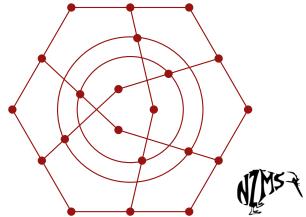
Characterising the natural embedding of the twisted triality hexagons



Sebastian Petit

September 2025, Irsee Joint work with Geertrui Van de Voorde



Ordinary polygons

Generalised hexagons

Definition.

Generalised hexagon, Γ:

Point-line geometry $(\mathcal{P},\mathcal{L},\mathtt{I})$ s. t.:

Generalised hexagons

Definition.

Generalised hexagon, Γ:

Point-line geometry $(\mathcal{P},\mathcal{L},\mathtt{I})$ s. t.:

▶ No k-gons, for $2 \le k < 6$,

Generalised hexagons

Definition.

Generalised hexagon, Γ:

Point-line geometry $(\mathcal{P}, \mathcal{L}, I)$ s. t.:

- ▶ No k-gons, for $2 \le k < 6$,
- ▶ $x, y \in \mathcal{P} \cup \mathcal{L} \implies$ contained in a hexagon.

Generalised hexagons

Definition.

Generalised hexagon, Γ:

Point-line geometry $(\mathcal{P}, \mathcal{L}, I)$ s. t.:

- ▶ No k-gons, for $2 \le k < 6$,
- ▶ $x, y \in \mathcal{P} \cup \mathcal{L} \implies$ contained in a hexagon.

Definition.

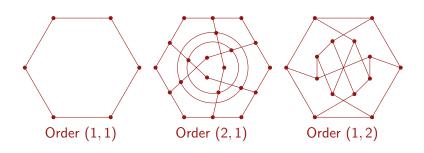
Order (s, t):

- ▶ line \implies s+1 points,
- ightharpoonup point $\Longrightarrow t+1$ lines.

Generalised hexagons

00000

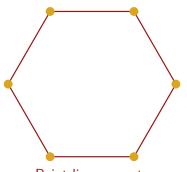
Examples



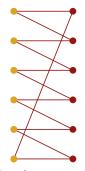
00

0000

Incidence graphs



Point-line geometry



Incidence graph

Alternate definition

Alternate definition.

A generalised hexagon Γ is a point-line geometry $(\mathcal{P},\mathcal{L},\mathtt{I})$ such that the incidence graph of Γ is connected and has:

- diameter 6,
- ▶ girth 12,
- every vertex has degree at least 2.

Thick Generalised hexagons

Definition.

Thick generalised hexagon: Generalised hexagon of order (s, t) with s > 1 and t > 1.

Thick Generalised hexagons

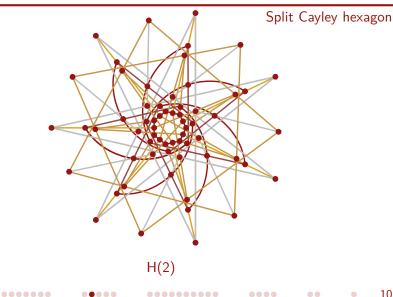
Definition.

Thick generalised hexagon: Generalised hexagon of order (s, t) with s > 1 and t > 1.

Known thick generalised hexagons:

- ▶ split Cayley hexagons, order (q, q),
- twisted triality hexagons, order (q^3, q) ,

and their duals.



Natural embedding

 $\mathsf{H} := \mathsf{split} \ \mathsf{Cayley} \ \mathsf{hexagon} \ \mathsf{H}(q) = (\mathcal{P}^\mathsf{H}, \mathcal{L}^\mathsf{H}, \mathtt{I}) \ \mathsf{in} \ \mathsf{PG}(6,q).$

- ▶ Points: all the points of Q(6, q).
- ▶ Lines: subset of the lines of Q(6, q).

Natural embedding

 $\mathsf{H} := \mathsf{split} \ \mathsf{Cayley} \ \mathsf{hexagon} \ \mathsf{H}(q) = (\mathcal{P}^\mathsf{H}, \mathcal{L}^\mathsf{H}, \mathsf{I}) \ \mathsf{in} \ \mathsf{PG}(6,q).$

- ▶ Points: all the points of Q(6, q).
- ▶ Lines: subset of the lines of Q(6, q).

Let x be a point of H.

- ▶ (Flat) The set of points collinear with x in H is contained in a plane of PG(6, q).
- (Weak) The set of points not opposite x in H is contained in a hyperplane of PG(6, q).

