Design switching on graphs

Robin Simoens

Ghent University & Universitat Politècnica de Catalunya

4 September 2025

Based on joint work with Ferdinand Ihringer (SUSTech)

Design switching on graphs

Definition

An (r, λ) -design is an incidence structure where

- every point is in r blocks,
- \triangleright every two points are in λ blocks.

Figure: An $(r=3,\lambda=1)$ -design

Design switching on graphs

Definition

An (r, λ) -design is an incidence structure where

- every point is in r blocks,
- \triangleright every two points are in λ blocks.

Figure: An $(r = 3, \lambda = 1)$ -design

Definition

Switching is a local graph operation, resulting in a cospectral graph.

Definition

Cospectral graphs have the same adjacency spectrum.

Figure: Cospectral graphs. Both have spectrum $\{-2,0,0,0,2\}$.

Definition

Cospectral graphs have the same adjacency spectrum.

Figure: Cospectral graphs. Both have spectrum $\{-2,0,0,0,2\}$.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

➤ Interesting for complexity theory

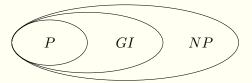


Figure: Is graph isomorphism an easy or hard problem?

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- ➤ Interesting for chemistry

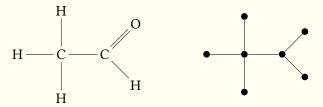


Figure: The molecular graph of acetaldehyde (ethanal).

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- Interesting for chemistry
- 🙂 Computational evidence [Brouwer and Spence, 2009]

	l .			6					
ratio	1	1	0.941	0.936	0.895	0.861	0.814	0.787	0.789

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- ➤ Interesting for chemistry
- Computational evidence [Brouwer and Spence, 2009]
- Almost all
 - ➤ trees [Schwenk, 1973]
 - ➤ strongly regular graphs [Fon-Der-Flaass, 2002]
 - ➤ cographs [Wang and Huang, 2025]

are **not** determined by their spectrum.

Conjecture (van Dam and Haemers, 2003)

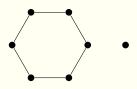
Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- Interesting for chemistry
- Computational evidence [Brouwer and Spence, 2009]
- Almost all
 - ➤ trees [Schwenk, 1973]
 - ➤ strongly regular graphs [Fon-Der-Flaass, 2002]
 - ➤ cographs [Wang and Huang, 2025]

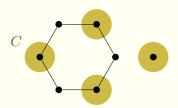
are **not** determined by their spectrum.

© Exponentially many graphs are determined by their spectrum [Koval and Kwan, 2023]

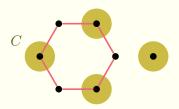
Theorem (GM₄ switching, Godsil and McKay, 1982)



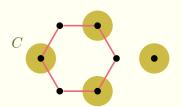
Theorem (GM₄ switching, Godsil and McKay, 1982)

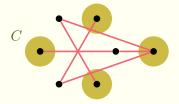


Theorem (GM₄ switching, Godsil and McKay, 1982)



Theorem (GM₄ switching, Godsil and McKay, 1982)



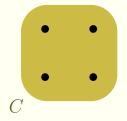


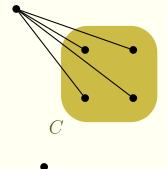
Theorem (GM₄ switching, Godsil and McKay, 1982)

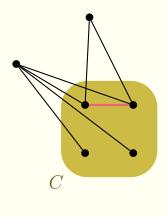
Consider a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. If $x \notin C$ has 2 neighbours in C, reverse its adjacencies with C. The obtained graph is cospectral.

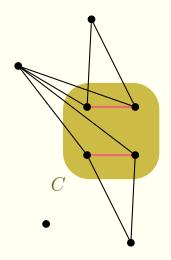
Proof.

