Cameron-Liebler sets of generators in polar spaces with rank d > 3

Morgan Rodgers

RPTU Kaiserslautern-Landau

Finite Geometries 2025 - Seventh Irsee Conference

(joint work with Maarten De Boeck, Jozefien D'haeseleer, and Ferdinand Ihringer)

Overview

- A Cameron-Liebler set is a collection of subspaces in a finite projective or polar space having certain nice combinatorial properties.
- In general, they can be thought of as meeting some theoretical bound on containing as many intersecting spaces as possible.
- These objects have since been generalized to many other contexts, where they have important connections to the eigenspaces of distance regular graphs.

Overview

- A Cameron-Liebler set is a collection of subspaces in a finite projective or polar space having certain nice combinatorial properties.
- In general, they can be thought of as meeting some theoretical bound on containing as many intersecting spaces as possible.
- These objects have since been generalized to many other contexts, where they have important connections to the eigenspaces of distance regular graphs.

Overview

- A Cameron-Liebler set is a collection of subspaces in a finite projective or polar space having certain nice combinatorial properties.
- In general, they can be thought of as meeting some theoretical bound on containing as many intersecting spaces as possible.
- These objects have since been generalized to many other contexts, where they have important connections to the eigenspaces of distance regular graphs.

Definition (R., Storme, Vansweevelt (2018), Blokhuis, De Boeck, D'haeseleer (2019))

A set of k-spaces \mathcal{L} in PG(n,q) is called a *Cameron–Liebler* k-class (CL k-class) if its characteristic vector \mathbf{c} lies in the row space of the point-k-space incidence matrix A.

We can assume that $n \ge 2k + 1$ without loss of generality.

It can be shown that in this case $|\mathcal{L}| = x {n \brack k}_q$ for some integer $0 \le x \le q^n + 1$ called the *parameter* of \mathcal{L} .

For projective spaces, Row $A = V_0 \oplus V_1$, where $V_0 = \langle \mathbf{j} \rangle$ and V_1 are the first two eigenspaces of the distance regular Grassmann graph $J_q(n+1,k+1)$ under the standard ordering.

Definition (R., Storme, Vansweevelt (2018), Blokhuis, De Boeck, D'haeseleer (2019))

A set of k-spaces \mathcal{L} in PG(n,q) is called a *Cameron–Liebler* k-class (CL k-class) if its characteristic vector \mathbf{c} lies in the row space of the point-k-space incidence matrix A.

We can assume that $n \ge 2k + 1$ without loss of generality.

It can be shown that in this case $|\mathcal{L}| = x {n \brack k}_q$ for some integer $0 \le x \le q^n + 1$ called the *parameter* of \mathcal{L} .

For projective spaces, Row $A = V_0 \oplus V_1$, where $V_0 = \langle \mathbf{j} \rangle$ and V_1 are the first two eigenspaces of the distance regular Grassmann graph $J_q(n+1,k+1)$ under the standard ordering.

Definition (R., Storme, Vansweevelt (2018), Blokhuis, De Boeck, D'haeseleer (2019))

A set of k-spaces \mathcal{L} in PG(n,q) is called a *Cameron–Liebler* k-class (CL k-class) if its characteristic vector \mathbf{c} lies in the row space of the point-k-space incidence matrix A.

We can assume that $n \ge 2k + 1$ without loss of generality.

It can be shown that in this case $|\mathcal{L}| = x {n \brack k}_q$ for some integer $0 \le x \le q^n + 1$ called the *parameter* of \mathcal{L} .

For projective spaces, Row $A = V_0 \oplus V_1$, where $V_0 = \langle \mathbf{j} \rangle$ and V_1 are the first two eigenspaces of the distance regular Grassmann graph $J_q(n+1,k+1)$ under the standard ordering.

Definition (R., Storme, Vansweevelt (2018), Blokhuis, De Boeck, D'haeseleer (2019))

A set of k-spaces \mathcal{L} in PG(n,q) is called a *Cameron–Liebler* k-class (CL k-class) if its characteristic vector \mathbf{c} lies in the row space of the point-k-space incidence matrix A.

