On the Reducibility of Minihypers and the Extension Problem for Arcs and Codes

Assia Rousseva Sofia University

(joint work with Ivan Landjev and Leo Storme)

1. Preliminaries

Definition. An $[n, k, d]_q$ -code is a k-dimensional subspace \mathcal{C} of \mathbb{F}_q^n where d is the minimal Hamming weight of a non-zero codeword.

Definition. (n, w)-arc in PG(r, q): a multiset K with

- 1) $|\mathcal{K}| = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \leq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking set (minihyper) in $\operatorname{PG}(r, q)$: a multiset $\mathcal F$ with

- 1) $|\mathcal{F}| = n$;
- 2) for every hyperplane $H: \mathcal{F}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{F}(H_0) = w$.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem. 1. The following objects are equivalent:

- (1) $[n, k, d]_q$ linear codes of full length and the maximal number of coordinate positions that are identical in all codewords is s;
- (2) (n, n d)-arcs in PG(k 1, q) with a maximal point multiplicity s;
- (3) $(sv_k n, sv_{k-1} n + d)$ -minihypers in PG(k-1, q).

Here:
$$v_k = \frac{q^k - 1}{q - 1}$$
.

Definition. An $[n, k, d]_q$ -code with generator matrix G is called t-extendable if there exist t column-vectors $\mathbf{g}_1, \cdots, \mathbf{g}_t \in \mathbb{F}_q^k$ such that

$$[G|\boldsymbol{g}_1|\cdots|\boldsymbol{g}_t]$$

is a generator matrix of an $[n+t,k,d+t]_q$ -code

Definition. An (n, w)-arc \mathcal{K} in $\mathrm{PG}(r, q)$ is called t-extendable if there exists an (n+t, w)-arc \mathcal{K}' in $\mathrm{PG}(r, q)$ with

$$\mathcal{K}'(P) \ge \mathcal{K}(P)$$

for all points P in PG(r,q).

Definition. An (n, w)-minihyper \mathcal{F} in $\operatorname{PG}(r, q)$ is called t-reducible if there exists an (n-t, w)-minihyper \mathcal{F}' in $\operatorname{PG}(r, q)$ with

$$\mathcal{F}'(P) \leq \mathcal{F}(P)$$

for all points P in $\mathrm{PG}(r,q)$.

t-extendable $[n, k, d]_q$ -code

t-extendable (n, n-d)-arc in $\operatorname{PG}(k-1, q)$

t-reducible $(sv_k-n,sv_{k-1}-n+d)$ -minihyper in $\operatorname{PG}(k-1,q)$

2. Classical Extension/Reducibility Results

• adding a parity-check bit

$$\exists [n,k,d]_2, d \text{ odd} \Longrightarrow \exists [n+1,k,d+1]_2$$

maximal arcs

$$\exists \ ((n-1)(q+1),n) \text{-arc in } \mathrm{PG}(2,q) \implies \\ \exists \ ((n-1)(q+1)+1,n) \text{-arc in } \mathrm{PG}(2,q)$$

Theorem. 2A. (R. Hill, P. Lizak, 1995) Every $[n,k,d]_q$ -code with $\gcd(d,q)=1$ satisfying $A_i=0$ for all $i\not\equiv 0,d\pmod q$ is extendable to an $[n+1,k,d+1]_q$ -code.

Theorem. 2B. Let \mathcal{K} be an (n, w)-arc in $\operatorname{PG}(r, q)$ with $w \equiv n+1 \pmod q$. Assume that the multiplicities of all hyperplanes are congruent to n or n+1 modulo q. Then \mathcal{K} can be extended to an (n+1, w)-arc.

Theorem. 2C. Let \mathcal{F} be an (n, w)-minihyper in $\operatorname{PG}(r, q)$, $w \equiv n-1 \pmod q$, such that the multiplicities of all hyperplanes are n or n-1 modulo q, then \mathcal{F} can be reduced to an (n-1, w)-minihyper.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem. 3A. (T. Maruta, T. Tanaka, H. Kanda, 2014) For $q=2^h$ with $h\geq 3$. Every $[n,k,d]_q$ -code with $\gcd(d,q)=2$ satisfying $A_i=0$ for all $i\not\equiv 0,d\pmod q$ is extendable to an $[n+1,k,d+1]_q$ -code.

