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Additive codes

Definition
A linear code of length n, dimension k and distance d over Fq is a
k dimensional linear subspace C of Fn

q where d is the minimum
weight of any non-zero c ∈ C . We denote such a code by [n, k , d ]q

Definition
An additive code of length n over Fqh is a subset C of Fn

qh
with the

property that for all u, v ∈ C the sum u + v ∈ C .

▶ We use the notation [n, r/h, d ]hq to denote an additive code of
length n over Fqh , of size qr and minimum distance d , which
is linear over Fq.

▶ Note when h = 1 we end up with a linear code.
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Geometry of Additive Codes

An [n, r/h, d ]hq additive code is generated by a r × n matrix G
where each column U is in Fr

qh

G =

 U1 U2 . . . Un .



Let {e1, . . . , eh} be a basis for Fqh over Fq, then

Ui =
h∑

j=1

ujej for uj ∈ Fr
q

Let πi = ⟨u1 . . . uh⟩ be a subspace of PG (r − 1, q) for each Ui and
XG = {π1 . . . πn} be the multiset of subspaces
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Relationship with Projective Geometries

▶ There exists a one-to-one relationship between codewords of
the additive code and hyperplanes, such that a coordinate ci
of the codeword is 0 if and only if πi is in the corresponding
hyperplane.

▶ If a hyperplane contains t members of XG = {π1 . . . πn} it has
weight n − t.
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Relationship with projective Geometries
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Projective Systems

Definition
A projective h − (n, r , d)q system is a multiset S of n subspaces of
PG(r − 1, q) of dimension at most h − 1 such that each
hyperplane of PG(r − 1, q) contains at most n − d elements of S ,
and some hyperplane contains exactly n − d elements of S .

Theorem
If C is an additive [n, r/h, d ]hq code, then X (C) is a projective
h − (n, r , d)q system, and conversely, each projective h − (n, r , d)q
system defines an additive [n, r/h, d ]hq code.
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Mathon Example

Theorem (Mathon 2003)

There exists a set of 21 lines X in PG (5, 3) such that every plane
contains 0 or 3 lines of X .

Corollary

There exists a [21, 3, 18]23 additive code
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Griesmer Bound

Theorem (Griesmer 1960)

If there is an [n, k, d ]q linear code then

n ⩾
k−1∑
j=0

⌈
d

qj

⌉
.

This bound can be reformulated as follows,

n ⩾ k + d −m +
m−1∑
j=1

⌈
d

qj

⌉
,

where m ⩽ r − 1 is such that qk−1 < d ⩽ qm.
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Additive Griesmer Bound 1.

Theorem (Ball, Lavrauw, P. 2024)

If there is an [n, r/h, d ]hq additive code then

n ⩾ ⌈r/h⌉+ d −m − 2 + ⌈ d

f (q,m)
⌉,

where r = (⌈r/h⌉ − 1)h + r0, 1 ⩽ r0 ⩽ h,

f (q,m) =
qmh+r0(qh − 1)

qmh+r0 − 1

for all m such that 0 ⩽ m ⩽ ⌈r/h⌉ − 2.
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Corollary of Bound

Corollary

If there is a [n, r/h, d ]hq additive code then

n ⩾ ⌈r/h⌉+ d −m +


m−2∑
j=1

d

qjh

 ,

where r = (k − 1)h + r0, k = ⌈r/h⌉, 1 ⩽ r0 ⩽ h,

q(m−2)h+r0 < d ⩽ q(m−1)h+r0 ⩽ qr .
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Additive Griesmer Bound 2.

Theorem (Ball, Lavrauw, P. 2024)

If there is a [n, r/h, d ]hq additive code then

n ⩾ d +
q − 1

qh − 1

r−h∑
j=1

⌈ d
qj
⌉.

Theorem
If d is such that q(m−2)h+r0 < d ⩽ q(m−1)h+r0 , for some
m ∈ {2, . . . , ⌈r/h⌉} and

(⌈r/h⌉ −m)(qh − 1) ⩾ (r − h)(q − 1) + qh − q

then the first first is better than the second.
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Additive MDS codes

Theorem (Singleton Bound)

For an [n, k , d ]q linear code k ≤ n − d + 1

Theorem (Huffman 2013)

If there is an [n, r/h, d ]hq additive code then the Singleton bound
can be reformulated as⌈r/h⌉ ⩽ n − d + 1.

A code is called maximum distance sepearable (MDS) when it
meets the bound.
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Additive MDS Bound

Theorem (Griesmer)

If there exists a [n, k , d ]qh linear MDS code then n ⩽ k − 1 + qh

Theorem (Ball, Lavrauw, P. 2024)

If there exists an [n, r/h, d ]hq additive MDS code then

n ⩽ ⌈r/h⌉ − 2 + qh +
qh − 1

qr0 − 1
,

where r = (⌈r/h⌉ − 1)h + r0, 1 ⩽ r0 ⩽ h,
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Constructions of additive MDS codes

Example (Ball, Lavrauw, P 2024)

1. If r0 divides h then there is a [n, 1 + (r0/h), n − 1]
h/r0
qr0 additive

MDS code where

n = qh +
qh − 1

qr0 − 1
.

2. There is a [2h+1, 2 + (1/h), d ]h2 additive MDS code.

3. There are 6 inequivalent [12, 2.5, 10]23 additive MDS codes.
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Construction of additive Codes from Linear codes

Theorem (Ball, P. 2025)

If there is a linear [n, k , d ]q code then there is a [n, k/h, dadd]
h
q

additive code where

dadd ⩾
h−1∑
j=0

⌈ d
qj
⌉.

▶ A generalization of a theorem by Guan et al.

[1] C. Guan, R. Li, Y.Liu and Z. Ma
Some quaternary additive codes outperform linear
counterparts
IEEE Transactions on Information Theory, vol. 69, no. 11, pp.
7122-7131, Nov. 2023.
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New Construction of additive codes

Theorem (Ball, P. 2025)

If h ⩽ s and t ⩾ 2 then there is a [qst − 1, st+s+1
h , d ]hq additive

code where

d ⩾ qst − 1− qst − 1

qs − 1
qs−h.

▶ The above theorem reaches the additive griesmer bound when
t = 2 and s = h.

▶ The code gives a [63, 5, 45]22 code, which performs better than
any known linear codes.
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Integral additive codes that outperform linear codes

▶ There exists a [21, 3, 18]23 additive code (Mathon et al. 2003)

▶ Six examples for q = 2 and h = 2 (Guan et al. 2023)

▶ Examples for the following parameters when n is sufficiently
large [n, 4, d ]22, [n, 3, d ]

2
3, [n, 3, d ]

3
2, [n, 3, d ]

2
4, [n, 5, d ]

2
2, and

[n, 3, d ]25 (Kurz 2024)
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Generalized Maximal Arc

Definition
A maximal arc X of degree t in PG (2, q) is a set of points such
that every line is incident to 0 or t points.

Definition
A generalized maximal arc of degree t is a set X of h − 1
dimensional subspaces in PG (kh− 1, q) such that every hyperplane
contains 0 or t members of X .

Corollary

A generalized maximal arc of degree t over PG (kh − 1, q) is
equivalent to a [n, k, n − t]hq additive two weight code.

Additive Codes and Finite Geometries IRSEE 2025


	Geometry of Additive Codes
	Bounds for Additive Codes
	Constructions of Additive codes