We can assume that $n \ge 2k + 1$ without loss of generality.

It can be shown that in this case $|\mathcal{L}| = x {n \brack k}_q$ for some integer $0 \le x \le q^n + 1$ called the *parameter* of \mathcal{L} .

For projective spaces, Row $A=V_0\oplus V_1$, where $V_0=\langle \boldsymbol{j}\rangle$ and V_1 are the first two eigenspaces of the distance regular Grassmann graph $J_q(n+1,k+1)$ under the standard ordering.

This forces the number of pairwise nontrivially intersecting elements of $\mathcal L$ to be as large as possible in relation to $|\mathcal L|$, giving an equivalent definition.

Definition

A set of k-spaces $\mathcal L$ in PG(n,q) with characteristic vector $\mathbf c$ is a CL k-class if and only if there is some $x \in \mathbb Q$ such that every k-space π of PG(n,q) intersects nontrivially with

$$\times \left(\begin{bmatrix} n \\ k \end{bmatrix}_q - \begin{bmatrix} n-k-1 \\ k \end{bmatrix}_q q^{k^2+k} \right) + \left(\begin{bmatrix} n-k-1 \\ k \end{bmatrix}_q q^{k^2+k} - 1 \right) c(\pi)$$

other k-spaces in \mathcal{L} .

This forces the number of pairwise nontrivially intersecting elements of $\mathcal L$ to be as large as possible in relation to $|\mathcal L|$, giving an equivalent definition.

Definition

A set of k-spaces $\mathcal L$ in PG(n,q) with characteristic vector $\boldsymbol c$ is a CL k-class if and only if there is some $x\in\mathbb Q$ such that every k-space π of PG(n,q) intersects nontrivially with

$$\times \left(\begin{bmatrix} n \\ k \end{bmatrix}_q - \begin{bmatrix} n-k-1 \\ k \end{bmatrix}_q q^{k^2+k} \right) + \left(\begin{bmatrix} n-k-1 \\ k \end{bmatrix}_q q^{k^2+k} - 1 \right) \boldsymbol{c}(\pi)$$

other k-spaces in \mathcal{L} .

This number of intersections comes from Hoffman's coclique bound applied to the disjointness relation, which is based on the minimal eigenvalue of this relation.

Theorem

If PG(n, q) admits a k-spread, then a set of k-spaces \mathcal{L} is a CL k-class if and only if \mathcal{L} shares some fixed number x of k-spaces with every spread of PG(n, q).

This number of intersections comes from Hoffman's coclique bound applied to the disjointness relation, which is based on the minimal eigenvalue of this relation.

Theorem

If PG(n, q) admits a k-spread, then a set of k-spaces \mathcal{L} is a CL k-class if and only if \mathcal{L} shares some fixed number x of k-spaces with every spread of PG(n, q).

It also makes sense to define CL sets of generators in a finite classical polar space ${\cal P}$ in a similar way.

Definition (De Boeck, R., Storme, Švob (2019), De Boeck, D'haeseleer (2020))

Let \mathcal{L} be a set of generators of a rank d polar space. Then \mathcal{L} is a $(degree\ one)\ Cameron-Liebler\ set\ of\ generators$ if the characteristic vector \mathbf{c} lies in $V_0 \oplus V_1$, where $V_0 = \langle \mathbf{j} \rangle$ and V_1 are the first two eigenspaces of the distance regular dual polar graph under the standard ordering.

We have an integer $0 \le x \le q^{e+d-1} + 1$ for which $|\mathcal{L}| = x \prod_{i=0}^{d-2} (q^{e+i} + 1)$, called the *parameter* of the CL set.

It also makes sense to define CL sets of generators in a finite classical polar space ${\cal P}$ in a similar way.

