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Design switching on graphs

Definition
An (r, \)-design is an incidence structure where
» every point is in r blocks,

» every two points are in A blocks.

Figure: An (r = 3, A = 1)-design
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Definition

An (r, \)-design is an incidence structure where
» every point is in r blocks,

» every two points are in A blocks.

Figure: An (r = 3, A = 1)-design

Definition

Switching is a local graph operation, resulting in a cospectral graph.

2/25



Cospectral graphs

Definition

Cospectral graphs have the same adjacency spectrum.

[~

Figure: Cospectral graphs. Both have spectrum {—2,0,0,0, 2}.
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Definition
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o
| - |

Figure: Cospectral graphs. Both have spectrum {—2,0,0,0, 2}.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

» Interesting for complexity theory

Figure: Is graph isomorphism an easy or hard problem?
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.
» Interesting for complexity theory
» Interesting for chemistry
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Figure: The molecular graph of acetaldehyde (ethanal).
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

» Interesting for complexity theory
» Interesting for chemistry

£ Computational evidence [Brouwer and Spence, 2009]

n |3 4 5 6 7 8 9 0 11
ratio | 1 1 0941 0936 0895 0861 0.814 0.787 0.789
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=) Almost all
» trees [Schwenk, 1973]
» strongly regular graphs [Fon-Der-Flaass, 2002]
» cographs [Wang and Huang, 2025]

are not determined by their spectrum.
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

» Interesting for complexity theory
» Interesting for chemistry

£ Computational evidence [Brouwer and Spence, 2009]

=) Almost all
» trees [Schwenk, 1973]
» strongly regular graphs [Fon-Der-Flaass, 2002]
» cographs [Wang and Huang, 2025]
are not determined by their spectrum.

< Exponentially many graphs are determined by their spectrum [Koval
and Kwan, 2023]
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How to find cospectral graphs

Theorem (GM4 switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C' of size 4 such that every vertex
x ¢ C has0, 2 or4 neighbours in C. If x ¢ C has 2 neighbours in C, reverse
its adjacencies with C'. The obtained graph is cospectral.
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How to find cospectral graphs

Theorem (GMy switching, Godsil and McKay, 1982)

Consider a graph with a regular subgraph C' of size 4 such that every
vertex _ If x ¢ C has 2 neighbours in C,

reverse its adjacencies with C. The obtained graph is cospectral.

Proof.

A AL\ (Lg-T1 O\T [An Aw) (iJ-I O
Ay Awn) N\ 0 1) \An Ax o 1)
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How to find cospectral graphs

X

AG(2,2)
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How to find cospectral graphs

AG(2,3)
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How to find cospectral graphs

PG(2,2)
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Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with a certain subgraph C whose vertices are identified as
points of an (r, \)-design such that every vertex x ¢ C' is adjacent to the
points of a block. Let  be a certain permutation of the blocks. If x ¢ C'is
adjacent to the points of B, make it adjacent to the points of w(B). The
obtained graph is cospectral.
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Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with a certain subgraph C' whose vertices are identified
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Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with a certain subgraph C' whose vertices are identified

as points of an (r, \)-design such that every vertex_
_. Let  be a certain permutation of the blocks. If v ¢ C

is adjacent to the points of B, make it adjacent to the points of m(B). The
obtained graph is cospectral.
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Known switching methods

Switching is a local graph operation, resulting in a cospectral graph.

» GM-switching [Godsil and McKay, 1982]
» WQH-switching [Wang, Qiu and Hu, 2019]
» AH-switching [Abiad and Haemers, 2012]
» Sun graph switching [Mao, Wang, Liu and Qiu, 2023]

» Fano switching [Abiad, van de Berg and Simoens, 2025+]
» Cube switching [Abiad, van de Berg and Simoens, 2025+]
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Abiad and Haemers (2012):

Conjugation of the adjacency matrix A with Q) = (g ?), where
-1 1 1 0 1 0 O
0o-1 1 1 0 1 0
1 0o 0-1 1 1 0 1
R=— 1 0 0-1 1 1 0
21 001 0 0 -1 1 1
1 0 1 0 0 -1 1
1 1 0 1 0 0 -1
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PG(2,2)
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Fano switching

Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a subgraph C' whose vertices are identified as points
of the Fano plane such that:
» (' is edgeless or complete.
» Every vertexx ¢ C has 0, 3, 4 or 7 neighbours in C.
» If x has 3 neighbours in C, they form a line.
» |Ifx has 4 neighbours in C, they form the complement of a line.
Let  be a permutation of the lines. If x ¢ C' is (non)adjacent to the vertices
of £, make it (non)adjacent to the vertices of w({). The obtained graph is
cospectral.
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Fano switching

Theorem (Abiad, van de Berg and Simoens, 2025+)

Consider a graph with a subgraph C' whose vertices are identified as points
of the Fano plane such that:

» (' is edgeless or complete .

» Every vertex 3
» Ifx has in C, they form a |
» Ifx has 4 neighbours in C, they form the complement of a line.

Let T be a permutation of the lines. If z ¢ C'is (non)adjacent to the vertices
of £, make it (non)adjacent to the vertices of w({). The obtained graph is

cospectral.
PN

N
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Fano switching

12/25



Both graphs have spectrum {(—\/5)1, (—v/2)2,(0)3, (v2)?, (\/5)1}
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Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with a certain subgraph C' whose vertices are identified

as points of an (r, \)-design such that every vertex_

. Let  be a certain permutation of the blocks. If v ¢ C

is adjacent to the points of B, make it adjacent to the points of m(B). The
obtained graph is cospectral.
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Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with an 'edgeless or complete subgraph C' whose vertices
are identified as points of an (r, \)-design such that every vertex-

. Let ™ be a permutation of the blocks

such that for all blocks B;, B,
|B; N Bj| = |m(B;) N w(Bj)| .

Ifx ¢ C is adjacent to the points of B, make it adjacent to the points of
7(B). The obtained graph is cospectral.
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Design switching
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s S/
By By Bs By Bs Bg
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op2 |1 1 1
O P3 1 1 1
O P4 1 1 1
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Design switching

is an (r = 4, A\ = 2)-design with incidence matrix

s S/
By By B3 By Bs Bg

o P 1 1 1 1
O P2 1 1 1 1
O P3 1 1 1 1
O P4 1 1 1 1

m : B; — By7_; preserves pairwise intersection
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Design switching

isan (r = 3, \ = 1)-design with incidence matrix

Pl A
B, By, By By Bs Bg By

opm (1 1 1

op2 |1 1 1

op3| 1 1 1
O P4 1 1 1
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O D¢ 1 1 1
O p7 1 1 1

Any permutation of the lines 7 preserves pairwise intersection
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Pl A
B, By, By By Bs Bg By

opm (1 1 1

op2 |1 1 1

op3| 1 1 1
O P4 1 1 1
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O p7 1 1 1

Any permutation of the lines 7 preserves pairwise intersection
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Design switching

is an (r = 8, \ = 4)-design with incidence matrix

Sl
By By B3 By Bs Bg By By By By By Bs Bg By

o P 1 1 1 11 1 1 1
O P2 1 1 1 1 1 1 1 1
O P3 1 1 1 1 1 1 1 1
O P4 1 1 1 1 1 1 1 1
O Ps 1 1 1 1 11 1 1
O Ps 1 1 1 1 1 1 1 1
o pr 1 1 1 1 1 1 1 1

Any permutation of the lines 7 preserves pairwise intersection

» Fano switching
15/25



Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with an ' edgeless or complete subgraph C' whose vertices
are identified as points of an (r, \)-design such that every vertex-
. Let m be a permutation of the blocks

such that for all blocks B;, Bj,

|B; N Bj| = |n(B;) N w(By)|.

If x ¢ C' is adjacent to the points of B, make it adjacent to the points of
7(B). The obtained graph is cospectral.
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Design switching

Theorem (lhringer and Simoens, 2025+)

Consider a graph with an ' edgeless or complete subgraph C' whose vertices
are identified as points of an (r, \)-design such that every vertex-
. Let m be a permutation of the blocks

such that for all blocks B;, Bj,
|Bi N Bj| = [x(Bi) N7 (By)| -

If x ¢ C' is adjacent to the points of B, make it adjacent to the points of
7(B). The obtained graph is cospectral.