Intersection properties

- ▶ (Pt) Point: 0 or q+1 incident elements of \mathcal{L}^{H}
- ▶ (PI) Plane: 0,1 or q+1 elements of \mathcal{L}^{H} .
- ▶ (Sd) Solid: 0, 1, q + 1 or 2q + 1 elements of \mathcal{L}^{H} .
- (4d) 4-spaces: at most $q^3 q^2 + 4q$ elements of \mathcal{L}^H .
- (To) $|\mathcal{L}^{\mathsf{H}}| \leq q^5 + q^4 + q^3 + q^2 + q + 1$.

Characterisation

Theorem (Ihringer (2014)).

If \mathcal{L} is a set of lines of PG(6, q) then \mathcal{L} satisfies (Pt), (Pl), (Sd), (4d) and (To), if and only if it is the line set of a naturally embedded split Cayley hexagon H(q) in PG(6, q).

- F. Ihringer, A characterization of the natural embedding of the split Cayley hexagon in PG(6,q) by intersection numbers in finite projective spaces of arbitrary dimension, Discrete Mathematics, v. 314, p. = 42-49, 2014, ISSN 0012-365X.
- J. A. Thas, H. Van Maldeghem, A characterization of the natural embedding of the split Cayley hexagon H(q) in PG(6,q) by intersection numbers, European Journal of Combinatorics, v. 29, i. 6, 2008, p. 1502-1506, ISSN 0195-6698.

Natural embedding

T := twisted triality hexagon $T(q^3, q) = (\mathcal{P}^T, \mathcal{L}^T, I)$ in PG(7, q^3).

- ▶ Points: subset of the points of $Q^+(7, q^3)$.
- ▶ Lines: subset of the lines of $Q^+(7, q^3)$.

Natural embedding

T := twisted triality hexagon $T(q^3, q) = (\mathcal{P}^T, \mathcal{L}^T, I)$ in PG(7, q^3).

- ▶ Points: subset of the points of $Q^+(7, q^3)$.
- ▶ Lines: subset of the lines of $Q^+(7, q^3)$.

Let x be a point of T.

- ► (Flat) The set of points collinear with x in T is contained in a plane of PG(7, q^3).
- (Weak) The set of points not opposite x in T is contained in a hyperplane of PG(7, q^3).

Isolated and Ideal

Definition.

Let U be a subspace of $PG(7, q^3)$.

Let x be a point of T in U.

- ightharpoonup x is \mathcal{L}^{T} -isolated in U if no line of \mathcal{L}^{T} through x is in U.
- ightharpoonup x is \mathcal{L}^{T} -ideal in U if all lines of \mathcal{L}^{T} through x are in U.

Being isolated/ideal depends on the subspace in which we consider the point!

 \mathcal{L}^T -supported

Definition.

An *n*-dimensional subspace U of PG(7, q^3) is \mathcal{L}^T -supported if all lines of \mathcal{L}^T in U span the space U.

Basics

- **(Pt)** Point: 0 or q+1 incident elements of \mathcal{L}^{T} .
- (To) $|\mathcal{L}^{\mathsf{T}}| \leq q^9 + q^8 + q^5 + q^4 + q + 1$.

Lemma.

Every \mathcal{L}^{T} -supported plane of PG(7, q^3) is incident with q+1 lines of \mathcal{L}^{T} .

0 isolated, 1 ideal

 \implies **(PI)** Plane: 0,1 or q+1 incident elements of \mathcal{L}^{T} .

3-spaces

Lemma.

Let Σ be an \mathcal{L}^{T} -supported solid of PG(7, q^3). Then, Σ contains either q+1 or 2q+1 elements of \mathcal{L}^{T} .

q+1 lines 0 isolated, 0 ideal

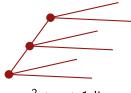
2q + 1 lines 0 isolated, 2 ideal

 \implies **(Sd)** Solid: 0, 1, q + 1 or 2q + 1 incident elements of \mathcal{L}^{T} .

4-spaces

Lemma.

Let U be an \mathcal{L}^{T} -supported 4-dimensional subspace of PG(7, q^3). Then, U contains either q^2+q+1 or q^2+2q+1 elements of \mathcal{L}^{T} .



 $q^2 + q + 1$ lines 0 isolated, q + 1 ideal

 $q^2 + 2q + 1$ lines 0 isolated, q + 2 ideal

 \implies **(4d)** 4-dim subspace: at most $q^2 + 2q + 1$.

5-spaces

Lemma.