Definition (De Boeck, R., Storme, Švob (2019), De Boeck, D'haeseleer (2020))

Let \mathcal{L} be a set of generators of a rank d polar space. Then \mathcal{L} is a (degree one) Cameron-Liebler set of generators if the characteristic vector \mathbf{c} lies in $V_0 \oplus V_1$, where $V_0 = \langle \mathbf{j} \rangle$ and V_1 are the first two eigenspaces of the distance regular dual polar graph under the standard ordering.

We have an integer $0 \le x \le q^{e+d-1} + 1$ for which $|\mathcal{L}| = x \prod_{i=0}^{d-2} (q^{e+i} + 1)$, called the *parameter* of the CL set.

It also makes sense to define CL sets of generators in a finite classical polar space ${\cal P}$ in a similar way.

Definition (De Boeck, R., Storme, Švob (2019), De Boeck, D'haeseleer (2020))

Let \mathcal{L} be a set of generators of a rank d polar space. Then \mathcal{L} is a (degree one) Cameron-Liebler set of generators if the characteristic vector \mathbf{c} lies in $V_0 \oplus V_1$, where $V_0 = \langle \mathbf{j} \rangle$ and V_1 are the first two eigenspaces of the distance regular dual polar graph under the standard ordering.

We have an integer $0 \le x \le q^{e+d-1} + 1$ for which $|\mathcal{L}| = x \prod_{i=0}^{d-2} (q^{e+i} + 1)$, called the *parameter* of the CL set.

The parameter e of a rank d polar space is the value for which the number of generators through a (d-1)-space is given by $q^e + 1$.

polar space	e
$Q^+(2d-1,q)$	0
$\mathcal{H}(2d-1,q)$	1/2
$\mathcal{W}(2d-1,q)$	1
$\mathcal{Q}(2d,q)$	1
$\mathcal{H}(2d,q)$	3/2
$\mathcal{Q}^-(2d+1,q)$	2

Let \mathcal{P} be a rank 4 polar space with parameter $e \leq 1$, having an embedded GQ $\mathcal{P}' \subseteq \mathcal{P}$ with parameter e + 1.

This means we have either

- $Q(4,q) \leq Q^+(7,q)$
- $\mathcal{H}(4,q) \leq \mathcal{H}(7,q)$ with q square, or
- $Q^{-}(5,q) \leq Q(8,q)$.

Theorem (De Boeck, D'haeseleer, R. (2025)

Let \mathcal{P} be a rank 4 polar space with parameter $e \leq 1$, having an embedded GQ $\mathcal{P}' \subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(4,q) \leq Q^+(7,q)$,
- $\mathcal{H}(4,q) \leq \mathcal{H}(7,q)$ with q square, or
- $Q^{-}(5,q) \leq Q(8,q)$.

Theorem (De Boeck, D'haeseleer, R. (2025)

Let \mathcal{P} be a rank 4 polar space with parameter $e \leq 1$, having an embedded GQ $\mathcal{P}' \subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(4,q) \leq Q^+(7,q)$,
- $\mathcal{H}(4,q) \leq \mathcal{H}(7,q)$ with q square, or
- $Q^-(5,q) \leq Q(8,q)$.

Theorem (De Boeck, D'haeseleer, R. (2025)

Let \mathcal{P} be a rank 4 polar space with parameter $e \leq 1$, having an embedded GQ $\mathcal{P}' \subseteq \mathcal{P}$ with parameter e + 1.

This means we have either

- $Q(4,q) \leq Q^+(7,q)$,
- $\mathcal{H}(4,q) \leq \mathcal{H}(7,q)$ with q square, or
- $Q^-(5,q) \leq Q(8,q)$.

Theorem (De Boeck, D'haeseleer, R. (2025)

Let \mathcal{P} be a rank 4 polar space with parameter $e \leq 1$, having an embedded GQ $\mathcal{P}' \subseteq \mathcal{P}$ with parameter e + 1.

