\rho^{d-1} + \dots + \rho + 1}{\rho^{d-1} + \dots + \rho} = -\frac{\rho^d - 1}{\rho^d - \rho},$$

$$T_2 = T_1 \cdot \rho = -\frac{\rho^{d-1} + \dots + \rho + 1}{\rho^{d-2} + \dots + 1} = -\frac{\rho^d - 1}{\rho^{d-1} - 1},$$

and

$$A = -\frac{T_1 + 1}{T_1^d} = (-1)^d \frac{(\rho - 1)(\rho^d - \rho)^{d-1}}{(\rho^d - 1)^d} = (-1)^d \frac{\rho^{d-1}(\rho^{d-2} + \dots + \rho + 1)^{d-1}}{(\rho^{d-1} + \dots + \rho + 1)^d}.$$

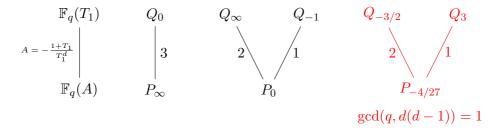
In particular, \mathbb{F}_q is the full constant field of $\mathbb{F}_q(\rho)$ and $[\mathbb{F}_q(\rho):\mathbb{F}_q(A)]=d(d-1).$

Adding two roots - d = 3

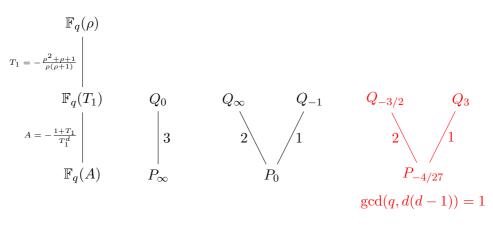
Corollary

The splitting field F_3 of the polynomial $At^3+t+1\in \mathbb{F}_q(A)[t]$ is the rational function field $\mathbb{F}_q(\rho)$. In particular, the Galois group of At^3+t+1 is isomorphic to the symmetric group S_3 .

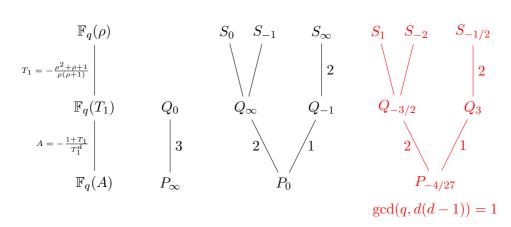
Corollary



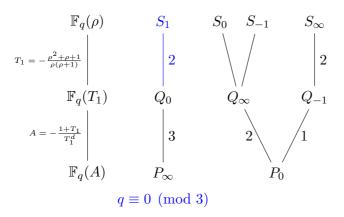
Corollary



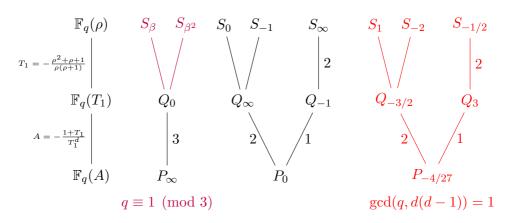
Corollary



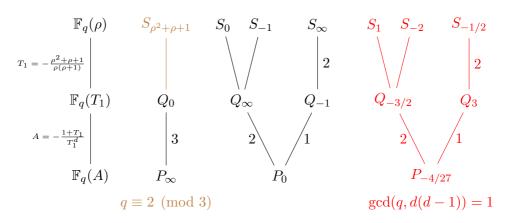
Corollary



Corollary



Corollary



Corollary

The splitting field F_3 of the polynomial $At^3+t+1\in \mathbb{F}_q(A)[t]$ is the rational function field $\mathbb{F}_q(\rho)$. In particular, the Galois group of At^3+t+1 is isomorphic to the symmetric group S_3 .

Lemma

The polynomial $At^3+t+1\in \mathbb{F}_q[t]$ splits over \mathbb{F}_q for exactly $\lfloor (q-2)/6\rfloor$ values of $A\in \mathbb{F}_q\setminus \{0\}$.

Conclusion for d=3

Theorem (Beelen, Datta, Montanucci, N.)

For $q\geq 3$, there exists an absolutely irreducible cubic curve defined over \mathbb{F}_{q^2} that intersects \mathcal{H}_q in 3(q+1) many distinct \mathbb{F}_{q^2} -rational points.

Conclusion for d=3

Theorem (Beelen, Datta, Montanucci, N.)

For $q \geq 3$, there exists an absolutely irreducible cubic curve defined over \mathbb{F}_{q^2} that intersects \mathcal{H}_q in 3(q+1) many distinct \mathbb{F}_{q^2} -rational points.