Theorem. 3B. Let $q=2^h$ with $h\geq 3$. Every (n,w)-arc $\mathcal K$ with $\gcd(n-w,q)=2$ satisfying $\mathcal K(H)\equiv w$ or $n\pmod q$ for all hyperplanes H is extendable to an (n+1,w)-arc.

Theorem. 3C. Let $q=2^h$ with $h\geq 3$. Every (n,w)-minihyper $\mathcal F$ with $\gcd(n-w,q)=2$ satisfying $\mathcal F(H)\equiv n$ or $w\pmod q$ for all hyperplanes F is reducible to an (n-1,w)-minihyper.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem. 4A. (Maruta, 2001) Let \mathcal{C} be an $[n,k,d]_q$ -code, $q\geq 5$ odd, $d\equiv -2\pmod q$, satisfying $A_i=0$ for all $i\not\equiv 0,-1,-2\pmod q$. Then \mathcal{C} is extendable to an $[n+2,k,d+2]_q$ -code.

Theorem. 4B. Let \mathcal{K} be an (n, w)-arc in $\operatorname{PG}(r, q)$, $q \geq 5$ odd, with $w \equiv n + 2 \pmod{q}$. Assume that the multiplicities of all hyperplanes are congruent to n, n+1 or n+2 modulo q. Then \mathcal{K} is doubly extendable to an (n+2, w)-arc.

Theorem. 4C. Let \mathcal{F} be an (n,w)-minihyper in $\operatorname{PG}(r,q)$, $q\geq 5$ odd, with $w\equiv n-2\pmod q$, such that the multiplicities of all hyperplanes are n,n-1 or $n-2\pmod q$, then \mathcal{F} can be doubly reduced to an (n-2,w)-minihyper.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Theorem. 5A. (Kanda, 2020) Let \mathcal{C} be an $[n,k,d]_3$ -code with $\gcd(d,3)=1$, satisfying that $A_i=0$ for all $i\not\equiv 0,-1,-2\pmod 9$. Then \mathcal{C} is extendable to an $[n+1,k,d+1]_3$ -code.

Theorem. 5B. Let \mathcal{K} be an (n, w)-arc in $\operatorname{PG}(r, 3)$ with $w \equiv n + 2 \pmod{9}$ whose possible hyperplane multiplicities are all n, n+1, or $n+2 \pmod{9}$. Then \mathcal{K} is extendable to an (n+1, w)-arc.

Theorem. 5C. Let \mathcal{F} be an (n, w)-minihyper in $\operatorname{PG}(r, 3)$ with $w \equiv n - 2 \pmod 9$ whose possible hyperplane multiplications are all n, n - 1, or $n - 2 \pmod 9$. Then \mathcal{F} is reducible to an (n - 1, w)-minihyper.

Theorem. 6A. (Kanda, 2022) Let \mathcal{C} be an $[n,k,d]_4$ -code with $k\geq 3, d\equiv -2\pmod{16}$, satisfying that $A_i=0$ for all $i\not\equiv 0,-2\pmod{16}$. Then \mathcal{C} is extendable to an $[n+1,k,d+1]_4$ -code.

Theorem. 6B. Let \mathcal{K} be an (n, w)-arc in $\operatorname{PG}(r, 4)$ with $w \equiv n + 2 \pmod{16}$ whose possible hyperplane multiplicities are all n, or $n + 2 \pmod{16}$. Then \mathcal{K} is extendable to an (n + 1, w)-arc.

Theorem. 6C. Let \mathcal{F} be an (n, w)-minihyper in $\operatorname{PG}(r, 4)$ with $w \equiv n - 2 \pmod{16}$ whose possible hyperplane multiplicities are all n - 2, or $n \pmod{16}$. Then \mathcal{F} is reducible to an (n - 1, w)-minihyper.

3. A Modified Definition for Extendability/Reducibility

Definition. An (n, w)-minihyper \mathcal{F} in $\operatorname{PG}(r, q)$ is called **reducible** if there exists a subspace S in $\operatorname{PG}(r, q)$, $\dim S = j \geq 0$, such that \mathcal{F} can be represented as

$$\mathcal{F} = \mathcal{F}' + \chi_S,$$

where \mathcal{F}' is a minihyper with parameters $(n-v_{j+1},w-v_j)$, and χ_S is the characteristic function of S.

Remark. If j = 0 we get the classical definition of a reducible minihyper.