This means we have either

- $Q(4,q) \leq Q^+(7,q)$,
- $\mathcal{H}(4,q) \leq \mathcal{H}(7,q)$ with q square, or
- $Q^{-}(5,q) \leq Q(8,q)$.

Theorem (De Boeck, D'haeseleer, R. (2025)

Let \mathcal{P} be a rank 4 polar space with parameter $e \leq 1$, having an embedded GQ $\mathcal{P}' \subseteq \mathcal{P}$ with parameter e + 1.

This means we have either

- $Q(4,q) \leq Q^+(7,q)$,
- $\mathcal{H}(4,q) \leq \mathcal{H}(7,q)$ with q square, or
- $Q^{-}(5,q) \leq Q(8,q)$.

Theorem (De Boeck, D'haeseleer, R. (2025))

Proof sketch

To prove this construction actually gives a CL set, it suffices to show that for every generator $\pi \in \mathcal{P}$ we have that the number of elements of \mathcal{L} meeting π in a line is given by

$$egin{cases} {\it m} q^{e+1}(q-1) - 1 + q^e(q^2+q+1) & \quad {
m if} \ \pi \in \mathcal{L} \ , \ {\it m} q^{e+1}(q-1) & \quad {
m if} \ \pi
otin \mathcal{L} \ . \end{cases}$$

We show this count by exploiting the fact that the perp of \mathcal{P}' is a plane (of the ambient space) meeting \mathcal{P} in a conic \mathcal{C} so every generator of \mathcal{P} containing a point of \mathcal{C} meets \mathcal{P}' in a line; the elements of \mathcal{L} are all disjoint from \mathcal{C} .

Proof sketch

To prove this construction actually gives a CL set, it suffices to show that for every generator $\pi \in \mathcal{P}$ we have that the number of elements of \mathcal{L} meeting π in a line is given by

$$\begin{cases} \mathit{mq}^{e+1}(q-1) - 1 + \mathit{q}^{e}(\mathit{q}^2 + \mathit{q} + 1) & \text{if } \pi \in \mathcal{L} \; , \\ \mathit{mq}^{e+1}(\mathit{q} - 1) & \text{if } \pi \notin \mathcal{L} \; . \end{cases}$$

We show this count by exploiting the fact that the perp of \mathcal{P}' is a plane (of the ambient space) meeting \mathcal{P} in a conic \mathcal{C} so every generator of \mathcal{P} containing a point of \mathcal{C} meets \mathcal{P}' in a line; the elements of \mathcal{L} are all disjoint from \mathcal{C} .

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d,q) \leq Q^+(2d+3,q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^-(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d,q) \leq Q^+(2d+3,q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^{-}(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d,q) \leq Q^+(2d+3,q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^-(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d, q) \leq Q^+(2d + 3, q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^-(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d,q) \leq Q^+(2d+3,q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^-(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d,q) \leq Q^+(2d+3,q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^-(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

To generalize the construction, we take \mathcal{P} to be a rank $d+2\geq 4$ polar space with parameter $e\leq 1$, having an embedded rank d polar space $\mathcal{P}'\subseteq \mathcal{P}$ with parameter e+1.

This means we have either

- $Q(2d,q) \leq Q^+(2d+3,q)$,
- $\mathcal{H}(2d,q) \leq \mathcal{H}(2d+3,q)$ with q square, or
- $Q^{-}(2d+1,q) \leq Q(2d+4,q)$.

But what do we use in place of an m-ovoid in \mathcal{P}' ?

A generalization of *m*-ovoids

One obvious condition is that every generator of \mathcal{P}' should contain a constant number m of elements of \mathcal{M} .

To get a CL set from ${\mathcal M}$ we need an additional regularity property:

For every (d-1)-space $\sigma \in \mathcal{P}'$, the number of elements σ_0 of \mathcal{M} meeting σ in a (d-2)-space, where $\langle \sigma, \sigma_0 \rangle$ is not a generator of \mathcal{P}' , should be

$$\begin{cases} mq^{e+1}(q-1) & \text{if } \sigma \notin \mathcal{M} \\ (m-1)q^{e+1}(q-1) + q^{e+2} {d-1 \brack 1}_q & \text{if } \sigma \in \mathcal{M} \end{cases}$$

A generalization of *m*-ovoids

One obvious condition is that every generator of \mathcal{P}' should contain a constant number m of elements of \mathcal{M} .