Proof: For $q \geq 8$ we use $\mathcal{C}_3^{(\alpha)}$, where $\alpha^{q+1} = A$ for some $A \in \mathbb{F}_q \setminus \{0\}$ as in the previous lemma. For $q \in \{3,4,5,7\}$ we use a computer search. In fact, define

$$f(X,Y,Z) := \begin{cases} X^3 + Y^3 + Z^3 + XY^2 + X^2Z - YZ^2, & \text{if } q = 3 \\ X^3 + Y^3 + Z^3 + XY^2 + X^2Z + YZ^2 + XZ^2, & \text{if } q = 4 \\ X^3 + Z^3 - Y^2Z, & \text{if } q = 5 \\ X^3 + 4XY^2 + YZ^2, & \text{if } q = 7. \end{cases}$$

Then the cubic given by the equation f(X,Y,Z)=0 satisfies the desired property.

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

Proof (sketch): Consider $\overline{G} := \operatorname{Gal}\left(\overline{\mathbb{F}}_q F_d / \overline{\mathbb{F}}_q(A)\right)$.

ullet \overline{G} acts 2-transitively on the roots $([\overline{\mathbb{F}}_q(A,T_1,T_2):\overline{\mathbb{F}}_q(A,T_1)]=d-1).$

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

- ullet \overline{G} acts 2-transitively on the roots $([\overline{\mathbb{F}}_q(A,T_1,T_2):\overline{\mathbb{F}}_q(A,T_1)]=d-1).$
- ullet \overline{G} contains a transposition ("Cycle lemma").

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

- ullet \overline{G} acts 2-transitively on the roots $([\overline{\mathbb{F}}_q(A,T_1,T_2):\overline{\mathbb{F}}_q(A,T_1)]=d-1).$
- \overline{G} contains a transposition ("Cycle lemma").
- \overline{G} is isomorphic to a subgroup of $\operatorname{Gal}(F_d/\mathbb{F}_q(A))$.

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

- ullet \overline{G} acts 2-transitively on the roots $ig([\overline{\mathbb{F}}_q(A,T_1,T_2):\overline{\mathbb{F}}_q(A,T_1)]=d-1ig).$
- \overline{G} contains a transposition ("Cycle lemma").
- \overline{G} is isomorphic to a subgroup of $Gal(F_d/\mathbb{F}_q(A))$.
- Apply Abhyankar's lemma (all ramification is tame).

Theorem (Beelen, Datta, Montanucci, N.)

If $\gcd(q,(d-1)d)=1$, then the Galois group of $At^d+t+1\in \mathbb{F}_q(A)[t]$ is isomorphic to the symmetric group S_d . Moreover, in this case, the splitting field F_d of At^d+t+1 has full constant field \mathbb{F}_q and its genus g_d is given by

$$g_d = 1 + \frac{d^2 - 5d + 2}{4}(d - 2)!.$$

Corollary (Beelen, Datta, Montanucci, N.)

Suppose that $\gcd(q,(d-1)d)=1$. Then there exists $A\in\mathbb{F}_q$ such that the polynomial At^d+t+1 splits over \mathbb{F}_q if

$$q + 1 - \lfloor 2\sqrt{q} \rfloor \left(1 + \frac{d^2 - 5d + 2}{4} (d - 2)! \right) - \left(\frac{1}{d} + \frac{1}{d - 1} + \frac{1}{2} \right) d! > 0.$$
 (1)

From Abhyankar's "Nice equations for nice groups" (1994) we get information on the Galois group in some cases:

From Abhyankar's "Nice equations for nice groups" (1994) we get information on the Galois group in some cases:

Theorem

If $d=p^e$, then the splitting field of At^d+t+1 over $\mathbb{F}_q(A)$ is the composite of $\mathbb{F}_q(T_1,T_2)=\mathbb{F}_q(\rho)$ and the finite field with p^e elements.

From Abhyankar's "Nice equations for nice groups" (1994) we get information on the Galois group in some cases:

Theorem

If $d=p^e$, then the splitting field of At^d+t+1 over $\mathbb{F}_q(A)$ is the composite of $\mathbb{F}_q(T_1,T_2)=\mathbb{F}_q(\rho)$ and the finite field with p^e elements.

Corollary

If $d=p^e$, then there exists $A\in\mathbb{F}_q\setminus\{0\}$ such that At^d+t+1 splits over \mathbb{F}_q if and only if $\mathbb{F}_{p^e}\subseteq\mathbb{F}_q$ and $[\mathbb{F}_q:\mathbb{F}_{p^e}]>1$.

