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Additive codes

Definition

A linear code of length n, dimension k and distance d over [F is a
k dimensional linear subspace C of 'y where d is the minimum
weight of any non-zero ¢ € C. We denote such a code by [n, k. d],
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k dimensional linear subspace C of 'y where d is the minimum
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Definition
An additive code of length n over I, is a subset C of ]th with the
property that for all u,v € C the sum v+ v € C.
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Additive codes

Definition

A linear code of length n, dimension k and distance d over [F is a
k dimensional linear subspace C of 'y where d is the minimum
weight of any non-zero ¢ € C. We denote such a code by [n, k. d],

Definition
An additive code of length n over I, is a subset C of ]th with the
property that for all u,v € C the sum v+ v € C.

» \We use the notation [n, r/h, d]g to denote an additive code of
length n over th, of size ¢" and minimum distance d, which
is linear over [f,.

» Note when h = 1 we end up with a linear code.
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Geometry of Additive Codes

An [n,r/h, d]g additive code is generated by a r x n matrix G
where each column U is in F;h
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Geometry of Additive Codes

An [n,r/h, d]g additive code is generated by a r x n matrix G
where each column U is in F;h

G=| U U Un
Let {e1,..., e} be a basis for IF » over I, then
h
U, = Z uje; for uj € F;
j=1
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Geometry of Additive Codes

An [n,r/h, d]g additive code is generated by a r x n matrix G
where each column U is in F;h

G=| U U Un
Let {e1,..., e} be a basis for IF » over I, then
h
U, = Z uje; for uj € F;
j=1

Let mj = (u1 ... up) be a subspace of PG(r — 1, q) for each U; and
X = {m1...m,} be the multiset of subspaces
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Relationship with Projective Geometries

P> There exists a one-to-one relationship between codewords of
the additive code and hyperplanes, such that a coordinate ¢;
of the codeword is 0 if and only if 7; is in the corresponding
hyperplane.
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Relationship with Projective Geometries

P> There exists a one-to-one relationship between codewords of
the additive code and hyperplanes, such that a coordinate ¢;
of the codeword is 0 if and only if 7; is in the corresponding
hyperplane.

» If a hyperplane contains ¢t members of X = {7y ...7,} it has
weight n — t.
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Relationship with projective Geometries

\\
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Projective Systems

Definition

A projective h — (n, r,d), system is a multiset S of n subspaces of
PG(r—1,q) of dimension at most h — 1 such that each
hyperplane of PG(r — 1, g) contains at most n — d elements of S,
and some hyperplane contains exactly n — d elements of 5.

Theorem

If C is an additive [n, r/h, d]g code, then X (C) is a projective
h—(n,r,d), system, and conversely, each projective h — (n.r,d)q
system defines an additive [n, r/h, d]g code.
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Mathon Example

Theorem (Mathon 2003)

There exists a set of 21 lines X in PG(5,3) such that every plane
contains 0 or 3 lines of X.
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Mathon Example

Theorem (Mathon 2003)

There exists a set of 21 lines X in PG(5,3) such that every plane
contains 0 or 3 lines of X.

Corollary
There exists a [21,3,18]5 additive code
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Griesmer Bound

Theorem (Griesmer 1960)
If there is an [n. k, d|, linear code then

k—1 d
=X (5]
j=0
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Griesmer Bound

Theorem (Griesmer 1960)
If there is an [n. k, d|, linear code then

k=1r g
=X (5]
j=0
This bound can be reformulated as follows,

m—1 d
nzk+d-m+> {W
j=1

where m < r — 1 is such that qk*1 <d<qgm.
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Additive Griesmer Bound 1.

Theorem (Ball, Lavrauw, P. 2024)
If there is an [n.r/h,d]} additive code then

n> [r/h]+d—m—2+(f(q’m)

where r = ([r/h] —1)h+ry, 1 < rp < h,

g™t (q" — 1)

f(q’ m) - qrnh+ro —1

for all m such that 0 < m < [r/h| — 2.
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Corollary of Bound

Corollary
If there is a [n, r/h, d]g additive code then

where r = (k —1)h+ry, k = [r/h], 1 < rp < h,

q(mf2)h+r0 <d< q(mfl)h+r0 < qr.
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Additive Griesmer Bound 2.

