Goppa codes from a Singer cycle

Valentino Smaldore

Università degli Studi di Padova

Seventh Irsee Conference

joint work with G. Korchmáros and F. Romaniello

September 4, 2025

- 1 Linear codes
- 2 Goppa codes
- 3 Singer cycles on $PG(2, q^6)$
- The new codes

Linear codes

Definition

An $[n, k]_q$ -linear code C is a subspace of \mathbb{F}_q^n of dimension k.

Definition

- The Hamming distance between two codewords $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ is the number of entries in which x and y differ: $d(x, y) = |\{i | x_i \neq y_i\}|$.
- The minimum distance of a code C is $d = d(C) = min\{d(x,y)|x,y \in C, x \neq y\}.$

In this case we say C is a $[n, k, d]_q$ -linear code.

Theorem

Let $\mathcal C$ be a $[n,k,d]_q$ -linear code. Then, $\mathcal C$ can correct $\lfloor \frac{d-1}{2} \rfloor$ errors. If is used for detection, $\mathcal C$ can detect d-1 errors.

Linear codes

Dual codes

Definition

Let $\mathcal C$ be an $[n,k]_q$ -linear code. Consider the standard inner product in $\mathbb F_{q^n}\colon x\cdot y=\sum_{i=1}^n x_iy_i$. The dual code $\mathcal C^\perp$ is

$$\mathcal{C}^{\perp} = \{ x \in \mathbb{F}_{\mathbf{q}^n} \mid x \cdot c = 0, \forall c \in \mathcal{C} \}$$

Theorem

 \mathcal{C}^{\perp} is a $[n, n-k]_q$ -code.

Linear codes

Gilbert-Varshamov bound

Proposition (Gilbert-Varshamov Bound)

An $[n, k, d]_q$ code exists if

$$q^{n-k} > \sum_{i=0}^{d-2} {n-1 \choose i} (q-1)^i.$$

Table of contents

Curves and divisors

p prime, $h \in \mathbb{N}$, $q = p^h$.

 $\mathcal C$: non-singular plane curve over $\mathbb F_q.$

Definition

- A divisor G is a formal power series of places of C.
- The Riemann-Roch space $\mathcal{L}(G)$ is the vector space consisting of all rational functions that are regular outside G.

Theorem (Riemann-Roch Theorem)

$$\ell(\mathtt{G}) = \mathsf{deg}(\mathtt{G}) - \mathfrak{g} + 1 + \ell(\mathtt{W} - \mathtt{G}),$$

where $\mathfrak g$ is the genus of the curve, $\ell(G)=dim(\mathcal L(G))$ and W is a canonical divisor. In particular, for $deg(G)>2\mathfrak g-2$,

$$\ell(G) = deg(G) - \mathfrak{a} + 1.$$

Construction

The functional code $C_L(D,G)$ arises as follows: take a divisor G with support $G \subseteq C$, and take $P_1, \ldots, P_N = D$, and assume $D \cap G = \emptyset$. Then evaluating the functions $f \in \mathcal{L}(G)$ on D produces a linear code of length N and dimension $\ell(G)$.

Proposition

The minimum distance of $C_L(D,G)$ is at least $\delta = n - deg(G)$.

Definition

The differential code $C_{\Omega}(D,G)$ is the dual code $C_{L}^{\perp}(D,G)$.

Here \mathcal{C} is the Hermitian curve $H(2,q^2): Y^q + Y - X^{q+1} = 0$, G is an orbit of a large $\Gamma \leq Aut(H(2,q^2)) \cong PGU(3,q)$, $G \cup D = \mathcal{C}$.

Subgroups of PGU(3, q)

Theorem

Table of contents

Let d be a divisor of $q = p^k$. The following is the list of maximal subgroups in PSU(3, q) (up to conjugacy)

- (i) The one-point stabilizer (order $\frac{q^3(q^2-1)}{d}$);
- The stabilizer of a non-tangent line (order $\frac{q(q^2-1)(q+1)}{d}$);
- the stabilizer of a self-conjugate triangle (order $\frac{6(q+1)}{d}$);
- (iv) the normalizer of a cyclic Singer group (order $\frac{3(q^2-q+1)}{J}$); further when q is odd:
 - (v) the stabilizer of a conic PGL(2, q);

 - (vi) $PSU(3, p^m)$, with $m \mid k$ and $\frac{k}{m}$ odd;
 - (vii) the subgroup containing $PSU(3, p^m)$ as index 3 normal subgroup, with $m \mid k, \frac{k}{m}$ odd, and 3 divides both q+1 and $\frac{k}{r}$;
 - the Hessian groups of order 216 when $9 \mid (q+1)$ and of order 72 and 36 when $3 \mid (q+1)$;
 - PSL(2,7) when either p=7 or -7 is not a square in \mathbb{F}_q ;
 - (x) A_6 when either p=3 and k is even, or 5 is a square in \mathbb{F}_q and \mathbb{F}_q contains no cubic roots of the unity;
 - (xi) S_6 when p = 5 and k odd;
 - (xii) A_7 when p = 5 and k odd...