From Abhyankar's "Nice equations for nice groups" (1994) we get information on the Galois group in some cases:

Theorem

If $d=p^e+1$, then the splitting field of At^d+t+1 over $\mathbb{F}_q(A)$ is the composite of the finite field with p^e elements and $\mathbb{F}_q(T_1,T_2,T_3)=\mathbb{F}_q((\sigma-1)/(\sigma-\rho))$, where $\rho=T_2/T_1$ and $\sigma=T_3/T_1$.

From Abhyankar's "Nice equations for nice groups" (1994) we get information on the Galois group in some cases:

Theorem

If $d=p^e+1$, then the splitting field of At^d+t+1 over $\mathbb{F}_q(A)$ is the composite of the finite field with p^e elements and $\mathbb{F}_q(T_1,T_2,T_3)=\mathbb{F}_q((\sigma-1)/(\sigma-\rho))$, where $\rho=T_2/T_1$ and $\sigma=T_3/T_1$.

Corollary

Let $d=p^e+1$ where p is the characteristic. Then there exists $A\in\mathbb{F}_q\setminus\{0\}$ such that At^d+t+1 splits over \mathbb{F}_q if and only if $\mathbb{F}_{p^e}\subseteq\mathbb{F}_q$ and $[\mathbb{F}_q:\mathbb{F}_{p^e}]>2$.

Lemma

Let N_4 denote the number of $A \in \mathbb{F}_q \setminus \{0\}$ for which the polynomial $At^4 + t + 1$ splits over \mathbb{F}_q . Then

$$N_4 = \left\{ \begin{array}{ll} 0 & \text{if } q = 2^e \text{ and } e \text{ is odd,} \\ \frac{q-4}{12} & \text{if } q = 2^e \text{ and } e \text{ is even,} \\ \frac{q+1}{24} & \text{if } q \equiv 23 \pmod{24} \text{ and} \\ \left\lfloor \frac{q-2}{24} \right\rfloor & \text{otherwise.} \end{array} \right.$$

Lemma

Let N_4 denote the number of $A \in \mathbb{F}_q \setminus \{0\}$ for which the polynomial $At^4 + t + 1$ splits over \mathbb{F}_q . Then

$$N_4 = \left\{ \begin{array}{ll} 0 & \text{if } q = 2^e \text{ and } e \text{ is odd,} \\ \frac{q-4}{12} & \text{if } q = 2^e \text{ and } e \text{ is even,} \\ \frac{q+1}{24} & \text{if } q \equiv 23 \pmod{24} \text{ and} \\ \left\lfloor \frac{q-2}{24} \right\rfloor & \text{otherwise.} \end{array} \right.$$

Theorem

Suppose q is a prime power, but not an odd power of two larger than 8. Then, there exists an absolutely irreducible quartic curve defined over \mathbb{F}_{q^2} that intersects \mathcal{H}_q in 4(q+1) distinct \mathbb{F}_{q^2} -rational points.

Lemma

Let N_4 denote the number of $A \in \mathbb{F}_q \setminus \{0\}$ for which the polynomial $At^4 + t + 1$ splits over \mathbb{F}_q . Then

$$N_4 = \left\{ \begin{array}{ll} 0 & \text{if } q = 2^e \text{ and } e \text{ is odd,} \\ \frac{q-4}{12} & \text{if } q = 2^e \text{ and } e \text{ is even,} \\ \frac{q+1}{24} & \text{if } q \equiv 23 \pmod{24} \text{ and} \\ \left\lfloor \frac{q-2}{24} \right\rfloor & \text{otherwise.} \end{array} \right.$$

Theorem

Suppose q is a prime power, but not an odd power of two larger than 8. Then, there exists an absolutely irreducible quartic curve defined over \mathbb{F}_{q^2} that intersects \mathcal{H}_q in 4(q+1) distinct \mathbb{F}_{q^2} -rational points.

Open: $q = 2^e$ for e > 3 odd.

The cases d = 5 and d = 6

For d=5, the answer is YES in the following cases:

• $q \in \{3, 4, 9\}$ by "large d" results.

The cases d=5 and d=6

For d=5, the answer is $|\mathsf{YES}|$ in the following cases:

- \bullet $q \in \{3,4,9\}$ by "large d " results.
- q > 131, with gcd(q, 20) = 1.

The cases d = 5 and d = 6

For d=5, the answer is YES in the following cases:

- \bullet $q \in \{3,4,9\}$ by "large d " results.
- q > 131, with gcd(q, 20) = 1.
- ullet $q=5^e$ for e>1, and $q=2^e$ for e>2 even.

