Erdős-Ko-Rado sets on the hyperbolic quadrics $Q^+(4n+1,q)$

Leo Storme

Ghent University
Department of Mathematics
Belgium
(joint work with Laure Schelfhout)

Irsee 2025

OUTLINE

HYPERBOLIC QUADRICS

2 ERDŐS-KO-RADO PROBLEM

OUTLINE

HYPERBOLIC QUADRICS

ERDŐS-KO-RADO PROBLEM

HYPERBOLIC QUADRICS

- Hyperbolic quadric $Q^+(2n+1,q)$: $X_0X_1 + X_2X_3 + \cdots + X_{2n}X_{2n+1} = 0$,
- $Q^+(2n+1,q)$ has points, lines, ..., n-spaces,
- *n*-spaces on $Q^+(2n+1,q)$ are called *generators*,
- $Q^+(2n+1,q)$ has $2(q+1)(q^2+1)\cdots(q^n+1)$ generators.

GENERATORS ON HYPERBOLIC QUADRIC

• Set of generators Ω on $Q^+(2n+1,q)$ can be partitioned into two equivalence classes Ω_1 and Ω_2 :

$$\Pi_1 \sim \Pi_2 \Leftrightarrow \dim(\Pi_1 \cap \Pi_2) \equiv n \pmod{2}$$
.

Hyperbolic quadric $Q^+(3,q)$

Millenáris Park, Budapest

GENERATORS ON HYPERBOLIC QUADRIC

• Set of generators Ω on $Q^+(2n+1,q)$ can be partitioned into two equivalence classes Ω_1 and Ω_2 :

$$\Pi_1 \sim \Pi_2 \Leftrightarrow \dim(\Pi_1 \cap \Pi_2) \equiv n \pmod{2}.$$

- Ω₁: Latin generators
 Ω₂: Greek generators
- $(q+1)(q^2+1)\cdots(q^n+1)$ Latin and Greek generators.
- For $Q^+(4n+1,q)$, generators of Ω_1 pairwise intersect.
- For $Q^+(4n+1,q)$, generators of Ω_2 pairwise intersect.

OUTLINE

HYPERBOLIC QUADRICS

2 ERDŐS-KO-RADO PROBLEM

P. Erdős

C. Ko

R. Rado

ERDŐS-KO-RADO PROBLEM

Problem: What are largest sets of *k*-sets in *n*-set, pairwise intersecting in at least one element?

THEOREM (ERDŐS-KO-RADO)

If S is set of k-sets in n-set Ω , with $2k \le n$, pairwise intersecting in at least one element, then $|S| \le \binom{n-1}{k-1}$. If $2k+1 \le n$, then equality only holds if S consists of all k-sets through fixed element of Ω .

n = 2k: If n = 2k, other sets with equality: all k-sets in fixed subset of size n - 1 = 2k - 1 of Ω .

q-Analog of Erdős-Ko-Rado problem

Problem: What are largest sets of (k-1)-subspaces in PG(n-1,q), pairwise intersecting non-trivially?

THEOREM (HSIEH, FRANKL-WILSON, NEWMAN-GODSIL)

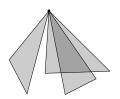
Let S be set of (k-1)-subspaces in PG(n-1,q), with $2(k-1)+1 \le n-1$, pairwise intersecting non-trivially.

- If 2(k-1)+1 < n-1, then largest examples consist of all (k-1)-spaces through fixed point.
- If 2(k-1)+1=n-1, then largest examples consist of all (k-1)-spaces through fixed point, or all (k-1)-spaces in given hyperplane of PG(n-1=2k-1,q).

ERDŐS-KO-RADO PROBLEM IN FINITE CLASSICAL POLAR SPACES

Problem:

- What are largest sets of generators in finite classical polar space P, pairwise intersecting non-trivially?
- All generators of *P* through fixed point (point-pencil = p.-p.).



V. Pepe and F. Vanhove

RESULTS FOR FINITE CLASSICAL POLAR SPACES

Polar space	Maximum size	Classification
$Q^{-}(2n+1,q)$	$(q^2+1)\cdots(q^n+1)$	pp.
Q(4n, q)	$(q+1)\cdots(q^{2n-1}+1)$	pp.
$Q(4n+2, q), n \geq 2$	$(q+1)\cdots(q^{2n}+1)$ $(q+1)(q^2+1)$	pp., Latins $Q^{+}(4n + 1, q)$
Q(6, q)	$(q+1)(q^2+1)$	pp., Latins $Q^+(5, q)$, base
$Q^+(4n+1,q)$	$(q+1)\cdots(q^{2n}+1)$	all Latins
Latins $Q^+(4n+3, q)$, $n \ge 2$	$(q+1)\cdots(q^{2n}+1)$	pp.
Latins $Q^+(7, q)$	$(q+1)(q^2+1)$	pp., meeting Greek in plane
$ W(4n+1,q), n \ge 2, $ q odd	$(q+1)\cdots(q^{2n}+1)$	pp.
$W(4n+1,q), n \geq 2,$ $q \text{ even}$	$(q+1)\cdots(q^{2n}+1)$	pp., Latins $Q^+(4n+1,q)$
W(5, q), q odd	$(q+1)(q^2+1)$	pp., base,
W(5, q), q even	$(q+1)(q^2+1)$	pp., base, Latins $Q^+(5, q)$
W(4n + 3, q)	$(q+1)\cdots(q^{2n+1}+1)$	pp.
H(2n, q ²)	$(q^3+1)(q^5+1)\cdots(q^{2n-1}+1)$	pp.
$H(4n+3,q^2)$	$(q+1)(q^3+1)\cdots(q^{4n+1}+1)$	pp.
$H(4n+1, q^2), n \ge 2$	$< \Omega /(q^{2n+1}+1)$?
$H(5, q^2)$	$q(q^4+q^2+1)+1$	base