Constructions of Goppa codes

- Group (i) On Goppa codes and Weierstrass gaps at several points, C. Carvalho, F. Torres, Designs, Codes and Cryptography, 2005, 35, pp. 211-225;
- Group (v) Hermitian curves with automorphism group isomorphic to PGL(2, q) with q odd, G. Korchmáros, P. Speziali, Finite Fields and their Applications, 2017, 44, pp. 1-17;
- Group (vi) Codes and gap sequences of Hermitian curves,
 G. Korchmáros, G. P. Nagy, M. Timpanella, IEEE Transactions
 of Information Theory, 2019, 66(6), pp. 3547-3554.

The group (iv)

The group of size $3(q^2-q+1)$ is the normalizer of a Singer cycle. The Singer cycle acts on the Hermitian curve $H(2,q^2)$ regularly on a point-orbit of lenght q^2-q+1 . The matrices representing such a subgroup of PGU(3,q) may be represented by the 3×3 matrices of the shape

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{array}\right),$$

where $X^3+aX^2+bX+c\in\mathbb{F}_{q^2}[X]$ is an irreducible polynomial.

Cubic extension

$$PG(2,q^2)\subseteq PG(2,q^6).$$
 a primitive (q^4+q^2+1) -th root of the unity in \mathbb{F}_{q^6} .

$$M = \left(egin{array}{ccc} a & 1 & a^{q^2+1} \ a^{q^2+1} & a & 1 \ 1 & a^{q^2+1} & a \end{array}
ight)$$

maps the canonical subplane $PG(2, q^2)$ onto

$$\Pi = \{ (a^i : a^{i(q^2+1)} : 1) \mid i = 0, 1, \dots, q^4 + q^2 \}.$$

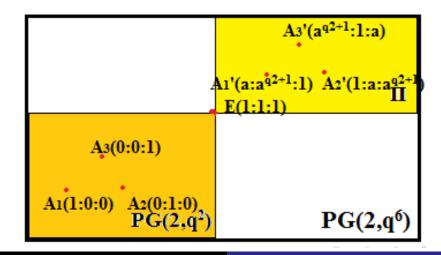
$$A_1(1:0:0)\mapsto A_1'(a:a^{q^2+1}:1)$$

$$A_2(0:1:0) \mapsto A'_2(1:a:a^{q^2+1})$$

$$A_3(0:0:1) \mapsto A'_3(a^{q^2+1}:1:a)$$

E(1:1:1) is fixed.

Cubic extension



Cubic extension

Construction

In Π , the Singer cycle is represented by

$$B = \left(\begin{array}{ccc} \beta & 0 & 0\\ 0 & \beta^{q^2+1} & 0\\ 0 & 0 & 1 \end{array}\right),$$

where β is a primitive $(q^2 - q + 1)$ -th root of the unity.

Cubic extension

$$\mathcal{C} = v\big(G\big(X_0, X_1, X_2\big)\big) \text{ is the zero locus of the polynomial}$$

$$G\big(\overline{X_0}, \overline{X_1}, \overline{X_2}\big) = \overline{X_1}^2 \overline{X_2}^{2q} + \overline{X_0}^2 \overline{X_1}^{2q} + \overline{X_0}^{2q} \overline{X_2}^2 + \\ -2\big(\overline{X_0}^{q+1} \overline{X_1}^q \overline{X_2} + \overline{X_0}^q \overline{X_1} \overline{X_2}^{q+1} + \overline{X_0} \overline{X_1}^{q+1} \overline{X_2}^q\big).$$

$$\mathfrak{g}(\mathcal{C}) = \frac{q^2 - q}{2}, \ |\mathcal{C}(\mathbb{F}_{q^6})| = q^6 + q^5 - q^4 + 1.$$
 The singular points of \mathcal{C} have coordinates $(1:0:0), \ (0:1:0), \ (0:0:1)$ in the system of coordinates $(\overline{X_0}, \overline{X_1}, \overline{X_2}).$

Cubic extension

$$M^{-1} = \frac{1}{|M|} \left(\begin{array}{cccc} a^2 - a^{q^2+1} & 1 - a^{q^2+2} & a^{2q^2+2} - a \\ a^{2q^2+2} - a & a^2 - a^{q^2+1} & 1 - a^{q^2+2} \\ 1 - a^{q^2+2} & a^{2q^2+2} - a & a^2 - a^{q^2+1} \end{array} \right).$$

 $\mathcal{D} = v(H(X_0, X_1, X_2))$ is a plane model $H(2, q^2)$, where

$$H(X_0, X_1, X_2) = G(aX_0 + X_1 + a^{q^2+1}X_2,$$

$$a^{q^2+1}X_0 + aX_1 + X_2, X_0 + a^{q^2+1}X_1 + aX_2$$
).