To get a CL set from ${\mathcal M}$ we need an additional regularity property:

For every (d-1)-space $\sigma \in \mathcal{P}'$, the number of elements σ_0 of \mathcal{M} meeting σ in a (d-2)-space, where $\langle \sigma, \sigma_0 \rangle$ is not a generator of \mathcal{P}' , should be

$$\begin{cases} mq^{e+1}(q-1) & \text{if } \sigma \notin \mathcal{M} \\ (m-1)q^{e+1}(q-1) + q^{e+2} {d-1 \brack 1}_q & \text{if } \sigma \in \mathcal{M} \end{cases}$$

A generalization of *m*-ovoids

One obvious condition is that every generator of \mathcal{P}' should contain a constant number m of elements of \mathcal{M} .

To get a CL set from ${\mathcal M}$ we need an additional regularity property:

For every (d-1)-space $\sigma \in \mathcal{P}'$, the number of elements σ_0 of \mathcal{M} meeting σ in a (d-2)-space, where $\langle \sigma, \sigma_0 \rangle$ is not a generator of \mathcal{P}' , should be

$$\begin{cases} mq^{e+1}(q-1) & \text{if } \sigma \notin \mathcal{M} \ , \\ (m-1)q^{e+1}(q-1) + q^{e+2}{d-1 \brack 1}_q & \text{if } \sigma \in \mathcal{M} \ . \end{cases}$$

Regular *m*-ovoids of (d-1)-spaces

Definition

A set \mathcal{M} of (d-1)-spaces in a rank d polar space \mathcal{P} meeting the above conditions is called a *regular m-ovoid* of (d-1)-spaces.

This gives us the following

Theorem (De Boeck, D'haeseleer, R. (2025)

Let $\mathcal{P}' \subseteq \mathcal{P}$ as above, and let \mathcal{M} be a regular m-ovoid of (d-1)-spaces in \mathcal{P}' . Take \mathcal{L} to be the set of generators of \mathcal{P} meeting \mathcal{P}' precisely in an element of \mathcal{M} . Then \mathcal{L} is a CL set of generators in \mathcal{P} with parameter $mq^{e+1}(q-1)$.

Regular m-ovoids of (d-1)-spaces

Definition

A set \mathcal{M} of (d-1)-spaces in a rank d polar space \mathcal{P} meeting the above conditions is called a *regular m-ovoid* of (d-1)-spaces.

This gives us the following.

Theorem (De Boeck, D'haeseleer, R. (2025)

Let $\mathcal{P}' \subseteq \mathcal{P}$ as above, and let \mathcal{M} be a regular m-ovoid of (d-1)-spaces in \mathcal{P}' . Take \mathcal{L} to be the set of generators of \mathcal{P} meeting \mathcal{P}' precisely in an element of \mathcal{M} . Then \mathcal{L} is a CL set of generators in \mathcal{P} with parameter $mq^{e+1}(q-1)$.

Regular *m*-ovoids of (d-1)-spaces

Definition

A set \mathcal{M} of (d-1)-spaces in a rank d polar space \mathcal{P} meeting the above conditions is called a *regular m-ovoid* of (d-1)-spaces.

This gives us the following.

Theorem (De Boeck, D'haeseleer, R. (2025))

Let $\mathcal{P}'\subseteq\mathcal{P}$ as above, and let \mathcal{M} be a regular m-ovoid of (d-1)-spaces in \mathcal{P}' . Take \mathcal{L} to be the set of generators of \mathcal{P} meeting \mathcal{P}' precisely in an element of \mathcal{M} . Then \mathcal{L} is a CL set of generators in \mathcal{P} with parameter $mq^{e+1}(q-1)$.