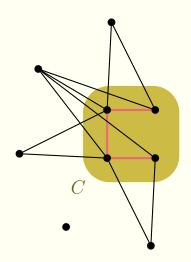
$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}J - I & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \frac{1}{2}J - I & O \\ O & I \end{pmatrix}.$$

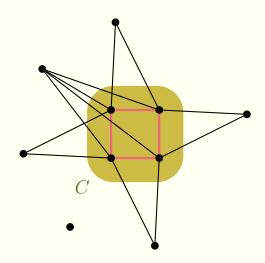


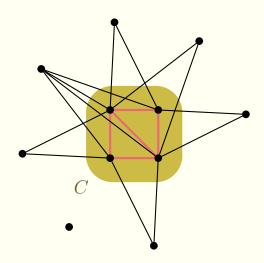


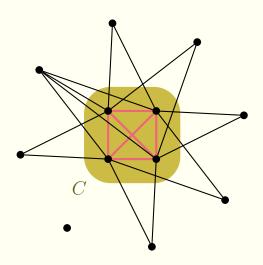


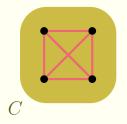




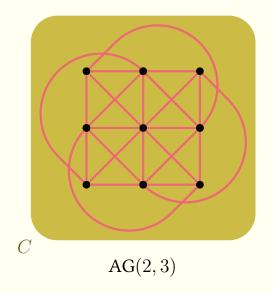


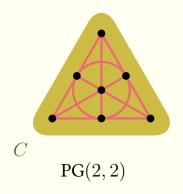






AG(2, 2)

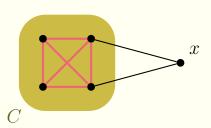




Design switching

Theorem (Ihringer and Simoens, 2025+)

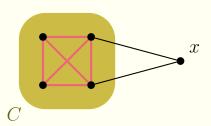
Consider a graph with a certain subgraph C whose vertices are identified as points of an (r,λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a certain permutation of the blocks. If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.



Design switching

Theorem (Ihringer and Simoens, 2025+)

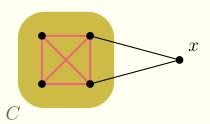
Consider a graph with a certain subgraph C whose vertices are identified as points of an (r,λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a certain permutation of the blocks. If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.



Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a certain subgraph C whose vertices are identified as points of an (r,λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a certain permutation of the blocks. If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.



Known switching methods

Definition

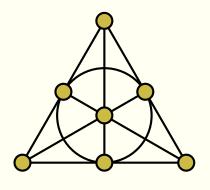
Switching is a local graph operation, resulting in a *cospectral graph*.

- ➤ GM-switching [Godsil and McKay, 1982]
- WQH-switching [Wang, Qiu and Hu, 2019]
- ➤ AH-switching [Abiad and Haemers, 2012]
 - ➤ Sun graph switching [Mao, Wang, Liu and Qiu, 2023]
 - ➤ Fano switching [Abiad, van de Berg and Simoens, 2025+]
 - ➤ Cube switching [Abiad, van de Berg and Simoens, 2025+]

Abiad and Haemers (2012):

Conjugation of the adjacency matrix A with $Q = \begin{pmatrix} R & O \\ O & I \end{pmatrix}$, where

$$R = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{pmatrix}$$



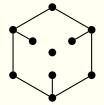
PG(2, 2)

Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- C is edgeless or complete.
- ightharpoonup Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - If x has 3 neighbours in C, they form a line.
 - \blacktriangleright If x has 4 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. If $x \notin C$ is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The obtained graph is cospectral.



Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a $\frac{\text{subgraph }C}{\text{subgraph }}$ whose vertices are identified as points of the $\frac{\text{Fano plane}}{\text{such that:}}$

- ightharpoonup C is edgeless or complete.
- ightharpoonup Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C.
 - If x has 3 neighbours in C, they form a line.
 - \blacktriangleright If x has 4 neighbours in C, they form the complement of a line.

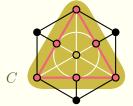
Let π be a permutation of the lines. If $x \notin C$ is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The obtained graph is cospectral.

Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a $\frac{\text{subgraph }C}{\text{subgraph }c}$ whose vertices are identified as points of the $\frac{\text{Fano plane}}{\text{such that:}}$

- ightharpoonup C is edgeless or complete.
- ightharpoonup Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C .
 - \blacktriangleright If x has 3 neighbours in C, they form a line.
 - If x has 4 neighbours in C, they form the complement of a line.

Let π be a permutation of the lines. If $x \notin C$ is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The obtained graph is cospectral.