The singular points of \mathcal{D} have coordinates defined by the three columns of M^{-1} .

The functional code $C_L(D, G)$

 P_1, \ldots, P_{a^2-a+1} orbit of a Singer cycle.

$$G = P_1 + \ldots + P_{q^2 - q + 1}$$

D divisor whose support is $H(2, q^2) \setminus \{P_1, \dots, P_{q^2-q+1}\}$.

Theorem

The code $C_L(D, G)$ is a

$$[q(q^2-q+1), \frac{q^2-q}{2}+2, (q-1)(q^2-q+1)]_{q^2}$$
-linear code.

$$n = (q^3 + 1) - (q^2 - q + 1) = q^3 - q^2 + q = q(q^2 - q + 1).$$

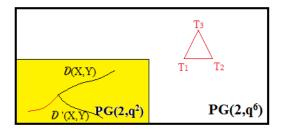
$$k = deg(G) - g + 1 = q^2 - q + 1 - \frac{q^2 - q}{2} + 1 = \frac{q^2 - q}{2} + 2.$$

The minimum distance of $C_L(D, G)$

$$\delta = n - \deg(G) = q(q^2 - q + 1) - (q^2 - q + 1) = (q - 1)(q^2 - q + 1).$$

Construction

Take the codeword given by a further Hermitian curve $\mathcal{D}'(X,Y)$, intersecting $\mathcal{D}(X,Y)$ at q^2-q+1 points, while $q(q^2-q+1)-(q^2-q+1)=\delta$.



The differential code $C_{\Omega}(D, G)$

Result

There exists a canonical divisor W such that $C_{\Omega}(D, G) \cong C_L(D, W + D - G)$.

$$W = \frac{F^2}{L} dx$$

 $\mathcal C$ is another Hermitian curve F_q of equation F(x,y)=0 through the support of G, and L is the product of q^2-q lines through an external point R to H_q together with the polar line of R.

$$W + D - G \equiv (q^3 - q^2 - 5q - 3)Y_{\infty} + 2qT$$

where $T = T_1 + T_2 + T_3$, the common points of H_q and F_q in $PG(2, q^6)$. Since $D + qT \equiv (q+1)^2 Y_{\infty}$, this can also be written as

$$(q^2-1)(q+1)Y_{\infty}-2D$$
.

The differential code $C_{\Omega}(D, G)$

Theorem

The code $C_{\Omega}(\mathbb{D},\mathbb{G})$ is a $[q(q^2-q+1),q^3-\frac{3}{2}q^2+\frac{3}{2}q-2,\frac{1}{2}(q^2-q+4)]_{q^2}$ -linear code.

$$k = deg(W + D - G) - g(H_q) + 1 = q^3 - \frac{3}{2}q^2 + \frac{3}{2}q - 2.$$

 $\delta = q(q^2 - q + 1) - deg(W + D - G) = 3.$
The minimum distance is $d = \frac{1}{2}(q^2 - q + 4) > 3.$

Table of contents

The minimum distance of $C_{\Omega}(D, G)$

Construction

Take a chord ℓ of D not passing through Y_{∞}

 Λ is the orbit of ℓ under the action of the Singer cycle and consists of q^2-q+1 pairwise distinct chords of D not through Y_{∞} .

 Λ together with a further curve C of degree q-2 define a reducible curve L of degree q^2-1 .

$$\operatorname{div}_0(L) - 2D = A_1 + A_2$$

where $A_1 = A_1 + ... + A_N$ with $N = (q-1)(q^2 - q + 1)$ and A_2 is the intersection divisor $H_q \circ C$.

$$\deg(\mathtt{A}_1) + \deg(\mathtt{A}_2) = q^3 - 2q^2 + 2q - 1 + \frac{1}{2}(q^2 - q - 2).$$

Therefore, the weight of the codeword $A_1 + A_2$ equals $d = \frac{1}{2}(q^2 - q + 4)$.