- *m*-ovoids of $\mathcal{Q}^-(5,q)$ correspond to the well-studied hemisystems of $\mathcal{H}(3,q^2)$, which exist if and only if q is odd; thus we have CL sets of generators with parameter $\frac{q^2(q^2-1)}{2}$ in $\mathcal{Q}(8,q)$ for all odd q.
- There are many *m*-ovoids of $\mathcal{Q}(4,q)$, including several infinite families, giving many CL sets in $\mathcal{Q}^+(7,q)$.
- It is an open problem whether there exist any m-ovoids of $\mathcal{H}(4,q)$.

- *m*-ovoids of $\mathcal{Q}^-(5,q)$ correspond to the well-studied hemisystems of $\mathcal{H}(3,q^2)$, which exist if and only if q is odd; thus we have CL sets of generators with parameter $\frac{q^2(q^2-1)}{2}$ in $\mathcal{Q}(8,q)$ for all odd q.
- There are many *m*-ovoids of $\mathcal{Q}(4,q)$, including several infinite families, giving many CL sets in $\mathcal{Q}^+(7,q)$.
- It is an open problem whether there exist any m-ovoids of $\mathcal{H}(4,q)$.

- *m*-ovoids of $\mathcal{Q}^-(5,q)$ correspond to the well-studied hemisystems of $\mathcal{H}(3,q^2)$, which exist if and only if q is odd; thus we have CL sets of generators with parameter $\frac{q^2(q^2-1)}{2}$ in $\mathcal{Q}(8,q)$ for all odd q.
- There are many *m*-ovoids of $\mathcal{Q}(4,q)$, including several infinite families, giving many CL sets in $\mathcal{Q}^+(7,q)$.
- It is an open problem whether there exist any *m*-ovoids of $\mathcal{H}(4,q)$.

- *m*-ovoids of $\mathcal{Q}^-(5,q)$ correspond to the well-studied hemisystems of $\mathcal{H}(3,q^2)$, which exist if and only if q is odd; thus we have CL sets of generators with parameter $\frac{q^2(q^2-1)}{2}$ in $\mathcal{Q}(8,q)$ for all odd q.
- There are many *m*-ovoids of $\mathcal{Q}(4,q)$, including several infinite families, giving many CL sets in $\mathcal{Q}^+(7,q)$.
- It is an open problem whether there exist any *m*-ovoids of $\mathcal{H}(4,q)$.

We also have some nontrivial examples in rank 5 polar spaces arising from our construction.

- We can take $\mathcal{Q}^-(5,q)\subseteq\mathcal{Q}(6,q)\subseteq\mathcal{Q}^+(9,q)$ (q odd). Take \mathcal{O} to be a hemisystem of $\mathcal{Q}^-(5,q)$, and \mathcal{M} to be the set of lines of $\mathcal{Q}(6,q)$ meeting the $\mathcal{Q}^-(5,q)$ in precisely a point of \mathcal{O} . Then our construction gives a CL set in $\mathcal{Q}^+(9,q)$ with parameter $\frac{q^2(q^2-1)}{2}$ (De Boeck, D'haeseleer, R. (2025)).
- Take $\mathcal{Q}(6,3^h) \subseteq \mathcal{Q}^+(9,3^h)$. There exists an ovoid \mathcal{O} of $\mathcal{Q}(6,3^h)$; letting \mathcal{M} be the set of lines of $\mathcal{Q}(6,3^h)$ meeting a point of \mathcal{O} , we obtain a CL set of $\mathcal{Q}^+(9,3^h)$ with parameter $q(q^2-1)$ (Ihringer, R. (2025)).

We also have some nontrivial examples in rank 5 polar spaces arising from our construction.