The cases d = 5 and d = 6

For d=5, the answer is YES in the following cases:

- $q \in \{3,4,9\}$ by "large d" results.
- q > 131, with gcd(q, 20) = 1.
- ullet $q=5^e$ for e>1, and $q=2^e$ for e>2 even.

For d=6, the answer is YES in the following cases:

- $q \in \{3,4,5,11\}$ by "large d" results.
- q > 1877, with gcd(q, 20) = 1.
- $q = 5^e$, e > 2.

Conclusion

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is YES for

- d = 1.
- d=2 and $q\geq 4$.
- d = q + 1 and $q \ge 3$.

The answer is NO for

- $(q,d) \in \{(2,2), (3,2), (2,3)\}.$
- $d > q^2 q + 1$.

Conclusion

Question

Can \mathcal{H}_q and \mathcal{C}_d intersect in exactly d(q+1) distinct \mathbb{F}_{q^2} -rational points?

The answer is YES for

- d = 1.
- d=2 and $q\geq 4$.
- d = q + 1 and $q \ge 3$.

The answer is NO for

- $\bullet (q,d) \in \{(2,2), (3,2), (2,3)\}.$
- $d > q^2 q + 1$.

The answer is also YES for

- d=3 and $q\geq 3$.
- d = |(q+1)/2|.
- $q \le d \le q^2 q + 1$, for $q \ge 3$.

The answer is often YES for

- d = 4, 5, 6.
- q >> d and gcd(q, d(d-1)) = 1.

Thank you for your attention!

Results for large d

Theorem (Beelen, Datta, Montanucci, N.)

Let \mathcal{C}_{q^2-q+1} be the curve defined over \mathbb{F}_{q^2} given by the equation

$$X\left((Y^q+YZ^{q-1})^{q-1}-Z^{q^2-q}\right)+X^{q+1}Z^{q^2-2q}-Y^qZ^{q^2-2q+1}-YZ^{q^2-q}=0.$$

Then C_{q^2-q+1} is an absolutely irreducible curve of degree q^2-q+1 intersecting the Hermitian curve in exactly q^3+1 distinct \mathbb{F}_{q^2} -rational points.

Theorem (Beelen, Datta, Montanucci, N.)

For q>2 and $\alpha\in\mathbb{F}_{q^2}\setminus\mathbb{F}_q$, the curve \mathcal{C}_q of degree q given by the equation

$$Y^{q} + YZ^{q-1} = (\alpha + \alpha^{2})X^{q} - \alpha^{3}X^{q-1}Z + X^{2}Z^{q-2} - (\alpha + \alpha^{2})XZ^{q-1} - \alpha^{3}Z^{q}$$

is absolutely irreducible and it intersects \mathcal{H}_q in q(q+1) distinct \mathbb{F}_{q^2} -rational points.

Degree $d = \lfloor (q+1)/2 \rfloor$ for q even

Corollary

Suppose q is even and let $\alpha \in \mathbb{F}_{q^2}$ be an element satisfying $\alpha^q + \alpha = 1$. Then the curve $\mathcal{C}_{q/2}$ with equation

$$(Y + \alpha^q X)^{q/2} + \dots + (Y + \alpha^q X)^2 Z^{q/2-2} + (Y + \alpha^q X) Z^{q/2-1} = X Z^{q/2-1}$$

is absolutely irreducible, and it intersects the Hermitian curve \mathcal{H}_q in q(q+1)/2 distinct \mathbb{F}_{q^2} -rational points.

Degree $d = \lfloor (q+1)/2 \rfloor$ for q odd

Consider

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0,$$

and

$$C_{\alpha,\beta}: \alpha X^{\frac{q+1}{2}} + Y^{\frac{q+1}{2}} + \beta Z^{\frac{q+1}{2}} = 0.$$

Degree $d = \lfloor (q+1)/2 \rfloor$ for q odd

Consider

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0,$$

and

$$C_{\alpha,\beta}: \alpha X^{\frac{q+1}{2}} + Y^{\frac{q+1}{2}} + \beta Z^{\frac{q+1}{2}} = 0.$$

Let Z=1 and eliminate Y to obtain

$$(\alpha^2 + 1)X^{q+1} + 2\alpha\beta X^{\frac{q+1}{2}} + (\beta^2 + 1) = 0.$$

Degree $d = \lfloor (q+1)/2 \rfloor$ for q odd

Consider

$$\mathcal{H}_q: X^{q+1} + Y^{q+1} + Z^{q+1} = 0,$$

and

$$C_{\alpha,\beta}: \alpha X^{\frac{q+1}{2}} + Y^{\frac{q+1}{2}} + \beta Z^{\frac{q+1}{2}} = 0.$$

Let Z=1 and eliminate Y to obtain

$$(\alpha^2 + 1)X^{q+1} + 2\alpha\beta X^{\frac{q+1}{2}} + (\beta^2 + 1) = 0.$$

Claim:

For q>13, there exists a pair $(\alpha,\beta)\in\mathbb{F}_q\times\mathbb{F}_q$, with $\alpha\beta\neq 0$, such that the above equation has two distinct solutions in $\mathbb{F}_q\setminus\{0\}$, when considered as a quadratic polynomial in $X^{\frac{q+1}{2}}$.

