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Introduction and motivation

Motivation: Understanding the intersection of projective algebraic varieties
is relevant, e.g., in coding theory.

Theorem (Bézout)

Let X and Y be plane projective curves of degree d1 and d2 respectively, and
suppose that they do not share a common component. Then,

|X ∩ Y| ≤ d1 · d2.

Question

Let Hq ⊆ P2 denote the Hermitian curve and let Cd ⊆ P2 be another irreducible
curve of degree d, both defined over Fq2 .

Is it possible that Hq and Cd intersect in d(q + 1) distinct Fq2-rational points?
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A bit of context - higher dimensional Hermitian varieties

For higher dimensional Hermitian varieties, it seems the number of rational
intersection points is largest for highly reducible hypersurfaces:

Conjecture (Sørensen, 1991)

For d ≤ q, we have

|(S ∩H(2)
q )(Fq2)| ≤ d(q3 + q2 − q) + q + 1,

and equality holds if and only if S is the union of d planes.

• H(2)
q : A nondegenerate Hermitian surface in P3 defined over Fq2 .

• S : A surface of degree d in P3, also defined over Fq2 .

Theorem (Beelen, Datta and Homma, 2021)

Sørensen’s conjecture holds.
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A bit of context - higher dimensional Hermitian varieties

For higher dimensional Hermitian varieties, it seems the number of rational
intersection points is largest for highly reducible hypersurfaces:

Conjecture (Edoukou, 2009)

For d ≤ q, we have

|(S ∩H(3)
q )(Fq2)| ≤ d(q5 + q2) + q3 + 1,

and equality holds if and only if S is the union of d hyperplanes.

• H(3)
q : A nondegenerate Hermitian threefold in P4 defined over Fq2 .

• S : A hypersurface of degree d in P4, also defined over Fq2 .

Theorem (Edoukou, 2009 & Datta and Manna, 2024)

The conjecture holds for d = 2, and for d = 3, q ≥ 7.
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The main question

Question

Can Hq and Cd intersect in exactly d(q + 1) distinct Fq2 -rational points?

• Hq: The Hermitian curve in P2 defined over Fq2 .

• Cd: An irreducible plane projective curve of degree d in P2, also defined over Fq2 .

5 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Known results

Question

Can Hq and Cd intersect in exactly d(q + 1) distinct Fq2 -rational points?

The answer is YES for
• d = 1: Any Fq2-secant of Hq will do.

• d = q+1 and q ≥ 3: Two distinct Hermitian curves (Donati and Durante, 2003).
• d = 2 and q ≥ 4: Intersection is known (Donati, Durante and Korchmáros, 2009).

The answer is NO for
• (q, d) ∈ {(2, 2), (3, 2), (2, 3)}, by an exhaustive computer search.
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Our contribution

Question

Can Hq and Cd intersect in exactly d(q + 1) distinct Fq2 -rational points?

The answer is also YES for
• q ≤ d ≤ q2 − q + 1, for q ≥ 3.

• d = ⌊(q + 1)/2⌋.

• d = 3 and q ≥ 3.

Remark (Partial results)

We show that the answer is also often yes for d = 4, 5, 6 and generally for d small
compared to q.
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Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

Theorem (Beelen, Datta, Montanucci, N.)

If q + 1 ≤ d ≤ q2 − q, then there exists an absolutely irreducible curve Cd of degree
d intersecting Hq in exactly d(q + 1) distinct Fq2-rational points.

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

Theorem (Beelen, Datta, Montanucci, N.)

If q + 1 ≤ d ≤ q2 − q, then there exists an absolutely irreducible curve Cd of degree
d intersecting Hq in exactly d(q + 1) distinct Fq2-rational points.

Proof idea:

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

Theorem (Beelen, Datta, Montanucci, N.)

If q + 1 ≤ d ≤ q2 − q, then there exists an absolutely irreducible curve Cd of degree
d intersecting Hq in exactly d(q + 1) distinct Fq2-rational points.

Proof idea:

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

Theorem (Beelen, Datta, Montanucci, N.)

If q + 1 ≤ d ≤ q2 − q, then there exists an absolutely irreducible curve Cd of degree
d intersecting Hq in exactly d(q + 1) distinct Fq2-rational points.

Proof idea:
• Let Hq be given by Y qZ + Y Zq = Xq+1.

• Choose b1, . . . , bd to be distinct elements from the set

S := {b ∈ Fq2 | bq + b ̸= 0}.

• For α ∈ Fq2 \ {0} consider the curve given by the equation

(Xq+1 − Y qZ − Y Zq)Zd−q−1 = α
d∏

i=1

(Y − biZ).

