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Design switching on graphs

Definition

An (r, λ)-design is an incidence structure where

ä every point is in r blocks,

ä every two points are in λ blocks.

Figure: An (r = 3, λ = 1)-design

Definition

Switching is a local graph operation, resulting in a cospectral graph.
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Cospectral graphs

Definition

Cospectral graphs have the same adjacency spectrum.

Figure: Cospectral graphs. Both have spectrum {−2, 0, 0, 0, 2}.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

ä Interesting for complexity theory
ä Interesting for chemistry

Computational evidence [Brouwer and Spence, 2009]

Almost all

ä trees [Schwenk, 1973]

ä strongly regular graphs [Fon-Der-Flaass, 2002]

ä cographs [Wang and Huang, 2025]

are not determined by their spectrum.

Exponentially many graphs are determined by their spectrum [Koval
and Kwan, 2023]
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Figure: Is graph isomorphism an easy or hard problem?
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Figure: The molecular graph of acetaldehyde (ethanal).
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How to find cospectral graphs

Theorem (GM4 switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C of size 4 such that every vertex
x /∈C has 0, 2 or 4 neighbours in C . If x /∈C has 2 neighbours in C , reverse
its adjacencies with C . The obtained graph is cospectral.

C
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Consider a graph with a regular subgraph C of size 4 such that every

vertex x /∈C has 0, 2 or 4 neighbours in C . If x /∈C has 2 neighbours in C ,

reverse its adjacencies with C . The obtained graph is cospectral.

Proof.(
A11 A′
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A′
21 A22

)
=

(
1
2J − I O
O I

)T (
A11 A12

A21 A22

)(
1
2J − I O
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.
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How to find cospectral graphs

C
AG(2, 3)
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How to find cospectral graphs

C
PG(2, 2)
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Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a certain subgraph C whose vertices are identified as
points of an (r, λ)-design such that every vertex x /∈ C is adjacent to the
points of a block. Let π be a certain permutation of the blocks. If x /∈ C is
adjacent to the points of B, make it adjacent to the points of π(B). The
obtained graph is cospectral.

C

x
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Known switching methods

Definition

Switching is a local graph operation, resulting in a cospectral graph.

ä GM-switching [Godsil and McKay, 1982]

ä WQH-switching [Wang, Qiu and Hu, 2019]
ä AH-switching [Abiad and Haemers, 2012]

ä Sun graph switching [Mao, Wang, Liu and Qiu, 2023]
ä Fano switching [Abiad, van de Berg and Simoens, 2025+]
ä Cube switching [Abiad, van de Berg and Simoens, 2025+]
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Fano switching

Abiad and Haemers (2012):

Conjugation of the adjacency matrix A with Q =

(
R O
O I

)
, where

R =
1

2



−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1
1 0 1 0 0 −1 1
1 1 0 1 0 0 −1


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Fano switching

PG(2, 2)
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Fano switching

Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a subgraph C whose vertices are identified as points
of the Fano plane such that:

ä C is edgeless or complete.
ä Every vertex x /∈ C has 0, 3, 4 or 7 neighbours in C .

ä If x has 3 neighbours in C , they form a line.
ä If x has 4 neighbours in C , they form the complement of a line.

Let π be a permutation of the lines. If x /∈ C is (non)adjacent to the vertices
of `, make it (non)adjacent to the vertices of π(`). The obtained graph is
cospectral.

C
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Fano switching



12/25

Fano switching

Both graphs have spectrum
{
(−

√
5)1, (−

√
2)2, (0)3, (

√
2)2, (

√
5)1

}
.
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Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a certain subgraph C whose vertices are identified
as points of an (r, λ)-design such that every vertex x /∈ C is adjacent to

the points of a block . Let π be a certain permutation of the blocks. If x /∈C

is adjacent to the points of B, make it adjacent to the points of π(B). The
obtained graph is cospectral.
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Design switching

is an (r = 3, λ = 1)-design with incidence matrix

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1




B1 B2 B3 B4 B5 B6

p1
p2
p3
p4

π : Bi 7→ B7−i preserves pairwise intersection

Theorem (GM4 switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C of size 4 such that every vertex
x /∈ C has 0, 2 or 4 neighbours in C . If x /∈ C has 2 neighbours in C ,
reverse its adjacencies with C . The obtained graph is cospectral.
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Design switching

is an (r = 4, λ = 2)-design with incidence matrix
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Design switching

is an (r = 8, λ = 4)-design with incidence matrix

0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1
0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1





B1 B2 B3 B4 B5 B6 B7 B1 B2 B3 B4 B5 B6 B7

p1
p2
p3
p4
p5
p6
p7

Any permutation of the lines π preserves pairwise intersection

ä Fano switching
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Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with an edgeless or complete subgraph C whose vertices
are identified as points of an (r, λ)-design such that every vertex x /∈C is
adjacent to the points of a block . Let π be a permutation of the blocks
such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .

If x /∈ C is adjacent to the points of B, make it adjacent to the points of
π(B). The obtained graph is cospectral.

Proof. Define R = 1
r−λ

(
N(Nπ)T − λJ

)
, where Nπ is obtained from the

incidence matrix N by permuting the columns with π.(
A11 A′

12

A′
21 A22

)
=

(
R O
O I

)T (
A11 A12

A21 A22

)(
R O
O I

)
.



16/25

Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with an edgeless or complete subgraph C whose vertices
are identified as points of an (r, λ)-design such that every vertex x /∈C is
adjacent to the points of a block . Let π be a permutation of the blocks
such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .

If x /∈ C is adjacent to the points of B, make it adjacent to the points of
π(B). The obtained graph is cospectral.

Proof. Define R = 1
r−λ

(
N(Nπ)T − λJ

)
, where Nπ is obtained from the

incidence matrix N by permuting the columns with π.(
A11 A′

12

A′
21 A22

)
=

(
R O
O I

)T (
A11 A12

A21 A22

)(
R O
O I

)
.



16/25

Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a subgraph C with adjacency matrix A11=RTA11R
whose vertices are identified as points of an (r, λ)-design such that every
vertex x /∈ C is adjacent to the points of a block . Let π be a permutation
of the blocks such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .
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Design switching

Theorem (Ihringer and Simoens, 2025+)

Consider a graph with a subgraph C with adjacency matrix A11=RTA11R
whose vertices are identified as points of an (r, λ)-design such that every
vertex x /∈ C is adjacent to the points of a block or its complement . Let π
be a permutation of the blocks such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .

If x /∈ C is adjacent to the points of B, make it adjacent to the points of
π(B). The obtained graph is cospectral.

Proof. Define R = 1
r−λ
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N(Nπ)T − λJ

)
, where Nπ is obtained from the
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Small 2-(v, k, λ)-designs
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Small 2-(v, k, λ)-designs

v # methods Method

4 1 GM4 switching
5 0
6 1 GM6 switching
7 1 Fano switching
8 10 AG(3, 2)-switching

9 ≥ 2 AG(2, 3)-switching
10 ≥ 4

11 ≥ 77 Paley biplane switching
12 ≥ 6

13 ≥ 187 PG(3, 2)-switching

Table: Switching methods from small 2-(v, k, λ)-designs.
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An application

Definition

The triangular graph Tn has as vertices the 2-subsets of {1, . . . , n},
where two vertices are adjacent if they intersect.

Tn
∼= L(Kn) ∼= J(n, 2)

{1, 2}

{1, 3}

{2, 3}

{3, 4}

{2, 4}

{1, 4}

The octahedral graph T4

{1, 2}

{3, 4}

{2, 5} {1, 3}

{4, 5}
{3, 5}

{1, 5}

{1, 4}

{2, 4}

{2, 3}

The Petersen graph T5
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An application

Theorem (Chang and Hoffman, independently, 1959)

The triangular graph Tn is determined by its spectrum iff n 6= 8.
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An application

Definition

The q-triangular graph Tq,n has as vertices the 2-dimensional
subspaces of Fn

q where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q-triangular graph Tq,n is not determined by its spectrum if n ≥ 4.

Proof. Fix a subplane PG(2, q) ⊆ PG(n− 1, q) and let

P = {lines of PG(2, q)}
B = {point pencils of PG(2, q)}

Design switching on (P,B), using any permutation π of B that is not an
automorphism =⇒ maximal cliques of size q2 + q.
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An application

Definition

The q-triangular graph Tq,n has as vertices the lines of PG(n− 1, q)
where two vertices are adjacent if they intersect.
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An application

Theorem (Ihringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as Tq,n.

Proof. Let Γπ be the graph obtained from design switching Tn,q with π.

Γπ1
∼= Γπ2 ⇐⇒ π1, π2 ∈ same double coset of Aut(D) in Sym(B)

There are ≥ q! double cosets.

ä Many strongly regular graphs with the same parameters.

Corollary (Fon-Der-Flaass, 2002)

Almost all strongly regular graphs are not determined by their spectrum.
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Concluding remarks

ä Many new switching methods

ä Alternative proofs of cospectrality results:

ä q-triangular graphs [Ihringer, Munemasa, 2019]

ä Collinearity graphs of polar spaces [Brouwer, Ihringer, Kantor, 2022]

ä Collinearity graphs of generalised quadrangles [Guo, van Dam, 2022]

ä More general: two different designs
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Thank you for listening!

F. Ihringer and R. Simoens,
Design switching on graphs, arXiv:2508.11523.
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