Definition. An (n, w)-arc \mathcal{K} in $\mathrm{PG}(r, q)$ is called **extendable** if there exists a subspace S in $\mathrm{PG}(r, q)$, $\dim S = j \geq 0$, such that the arc \mathcal{K} defined by

$$\mathcal{K}' = \mathcal{K} + \chi_S,$$

where χ_S is the characteristic function of S is an $(n+v_{j+1},w+v_j)$ -arc in $\mathrm{PG}(r,q)$.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

Definition. An (n, w)-minihyper \mathcal{F} in $\operatorname{PG}(r, q)$ is called t-reducible if there exist subspaces S_1, \dots, S_t in $\operatorname{PG}(r, q)$, $\dim S_i = s_i \geq 0$, such that \mathcal{F} can be represented as

$$\mathcal{F} = \mathcal{F}' + \sum \chi_{S_i},$$

where \mathcal{F}' is a minihyper with parameters $(n - \sum_{i=1}^t v_{s_i+1}, w - \sum_{i=1}^t v_{s_i})$, and χ_{S_i} is the characteristic function of S_i .

Remark. If $s_1 = \cdots = s_t = 0$ we get the classical definition of a t-reducible minihyper.

Definition. An (n, w)-arc \mathcal{K} in $\operatorname{PG}(r, q)$ is called t-extendable if there exist subspaces S_1, \dots, S_t in $\operatorname{PG}(r, q)$, $\dim S_i = s_i \geq 0$, such that \mathcal{K}' defined by

$$\mathcal{K}' = \mathcal{K} + \sum \chi_{S_i},$$

is an arc with parameters $(n + \sum_{i=1}^{t} v_{s_i+1}, w + \sum_{i=1}^{t} v_{s_i})$.

4. The Main Theorem

Definition. An (n, w)-arc (or an (n, w)-minihyper) $\mathcal K$ in $\operatorname{PG}(r, q)$ is called **divisible** with divisor Δ if

$$\mathcal{K}(H) \equiv n \pmod{\Delta}$$

for every hyperplane H.

Theorem. 7. Let \mathcal{F} be an (n, w)-minihyper in $\operatorname{PG}(r, q)$, $q = p^h$, with $w \equiv n - q^j \pmod{q^{j+1}}$, $j \geq 0$. Assume that \mathcal{F} has the following properties:

- (1) $\mathcal{F}(H) \equiv n q^j$ or $n \pmod{q^{j+1}}$ for every hyperplane H in $\mathrm{PG}(r,q)$;
- (2) for every hyperplane H with $\mathcal{F}(H) \equiv n q^j \pmod{q^{j+1}}$, $\mathcal{F}|_H = \mathcal{F}_1 + \chi_T$ for a unique (j-1)-dimensional subspace T and \mathcal{F}_1 is a divisible minihyper with divisor q^j ;
- (3) for every hyperplane H with $\mathcal{F}(H) \equiv n \pmod{q^{j+1}}$, $\mathcal{F}|_H$ is a divisible minihyper with divisor q^j .

Then $\mathcal{F} = \mathcal{F}' + \chi_S$, where \mathcal{F}' is an $(n - v_{j+1}, w - v_j)$ -minihyper, and S is an j-dimensional subspace. In addition, the subspace S is uniquely determined.

Corollary. 8. Let \mathcal{F} be an (n, w)-minihyper in $\operatorname{PG}(r, q)$, with $w \equiv n - q \pmod{q^2}$. Assume that \mathcal{F} has the following properties:

- (1) $\mathcal{F}(H) \equiv n q$ or $n \pmod{q^2}$ for every hyperplane H in $\mathrm{PG}(r,q)$;
- (2) for every hyperplane H with $\mathcal{F}(H) \equiv n q \pmod{q^2}$, $\mathcal{F}|_H$ is reducible to a divisible minihyper with divisor q;
- (3) for every hyperplane H with $\mathcal{F}(H) \equiv n \pmod{q^2}$, $\mathcal{F}|_H$ is a divisible minihyper with divisor q.

Then $\mathcal{F}=\mathcal{F}'+\chi_L$, where \mathcal{F}' is an (n-q-1,w-1)-minihyper, and L is a line.

⁻ Finite Geometries 2025, Seventh Irsee Conference, Irsee, Germany, August 31 - September 6, 2025 -

5. Examples

Theorem. A (70, 22)-minihyper in PG(4, 3) is one of the following:

- (1) the sum of a solid and a (30, 9)-minihyper in PG(4, 3);
- (2) the sum of a (66, 21)-minihyper in and a line in PG(4, 3).

THANK YOU FOR YOUR ATTENTION!