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

Theorem (Beelen, Datta, Montanucci, N.)

If q + 1 ≤ d ≤ q2 − q, then there exists an absolutely irreducible curve Cd of degree
d intersecting Hq in exactly d(q + 1) distinct Fq2-rational points.

Proof idea:
• Let Hq be given by Y qZ + Y Zq = Xq+1.
• Choose b1, . . . , bd to be distinct elements from the set

S := {b ∈ Fq2 | bq + b ̸= 0}.

• For α ∈ Fq2 \ {0} consider the curve given by the equation

(Xq+1 − Y qZ − Y Zq)Zd−q−1 = α
d∏

i=1

(Y − biZ).

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for large d

The answer is NO for d > q2 − q + 1, since

|Hq(Fq2)| = q3 + 1 = (q + 1)(q2 − q + 1).

Theorem (Beelen, Datta, Montanucci, N.)

If q + 1 ≤ d ≤ q2 − q, then there exists an absolutely irreducible curve Cd of degree
d intersecting Hq in exactly d(q + 1) distinct Fq2-rational points.

Proof idea:
• Let Hq be given by Y qZ + Y Zq = Xq+1.
• Choose b1, . . . , bd to be distinct elements from the set

S := {b ∈ Fq2 | bq + b ̸= 0}.

• For α ∈ Fq2 \ {0} consider the curve given by the equation

(Xq+1 − Y qZ − Y Zq)Zd−q−1 = α

d∏
i=1

(Y − biZ).

8 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Results for small d

Consider

Hq : Xq+1 + Y q+1 + Zq+1 = 0 and C(α)
d : XZd−1 = αY d,

for α ∈ Fq2 \ {0}.

• There are no intersection points at infinity (Z = 0).

• There are d(q + 1) rational intersection points if and only if

αq+1Y d(q+1) + Y q+1 + 1 ∈ Fq2 [Y ]

has d(q + 1) distinct roots in Fq2 .

Lemma

For α ∈ Fq2 \ {0}, let A := αq+1 ∈ Fq \ {0}. Then,∣∣∣(Hq ∩ C(α)
d )(Fq2)

∣∣∣ = d(q + 1) ⇔ Atd + t+ 1 ∈ Fq[t] splits over Fq.
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Galois theory

Goal: Find A ∈ Fq \ {0} such that Atd + t+ 1 ∈ Fq[t] splits over Fq.

Strategy: Consider A as a transcendental element and study the extension

Fd

Fq(A, T )

Fq(A)

(the splitting field of Atd + t+ 1 ∈ Fq(A)[t])

(with AT d + T + 1 = 0)
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Adding one root

We have A = −(1 + T )/T d.

Fq(A, T ) = Fq(T )

Fq(A)

Q0

P∞ P0

Q∞ Q−1

d d− 1 1

Qα′

Pα

2

gcd(q, d(d− 1)) = 1
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Adding two roots

Proposition

Let T1 and T2 be two distinct roots of the polynomial Atd + t+ 1 in an algebraic
closure of the function field Fq(A). Then Fq(A, T1, T2) = Fq(ρ), where ρ = T2/T1.
Moreover,

T1 = −ρd−1 + · · ·+ ρ+ 1

ρd−1 + · · ·+ ρ
= −ρd − 1

ρd − ρ
,

T2 = T1 · ρ = −ρd−1 + · · ·+ ρ+ 1

ρd−2 + · · ·+ 1
= − ρd − 1

ρd−1 − 1
,

and

A = −T1 + 1

T d
1

= (−1)d
(ρ− 1)(ρd − ρ)d−1

(ρd − 1)d
= (−1)d

ρd−1(ρd−2 + · · ·+ ρ+ 1)d−1

(ρd−1 + · · ·+ ρ+ 1)d
.

In particular, Fq is the full constant field of Fq(ρ) and [Fq(ρ) : Fq(A)] = d(d− 1).
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Adding two roots - d = 3

Corollary

The splitting field F3 of the polynomial At3 + t+ 1 ∈ Fq(A)[t] is the rational
function field Fq(ρ). In particular, the Galois group of At3 + t+ 1 is isomorphic to
the symmetric group S3.

Lemma

The polynomial At3 + t+ 1 ∈ Fq[t] splits over Fq for exactly ⌊(q − 2)/6⌋ values of
A ∈ Fq \ {0}.
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function field Fq(ρ). In particular, the Galois group of At3 + t+ 1 is isomorphic to
the symmetric group S3.
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Conclusion for d = 3

Theorem (Beelen, Datta, Montanucci, N.)