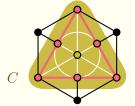
Fano switching

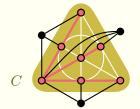
Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a $\frac{\text{subgraph }C}{\text{subgraph }}$ whose vertices are identified as points of the $\frac{\text{Fano plane}}{\text{such that:}}$

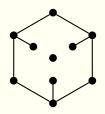
- ightharpoonup C is edgeless or complete.
- \blacktriangleright Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C .
 - ightharpoonup If x has 3 neighbours in C, they form a line.
 - If x has 4 neighbours in C, they form the complement of a line.

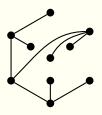
Let π be a permutation of the lines. If $x \notin C$ is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The obtained graph is cospectral.



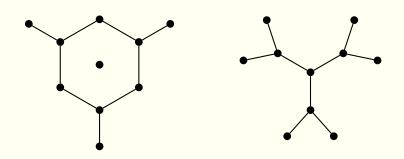


Fano switching





Fano switching



Both graphs have spectrum $\big\{(-\sqrt{5})^1, (-\sqrt{2})^2, (0)^3, (\sqrt{2})^2, (\sqrt{5})^1\big\}.$

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a certain subgraph C whose vertices are identified as points of an (r,λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a certain permutation of the blocks. If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a certain permutation of the blocks. If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i , B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

is an $(r=3,\lambda=1)$ -design with incidence matrix

is an $(r=3,\lambda=1)$ -design with incidence matrix

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection

is an $(r=3,\lambda=1)$ -design with incidence matrix

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection

Theorem (GM₄ switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. If $x \notin C$ has 2 neighbours in C, reverse its adjacencies with C. The obtained graph is cospectral.

is an $(r=3,\lambda=1)$ -design with incidence matrix

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection

Theorem (GM₄ switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. If $x \notin C$ has 2 neighbours in C, reverse its adjacencies with C. The obtained graph is cospectral.

is an $(r=3,\lambda=1)$ -design with incidence matrix

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection

Theorem (GM₄ switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. If $x \notin C$ has 2 neighbours in

C, reverse its adjacencies with C. The obtained graph is cospectral.

is an $(r=4,\lambda=2)$ -design with incidence matrix

 $\pi: B_i \mapsto B_{7-i}$ preserves pairwise intersection

Theorem (GM₄ switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C. If $x \notin C$ has 2 neighbours in C, reverse its adjacencies with C. The obtained graph is cospectral.

is an $(r=3,\lambda=1)$ -design with incidence matrix

Any permutation of the lines π preserves pairwise intersection

is an $(r=3,\lambda=1)$ -design with incidence matrix

Any permutation of the lines π preserves pairwise intersection

> Fano switching

is an $(r=8,\lambda=4)\text{-design}$ with incidence matrix

Any permutation of the lines π preserves pairwise intersection

> Fano switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block of C. Let C be a permutation of the blocks such that for all blocks C is

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r,λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block . Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

Proof. Define $R = \frac{1}{r-\lambda} \left(N(N^{\pi})^T - \lambda J \right)$, where N^{π} is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a subgraph C with adjacency matrix $A_{11} = R^T A_{11} R$ whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block. Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

Proof. Define $R=\frac{1}{r-\lambda}\left(N(N^\pi)^T-\lambda J\right)$, where N^π is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a subgraph C with adjacency matrix $A_{11} = R^T A_{11} R$ whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block or its complement be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

If $x \notin C$ is adjacent to the points of B, make it adjacent to the points of $\pi(B)$. The obtained graph is cospectral.

Proof. Define $R=\frac{1}{r-\lambda}\left(N(N^\pi)^T-\lambda J\right)$, where N^π is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

Small $\overline{2\text{-}(v,k,\lambda)\text{-designs}}$

Small 2- (v, k, λ) -designs

v	# methods	Method
4	1	GM ₄ switching
5	0	
6	1	GM ₆ switching
7	1	Fano switching
8	10	AG(3,2)-switching
9	≥ 2	AG(2,3)-switching
10	≥ 4	
11	≥ 77	Paley biplane switching
12	≥ 6	
13	≥ 187	PG(3,2)-switching

Table: Switching methods from small 2- (v,k,λ) -designs.