Proof. Define R = ﬁ (N(N™)T — XJ), where N™ is obtained from the
incidence matrix N by permuting the columns with .

Ay AL\ (R O\ [An Ap\ (R O
A/21 A22 - O 1 A21 A22 o 1) =
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Theorem (lhringer and Simoens, 2025+)
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SMALL 2-(v, k, \)-DESIGNS



Small 2-(v, k, \)-designs

v ‘ # methods ‘

Method

4 1 GMy switching

5 0

6 1 GMg switching

7 1 Fano switching

8 10 AG(3,2)-switching

9 > 2 AG(2, 3)-switching

10 >4

11 > 77 Paley biplane switching
12 > 6

13 > 187 PG(3,2)-switching

Table: Switching methods from small 2-(v, k, \)-designs.
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An application

Definition
The triangular graph T), has as vertices the 2-subsets of {1,...,n},
where two vertices are adjacent if they intersect.

T, = L(K,) = J(n,2)
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{1,2}
{1,3} {1,4}

{2,3} {2,4}
{3,4}

The octahedral graph T}
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An application

Definition
The triangular graph T), has as vertices the 2-subsets of {1,...,n},
where two vertices are adjacent if they intersect.

T, = L(K,) = J(n,2)
{1,2}
{1,2}

11,3} 1,4} (3,4} A {4,5)
V.V

{2, 3} {2,4} " f
0 N
{2,5} {1,3}

The octahedral graph T}

The Petersen graph T
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An application

Theorem (Chang and Hoffman, independently, 1959)

The triangular graph T, is determined by its spectrum iff n # 8.
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An application

The g-triangular graph T}, ,, has as vertices the 2-dimensional
subspaces of [} where two vertices are adjacent if they intersect.
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An application

The g-triangular graph T, ,, has as vertices the lines of PG(n — 1, ¢)
where two vertices are adjacent if they intersect.
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An application

The g-triangular graph T, ,, has as vertices the lines of PG(n — 1, ¢)
where two vertices are adjacent if they intersect.

Theorem (lhringer and Munemasa, 2019)

The q-triangular graph Ty ,, is not determined by its spectrum if n > 4.

Proof. Fix a subplane PG(2,q) C PG(n — 1,¢) and let

P = {lines of PG(2,q)}
B = {point pencils of PG(2, q) }

Design switching on (P, B), using any permutation 7 of B that is not an
automorphism = maximal cliques of size ¢* + q. O
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An application

Theorem (lhringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as'T} .
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Proof. Let I'; be the graph obtained from design switching 7T}, , with 7.
Iy, =T, <= 71, m € same double coset of Aut(D) in Sym(B5)

There are > ¢! double cosets. O
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An application

Theorem (lhringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as'T} .
Proof. Let I'; be the graph obtained from design switching 7T}, , with 7.
Iy, =T, <= 71, m € same double coset of Aut(D) in Sym(B5)

There are > ¢! double cosets. O

» Many strongly regular graphs with the same parameters.

Corollary (Fon-Der-Flaass, 2002)

Almost all strongly regular graphs are not determined by their spectrum.
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Concluding remarks

» Many new switching methods
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Concluding remarks

» Many new switching methods

» Alternative proofs of cospectrality results:
» g-triangular graphs [lhringer, Munemasa, 2019]
» Collinearity graphs of polar spaces [Brouwer, lhringer, Kantor, 2022]
» Collinearity graphs of generalised quadrangles [Guo, van Dam, 2022]
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Concluding remarks

» Many new switching methods

» Alternative proofs of cospectrality results:
» g-triangular graphs [lhringer, Munemasa, 2019]
» Collinearity graphs of polar spaces [Brouwer, lhringer, Kantor, 2022]
» Collinearity graphs of generalised quadrangles [Guo, van Dam, 2022]

» More general: two different designs
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Thank you for listening!

Of50

F. Ihringer and R. Simoens,
Design switching on graphs, arXiv:2508.11523.
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