Theorem (Ball, Lavrauw, P. 2024)
If there is a [n,r/h. d]" additive code then

n>d+

r—h
qg—1 d

Additive Codes and Finite Geometries IRSEE 2025



Bounds for Additive Codes
000000

Additive Griesmer Bound 2.

Theorem (Ball, Lavrauw, P. 2024)
If there is a [n,r/h. d]" additive code then

qilrfh d
nzd+ 3 Il
j=1

Theorem
If d is such that g(m=2"*0 < d < g(m=Dh+n0 for some
me{2,...,[r/hl} and

([r/h] —m)(q"—1) > (r—h)(g—1)+q¢"—q
then the first first is better than the second.
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Additive MDS codes

Theorem (Singleton Bound)
For an [n, k,d|q linear code k < n—d +1

Theorem (Huffman 2013)

If there is an [n,r/h, d]g additive code then the Singleton bound
can be reformulated as|r/h| < n—d+ 1.

A code is called maximum distance sepearable (MDS) when it
meets the bound.
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Additive MDS Bound

Theorem (Griesmer)
If there exists a [n, k. d] » linear MDS code then n < k — 1+ g"
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Additive MDS Bound

Theorem (Griesmer)
If there exists a [n, k. d] » linear MDS code then n < k — 1+ g"

Theorem (Ball, Lavrauw, P. 2024)
If there exists an [n, r/h, d]} additive MDS code then

q"—1
g -1

n<[r/h]l —2+q"+

where r = ([r/h] —1)h+ry, 1 < rg < h,
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Constructions of additive MDS codes

Example (Ball, Lavrauw, P 2024)
1. If ro divides h then there is a [, 1+ (ro/h), n — 1]//° additive
MDS code where

h
q'—1
n:qh+qro_1.

2. There is a [2/1,2 + (1/h), d]} additive MDS code.

3. There are 6 inequivalent [12,2.5,10]5 additive MDS codes.
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Construction of additive Codes from Linear codes
Theorem (Ball, P. 2025)

If there is a linear [n, k, d], code then there is a [n. k/h, d.ddd]g
additive code where

dadd 2 ’V

>
=

—~
I
Qo
—

> A generalization of a theorem by Guan et al.

[1] C. Guan, R. Li, Y.Liu and Z. Ma

Some quaternary additive codes outperform linear
counterparts

IEEE Transactions on Information Theory, vol. 69, no. 11, pp.
7122-7131, Nov. 2023.
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New Construction of additive codes

Theorem (Ball, P. 2025)

If h<sandt>2 then there is a [q*" — 1, *t5H d]g additive
code where

d>qg"—1-—
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New Construction of additive codes

Theorem (Ball, P. 2025)

If h<sandt>2 then there is a [q*" — 1, *t5H d]g additive
code where

» The above theorem reaches the additive griesmer bound when
t=2ands=h.

» The code gives a [63,5, 45]% code, which performs better than
any known linear codes.
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Integral additive codes that outperform linear codes

> There exists a [21, 3, 18]3 additive code (Mathon et al. 2003)
» Six examples for g =2 and h =2 (Guan et al. 2023)

» Examples for the following parameters when n is sufficiently
large [n, 4, d]3, [n,3,d]3, [n,3,d]3, [n,3,d]3, [n,5,d]3, and
[n,3,d]2 (Kurz 2024)
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Generalized Maximal Arc

Definition
A maximal arc X of degree t in PG(2,q) is a set of points such
that every line is incident to O or t points.

Definition

A generalized maximal arc of degree tisaset X of h—1
dimensional subspaces in PG(kh — 1, q) such that every hyperplane
contains 0 or t members of X.

Corollary

A generalized maximal arc of degree t over PG(kh —1,q) is
equivalent to a [n, k,n — t]g additive two weight code.
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