For q ≥ 3, there exists an absolutely irreducible cubic curve defined over Fq2 that
intersects Hq in 3(q + 1) many distinct Fq2-rational points.

Proof: For q ≥ 8 we use C(α)
3 , where αq+1 = A for some A ∈ Fq \ {0} as in

the previous lemma. For q ∈ {3, 4, 5, 7} we use a computer search. In fact,
define

f(X,Y, Z) :=


X3 + Y 3 + Z3 +XY 2 +X2Z − Y Z2, if q = 3

X3 + Y 3 + Z3 +XY 2 +X2Z + Y Z2 +XZ2, if q = 4

X3 + Z3 − Y 2Z, if q = 5

X3 + 4XY 2 + Y Z2, if q = 7.

Then the cubic given by the equation f(X,Y, Z) = 0 satisfies the desired
property.
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The case gcd(q, (d− 1)d) = 1

Theorem (Beelen, Datta, Montanucci, N.)

If gcd(q, (d− 1)d) = 1, then the Galois group of Atd + t+ 1 ∈ Fq(A)[t] is
isomorphic to the symmetric group Sd. Moreover, in this case, the splitting field
Fd of Atd + t+ 1 has full constant field Fq and its genus gd is given by

gd = 1 +
d2 − 5d+ 2

4
(d− 2)!.

Corollary (Beelen, Datta, Montanucci, N.)

Suppose that gcd(q, (d− 1)d) = 1. Then there exists A ∈ Fq such that the
polynomial Atd + t+ 1 splits over Fq if

q + 1− ⌊2√q⌋
(
1 +

d2 − 5d+ 2

4
(d− 2)!

)
−

(
1

d
+

1

d− 1
+

1

2

)
d! > 0. (1)
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Some results for gcd(q, d(d− 1)) > 1

From Abhyankar’s “Nice equations for nice groups” (1994) we get
information on the Galois group in some cases:

Theorem

If d = pe + 1, then the splitting field of Atd + t+ 1 over Fq(A) is the composite of
the finite field with pe elements and Fq(T1, T2, T3) = Fq((σ − 1)/(σ − ρ)), where
ρ = T2/T1 and σ = T3/T1.

Corollary

Let d = pe + 1 where p is the characteristic. Then there exists A ∈ Fq \ {0} such
that Atd + t+ 1 splits over Fq if and only if Fpe ⊆ Fq and [Fq : Fpe ] > 2.
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The case d = 4

Lemma

Let N4 denote the number of A ∈ Fq \ {0} for which the polynomial At4 + t+ 1
splits over Fq. Then

N4 =


0 if q = 2e and e is odd,

q−4
12 if q = 2e and e is even,
q+1
24 if q ≡ 23 (mod 24) and⌊
q−2
24

⌋
otherwise.

Theorem
Suppose q is a prime power, but not an odd power of two larger than 8. Then,
there exists an absolutely irreducible quartic curve defined over Fq2 that intersects
Hq in 4(q + 1) distinct Fq2 -rational points.

Open: q = 2e for e > 3 odd.
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The cases d = 5 and d = 6

For d = 5, the answer is YES in the following cases:

• q ∈ {3, 4, 9} by “large d” results.

• q > 131, with gcd(q, 20) = 1.

• q = 5e for e > 1, and q = 2e for e > 2 even.

For d = 6, the answer is YES in the following cases:

• q ∈ {3, 4, 5, 11} by “large d” results.

• q > 1877, with gcd(q, 20) = 1.

• q = 5e, e > 2.

18 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



The cases d = 5 and d = 6

For d = 5, the answer is YES in the following cases:

• q ∈ {3, 4, 9} by “large d” results.

• q > 131, with gcd(q, 20) = 1.

• q = 5e for e > 1, and q = 2e for e > 2 even.

For d = 6, the answer is YES in the following cases:

• q ∈ {3, 4, 5, 11} by “large d” results.

• q > 1877, with gcd(q, 20) = 1.

• q = 5e, e > 2.

18 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



The cases d = 5 and d = 6

For d = 5, the answer is YES in the following cases:

• q ∈ {3, 4, 9} by “large d” results.

• q > 131, with gcd(q, 20) = 1.

• q = 5e for e > 1, and q = 2e for e > 2 even.

For d = 6, the answer is YES in the following cases:

• q ∈ {3, 4, 5, 11} by “large d” results.

• q > 1877, with gcd(q, 20) = 1.

• q = 5e, e > 2.