Let V be an \mathcal{L}^T -supported 5-dimensional subspace of PG(7, q^3). Then, V contains either $q^3+1, q^3+q^2+q+1, q^3+2q^2+2q+1$ or q^4+q+1 elements of \mathcal{L}^T

 $q^3 + 1$ lines 0 isolated, 0 ideal

 $q^3 + 2q^2 + 2q + 1$ lines 0 isolated, $2q^2 + 2q + 2$ ideal

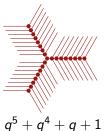
 $q^3+q^2\stackrel{\cdot}{+}q+1$ lines 0 isolated, q^2+q+1 ideal

 q^4+q+1 lines 0 isolated, q^3+1 ideal

6-spaces

Lemma.

Let W be an \mathcal{L}^{T} -supported hyperplane of PG(7, q^3). Then, W contains either $q^5 + q^4 + q + 1$ or $q^5 + q^4 + q^3 + q^2 + q + 1$ elements of \mathcal{L}^{T} .



$$q^5 + q^4 + q + 1$$
 lines

$$q^5 + q^4 + q^3 + q^2 + q + 1$$
 lines

Assumptions

Set of lines \mathcal{L} of PG(7, q^3) such that:

- ▶ (Pt) Point: 0 or q+1 incident elements of \mathcal{L}
- ▶ (PI) Plane: 0,1 or q+1 elements of \mathcal{L} .
- ▶ (Sd) Solid: 0, 1, q + 1 or 2q + 1 elements of \mathcal{L} .
- ▶ (4d) 4-space: at most $q^2 + 2q + 1$ elements of \mathcal{L} .
- (To) $|\mathcal{L}^{\mathsf{H}}| \leq q^5 + q^4 + q^3 + q^2 + q + 1$.

No k-gons

Combinatorially from (Pt), (PI), (Sd) and (4d):

- $lackbox{ No three lines of } \mathcal{L} \text{ form a triangle.}$
- ▶ No four lines of \mathcal{L} form a quadrangle.
- ightharpoonup No five lines of $\mathcal L$ form a pentagon.

Together with property (To):

Lemma.

The set \mathcal{L} determines a generalised hexagon of order (q^3, q) .

Flatly and fully embedded

Theorem (Thas & Van Maldeghem (1998)).

If a thick generalized hexagon Γ of order (s,t) is flatly and fully embedded in PG(d,s), then $d\in\{4,5,6,7\}$ and $t\leq s$. Also, if d=7, then $\Gamma\cong T(s,\sqrt[3]{s})$ and the embedding is natural. If d=6 and $t^5>s^3$, then $\Gamma\cong H(s)$ and the embedding is natural. If d=5 and s=t, then $\Gamma\cong H(s)$ with s even and the embedding is natural.

J. A Thas, H. Van Maldeghem, *Flat Lax and Weak Lax Embeddings of Finite Generalized Hexagons*, European Journal of Combinatorics, v. 19, i. 6, 1998, p. 733-751, ISSN 0195-6698.

28

Theorem (P. & Van de Voorde (2025)).

The line set \mathcal{L} of a regularly embedded twisted triality hexagon $\mathsf{T}(q^3,q)$ in $\mathsf{PG}(7,q^3)$ satisfies the properties (Pt), (Pl), (Sd), (4d) and (To).

Theorem (P. & Van de Voorde (2025)).

The line set \mathcal{L} of a regularly embedded twisted triality hexagon $\mathsf{T}(q^3,q)$ in $\mathsf{PG}(7,q^3)$ satisfies the properties (Pt), (Pl), (Sd), (4d) and (To).

Theorem (P. & Van de Voorde (2025)).

Let $\mathcal L$ be a set of lines of PG(7, q^3). If $\mathcal L$ satisfies the properties (Pt), (Pl), (Sd), (4d) and (To), then $\mathcal L$ is the line set of a regularly embedded twisted triality hexagon T(q^3 , q) in PG(7, q^3).

Theorem (P. & Van de Voorde (2025)).

The line set \mathcal{L} of a regularly embedded twisted triality hexagon $\mathsf{T}(q^3,q)$ in $\mathsf{PG}(7,q^3)$ satisfies the properties (Pt), (Pl), (Sd), (4d) and (To).

Theorem (P. & Van de Voorde (2025)).

Let \mathcal{L} be a set of lines of PG(7, q^3). If \mathcal{L} satisfies the properties (Pt), (PI), (Sd), (4d) and (To), then \mathcal{L} is the line set of a regularly embedded twisted triality hexagon T(q^3 , q) in PG(7, q^3).

Future work: weaken/change the hypothesis to draw the same conclusion.

Thank you for your attention!