Largest EKR-sets on $Q^+(4n+1,q)$

THEOREM

The largest Erdős-Ko-Rado sets on the hyperbolic quadric $Q^+(4n+1,q)$ are the set of Latin and the set of Greek generators of $Q^+(4n+1,q)$.

This example has size $(q+1)(q^2+1)\cdots(q^{2n}+1)\in O(q^{2n^2+n})$. Comparison with point-pencil:

Point-pencil on $Q^+(4n+1,q)$ has size

$$2(q+1)(q^2+1)\cdots(q^{2n-1}+1)\in O(q^{2n^2-n}).$$

CLASSIFICATION OF EKR SETS ON $Q^+(5,q)$

THEOREM

There are three distinct maximal EKR-sets on the hyperbolic quadric $Q^+(5, q)$:

- One class of generators.
- Set consisting of one fixed generator Π and all generators of the other class intersecting this fixed generator in at least one point.
- Openity of the properties of the point of

SECOND LARGEST EKR-SET ON $Q^+(4n+1,q)$

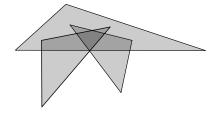
THEOREM (DE BOECK)

The second largest EKR-sets on $Q^+(4n+1,q)$ are equal to the sets of generators consisting of one fixed generator Π , and the set of generators of the other class, intersecting this fixed generator Π in at least one point.

Class of generators: size $\in O(q^{2n^2+n})$.

Second largest example: size $\in O(q^{2n^2+n-1})$.

SECOND LARGEST EKR-SET ON $Q^+(4n+1,q)$



THIRD LARGEST EKR-SET ON $Q^+(4n+1,q)$

THEOREM (SCHELFHOUT AND STORME)

The third largest maximal EKR-sets on $Q^+(4n+1,q)$ are constructed in the following way (up to interchange of Latin and Greek):

- Consider the q + 1 Latin generators Π_i , $i = 1, \ldots, q + 1$, through a fixed (2n-2)-dimensional space Ω .
- Consider the set of all Greek generators Π intersecting Ω in at least one point.

The third largest maximal EKR-sets on $Q^+(4n+1,q)$ are equal to the sets consisting of these q + 1 Latin generators Π_i , $i=1,\ldots,g+1$, through a fixed (2n-2)-dimensional space Ω and these Greek generators intersecting in at least one point.

Size
$$\in O(q^{2n^2+n-2})$$
.

- There are at least two generators of each class.
- If all generators of one class pass through a common (2n-2)-dimensional space, then it the desired example.
- If |E| is at least size of the desired example, then one class of generators contains at least |E|/2 generators of S.
- Assume that there are at least |E|/2 Greek generators.

- There are two Greek generators in E that share a (2n-2)-dimensional space π_{2n-2} .
- But not all Greek generators in E go through π_{2n-2} . So there is a third Greek generator in E not through π_{2n-2} .
- The number of Latin generators is at most

$$\prod_{i=1}^{2n} (q^i + 1) - q^{2n^2+n} - q^{2n^2+n-1} - q^{2n^2+n-2}.$$

The number of Latin generators is at most

$$\prod_{i=1}^{2n} (q^i + 1) - q^{2n^2 + n} - q^{2n^2 + n - 1} - q^{2n^2 + n - 2}.$$

• No two Latin generators in E share a (2n-2)-dimensional space, or number of Greek generators is also at most

$$\prod_{i=1}^{2n} (q^i + 1) - q^{2n^2+n} - q^{2n^2+n-1} - q^{2n^2+n-2}.$$

Then *E* is too small.

 So Latin generators in E pairwise intersect in at most 2n – 4 dimensions.

- So Latin generators in E pairwise intersect in at most 2n – 4 dimensions.
- Then E is too small.
- Calculate size of third largest example minus upper bound on size of E leads to

$$q^{2n^2+n-3}-q^{2n^2+n-4}-(q^2+1)\prod_{i=4}^{2n}(q^i+1)+q+1>0.$$

Thank you very much for your attention