- We can take $\mathcal{Q}^-(5,q)\subseteq\mathcal{Q}(6,q)\subseteq\mathcal{Q}^+(9,q)$ (q odd). Take \mathcal{O} to be a hemisystem of $\mathcal{Q}^-(5,q)$, and \mathcal{M} to be the set of lines of $\mathcal{Q}(6,q)$ meeting the $\mathcal{Q}^-(5,q)$ in precisely a point of \mathcal{O} . Then our construction gives a CL set in $\mathcal{Q}^+(9,q)$ with parameter $\frac{q^2(q^2-1)}{2}$ (De Boeck, D'haeseleer, R. (2025)).
- Take $\mathcal{Q}(6,3^h) \subseteq \mathcal{Q}^+(9,3^h)$. There exists an ovoid \mathcal{O} of $\mathcal{Q}(6,3^h)$; letting \mathcal{M} be the set of lines of $\mathcal{Q}(6,3^h)$ meeting a point of \mathcal{O} , we obtain a CL set of $\mathcal{Q}^+(9,3^h)$ with parameter $q(q^2-1)$ (Ihringer, R. (2025)).

We also have some nontrivial examples in rank 5 polar spaces arising from our construction.

- We can take $\mathcal{Q}^-(5,q)\subseteq\mathcal{Q}(6,q)\subseteq\mathcal{Q}^+(9,q)$ (q odd). Take \mathcal{O} to be a hemisystem of $\mathcal{Q}^-(5,q)$, and \mathcal{M} to be the set of lines of $\mathcal{Q}(6,q)$ meeting the $\mathcal{Q}^-(5,q)$ in precisely a point of \mathcal{O} . Then our construction gives a CL set in $\mathcal{Q}^+(9,q)$ with parameter $\frac{q^2(q^2-1)}{2}$ (De Boeck, D'haeseleer, R. (2025)).
- Take $\mathcal{Q}(6,3^h) \subseteq \mathcal{Q}^+(9,3^h)$. There exists an ovoid \mathcal{O} of $\mathcal{Q}(6,3^h)$; letting \mathcal{M} be the set of lines of $\mathcal{Q}(6,3^h)$ meeting a point of \mathcal{O} , we obtain a CL set of $\mathcal{Q}^+(9,3^h)$ with parameter $q(q^2-1)$ (Ihringer, R. (2025)).

- There are still many open questions about CL sets of k-spaces in PG(n,q), only known examples are for n=3 (and none are known with $q=2^{2s}$ for s>1).
- For polar spaces, we really want a construction that will work for higher rank d - this would settle a conjecture of Ihringer.
- It would be interesting to see if these regular m-ovoids of (d-1) spaces could be built up more generally from embedded polar spaces.
- OTHER constructions of CL sets of generators? More examples for spaces other than hyperbolic?

- There are still many open questions about CL sets of k-spaces in PG(n,q), only known examples are for n=3 (and none are known with $q=2^{2s}$ for s>1).
- For polar spaces, we really want a construction that will work for higher rank d - this would settle a conjecture of Ihringer.
- It would be interesting to see if these regular m-ovoids of (d-1) spaces could be built up more generally from embedded polar spaces.
- OTHER constructions of CL sets of generators? More examples for spaces other than hyperbolic?

- There are still many open questions about CL sets of k-spaces in PG(n,q), only known examples are for n=3 (and none are known with $q=2^{2s}$ for s>1).
- For polar spaces, we really want a construction that will work for higher rank d - this would settle a conjecture of Ihringer.
- It would be interesting to see if these regular m-ovoids of (d-1) spaces could be built up more generally from embedded polar spaces.
- OTHER constructions of CL sets of generators? More examples for spaces other than hyperbolic?

- There are still many open questions about CL sets of k-spaces in PG(n,q), only known examples are for n=3 (and none are known with $q=2^{2s}$ for s>1).
- For polar spaces, we really want a construction that will work for higher rank d - this would settle a conjecture of Ihringer.
- It would be interesting to see if these regular m-ovoids of (d-1) spaces could be built up more generally from embedded polar spaces.
- OTHER constructions of CL sets of generators? More examples for spaces other than hyperbolic?