18 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



The cases d = 5 and d = 6

For d = 5, the answer is YES in the following cases:

• q ∈ {3, 4, 9} by “large d” results.

• q > 131, with gcd(q, 20) = 1.

• q = 5e for e > 1, and q = 2e for e > 2 even.

For d = 6, the answer is YES in the following cases:

• q ∈ {3, 4, 5, 11} by “large d” results.

• q > 1877, with gcd(q, 20) = 1.

• q = 5e, e > 2.

18 DTU Compute Intersection of irreducible curves and the Hermitian curve August 2025



Conclusion

Question

Can Hq and Cd intersect in exactly d(q + 1) distinct Fq2 -rational points?

The answer is YES for

• d = 1.

• d = 2 and q ≥ 4.

• d = q + 1 and q ≥ 3.

The answer is NO for

• (q, d) ∈ {(2, 2), (3, 2), (2, 3)}.
• d > q2 − q + 1.

The answer is also YES for

• d = 3 and q ≥ 3.

• d = ⌊(q + 1)/2⌋.
• q ≤ d ≤ q2 − q + 1, for q ≥ 3.

The answer is often YES for

• d = 4, 5, 6.

• q >> d and gcd(q, d(d− 1)) = 1.
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Thank you for your attention!
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Results for large d

Theorem (Beelen, Datta, Montanucci, N.)

Let Cq2−q+1 be the curve defined over Fq2 given by the equation

X
(
(Y q + Y Zq−1)q−1 − Zq2−q

)
+Xq+1Zq2−2q − Y qZq2−2q+1 − Y Zq2−q = 0.

Then Cq2−q+1 is an absolutely irreducible curve of degree q2 − q + 1 intersecting
the Hermitian curve in exactly q3 + 1 distinct Fq2-rational points.

Theorem (Beelen, Datta, Montanucci, N.)

For q > 2 and α ∈ Fq2 \ Fq, the curve Cq of degree q given by the equation

Y q + Y Zq−1 = (α+ α2)Xq − α3Xq−1Z +X2Zq−2 − (α+ α2)XZq−1 − α3Zq

is absolutely irreducible and it intersects Hq in q(q+1) distinct Fq2-rational points.
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Degree d = ⌊(q + 1)/2⌋ for q even

Corollary
Suppose q is even and let α ∈ Fq2 be an element satisfying αq + α = 1. Then the
curve Cq/2 with equation

(Y + αqX)q/2 + · · ·+ (Y + αqX)2Zq/2−2 + (Y + αqX)Zq/2−1 = XZq/2−1

is absolutely irreducible, and it intersects the Hermitian curve Hq in q(q + 1)/2
distinct Fq2 -rational points.
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Degree d = ⌊(q + 1)/2⌋ for q odd

Consider
Hq : Xq+1 + Y q+1 + Zq+1 = 0,

and
Cα,β : αX

q+1
2 + Y

q+1
2 + βZ

q+1
2 = 0.

Let Z = 1 and eliminate Y to obtain

(α2 + 1)Xq+1 + 2αβX
q+1
2 + (β2 + 1) = 0.

Claim:

For q > 13, there exists a pair (α, β) ∈ Fq × Fq, with αβ ̸= 0, such that
the above equation has two distinct solutions in Fq \{0}, when considered
as a quadratic polynomial in X

q+1
2 .
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12 if q = 2e and e is even,
q+1
24 if q ≡ 23 (mod 24) and⌊
q−2
24

⌋
otherwise.

Theorem
Suppose that either q ∈ {16, 23} or q ≥ 27 is a prime power, but not an odd power
of two. Then there exists an absolutely irreducible quartic curve defined over Fq2

that intersects Hq in 4(q + 1) distinct Fq2-rational points.
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The case d = 4

• Our previous results imply the existence of such a quartic for q ∈ {3, 4, 7, 8}.

• For q ∈ {5, 9, 11, 13, 17, 19, 25} one can choose the quartic given by
f(X,Y, Z) = 0 with

f(X,Y, Z) :=



X3Y + 2Y 2Z2 + Z4, if q = 5

X4 + Y 3Z − Y 2Z2 + Y Z3, if q = 9

X4 − Y 4 − ω16Z4, if q = 11

X3Y + Y 3Z +XZ3, if q = 13

X4 + 13Y 3Z + 14Y 3Z2, if q = 17

X4 − ω4Y 4 − ω24Z4, if q = 19

X2Y 2 +X2Z2 + Y 2Z2, if q = 25,

where ω is a primitive element of Fq2 .

• The case d = 4 is settled, except if q > 8 is an odd power of two.
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