Lemma

Let N_4 denote the number of $A \in \mathbb{F}_q \setminus \{0\}$ for which the polynomial $At^4 + t + 1$ splits over \mathbb{F}_q . Then

$$N_4 = \left\{ \begin{array}{ll} 0 & \text{if } q = 2^e \text{ and } e \text{ is odd,} \\ \frac{q-4}{12} & \text{if } q = 2^e \text{ and } e \text{ is even,} \\ \frac{q+1}{24} & \text{if } q \equiv 23 \pmod{24} \text{ and} \\ \left\lfloor \frac{q-2}{24} \right\rfloor & \text{otherwise.} \end{array} \right.$$

Lemma

Let N_4 denote the number of $A \in \mathbb{F}_q \setminus \{0\}$ for which the polynomial $At^4 + t + 1$ splits over \mathbb{F}_q . Then

$$N_4 = \left\{ \begin{array}{ll} 0 & \text{if } q = 2^e \text{ and } e \text{ is odd,} \\ \frac{q-4}{12} & \text{if } q = 2^e \text{ and } e \text{ is even,} \\ \frac{q+1}{24} & \text{if } q \equiv 23 \pmod{24} \text{ and} \\ \left\lfloor \frac{q-2}{24} \right\rfloor & \text{otherwise.} \end{array} \right.$$

Theorem

Suppose that either $q \in \{16,23\}$ or $q \geq 27$ is a prime power, but not an odd power of two. Then there exists an absolutely irreducible quartic curve defined over \mathbb{F}_{q^2} that intersects \mathcal{H}_q in 4(q+1) distinct \mathbb{F}_{q^2} -rational points.

 \bullet Our previous results imply the existence of such a quartic for $q \in \{3,4,7,8\}.$

- Our previous results imply the existence of such a quartic for $q \in \{3, 4, 7, 8\}$.
- For $q \in \{5,9,11,13,17,19,25\}$ one can choose the quartic given by f(X,Y,Z)=0 with

$$f(X,Y,Z) := \begin{cases} X^3Y + 2Y^2Z^2 + Z^4, & \text{if} \quad q = 5 \\ X^4 + Y^3Z - Y^2Z^2 + YZ^3, & \text{if} \quad q = 9 \\ X^4 - Y^4 - \omega^{16}Z^4, & \text{if} \quad q = 11 \\ X^3Y + Y^3Z + XZ^3, & \text{if} \quad q = 13 \\ X^4 + 13Y^3Z + 14Y^3Z^2, & \text{if} \quad q = 17 \\ X^4 - \omega^4Y^4 - \omega^{24}Z^4, & \text{if} \quad q = 19 \\ X^2Y^2 + X^2Z^2 + Y^2Z^2, & \text{if} \quad q = 25, \end{cases}$$

where ω is a primitive element of \mathbb{F}_{q^2} .

- Our previous results imply the existence of such a quartic for $q \in \{3, 4, 7, 8\}$.
- For $q \in \{5,9,11,13,17,19,25\}$ one can choose the quartic given by f(X,Y,Z) = 0 with

$$f(X,Y,Z) := \begin{cases} X^3Y + 2Y^2Z^2 + Z^4, & \text{if} \quad q = 5 \\ X^4 + Y^3Z - Y^2Z^2 + YZ^3, & \text{if} \quad q = 9 \\ X^4 - Y^4 - \omega^{16}Z^4, & \text{if} \quad q = 11 \\ X^3Y + Y^3Z + XZ^3, & \text{if} \quad q = 13 \\ X^4 + 13Y^3Z + 14Y^3Z^2, & \text{if} \quad q = 17 \\ X^4 - \omega^4Y^4 - \omega^{24}Z^4, & \text{if} \quad q = 19 \\ X^2Y^2 + X^2Z^2 + Y^2Z^2, & \text{if} \quad q = 25, \end{cases}$$

where ω is a primitive element of \mathbb{F}_{q^2} .

ullet The case d=4 is settled, except if q>8 is an odd power of two.