Definition

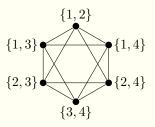
The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if they intersect.

$$T_n \cong L(K_n) \cong J(n,2)$$

Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if they intersect.

$$T_n \cong L(K_n) \cong J(n,2)$$

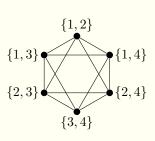


The octahedral graph T_4

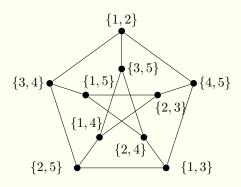
Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if they intersect.

$$T_n \cong L(K_n) \cong J(n,2)$$



The octahedral graph T_4



The Petersen graph $\overline{T_5}$

Theorem (Chang and Hoffman, independently, 1959)

The triangular graph T_n is determined by its spectrum iff $n \neq 8$.

Definition

The q-triangular graph $T_{q,n}$ has as vertices the 2-dimensional subspaces of \mathbb{F}_q^n where two vertices are adjacent if they intersect.

Definition

The q-triangular graph $T_{q,n}$ has as vertices the lines of PG(n-1,q) where two vertices are adjacent if they intersect.

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the lines of PG(n-1,q) where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q-triangular graph $T_{q,n}$ is not determined by its spectrum if $n \geq 4$.

Definition

The q-triangular graph $T_{q,n}$ has as vertices the lines of PG(n-1,q) where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q-triangular graph $T_{q,n}$ is not determined by its spectrum if $n \geq 4$.

Proof. Fix a subplane $PG(2,q) \subseteq PG(n-1,q)$ and let

$$\begin{split} \mathcal{P} &= \{ \text{lines of PG}(2,q) \} \\ \mathcal{B} &= \{ \text{point pencils of PG}(2,q) \} \end{split}$$

Design switching on $(\mathcal{P}, \mathcal{B})$, using any permutation π of \mathcal{B} that is not an automorphism \implies maximal cliques of size $q^2 + q$.

Theorem (Ihringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as $T_{q,n}$.

Theorem (Ihringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as $T_{q,n}$.

Proof. Let Γ_{π} be the graph obtained from design switching $T_{n,q}$ with $\pi.$

$$\Gamma_{\pi_1} \cong \Gamma_{\pi_2} \Longleftrightarrow \pi_1, \pi_2 \in \text{ same double coset of } \operatorname{Aut}(D) \text{ in } \operatorname{Sym}(\mathcal{B})$$

There are $\geq q!$ double cosets.

Theorem (Ihringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as $T_{q,n}$.

Proof. Let Γ_{π} be the graph obtained from design switching $T_{n,q}$ with $\pi.$

$$\Gamma_{\pi_1} \cong \Gamma_{\pi_2} \Longleftrightarrow \pi_1, \pi_2 \in \text{ same double coset of } \operatorname{Aut}(D) \text{ in } \operatorname{Sym}(\mathcal{B})$$

There are $\geq q!$ double cosets.

Many strongly regular graphs with the same parameters.

Corollary (Fon-Der-Flaass, 2002)

Almost all strongly regular graphs are **not** determined by their spectrum.

Concluding remarks

➤ Many new switching methods

Concluding remarks

- ➤ Many new switching methods
- ➤ Alternative proofs of cospectrality results:
 - ➤ q-triangular graphs [Ihringer, Munemasa, 2019]
 - ➤ Collinearity graphs of polar spaces [Brouwer, Ihringer, Kantor, 2022]
 - ➤ Collinearity graphs of generalised quadrangles [Guo, van Dam, 2022]

Concluding remarks

- ➤ Many new switching methods
- ➤ Alternative proofs of cospectrality results:
 - ➤ q-triangular graphs [Ihringer, Munemasa, 2019]
 - ➤ Collinearity graphs of polar spaces [Brouwer, Ihringer, Kantor, 2022]
 - ➤ Collinearity graphs of generalised quadrangles [Guo, van Dam, 2022]
- ➤ More general: two different designs

Thank you for listening!

F. Ihringer and R. Simoens, Design switching on graphs, arXiv:2508.11523.