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Line-spreads1

Definition.
A line-spread of PG(n, q) is a partition of the points of
PG(n, q) into lines of PG(n, q).

▶ Equivalently, a line-spread of PG(n, q) can be thought of as
partition of the non-zero vectors of Fn+1

q into 2-dimensional
subspaces.

▶ Simple counting argument implies line-spreads only exist in
PG(n, q) if n is odd.

▶ On the other hand, when n is odd, many line-spreads are
known to exist in PG(n, q) for any prime power q.
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Line-parallelisms1

Definition.
A line-parallelism (or line-packing) of PG(n, q) is a partition
of the lines of PG(n, q) into line-spreads.

▶ Equivalently, this is a partition of all 2-dimensional
subspaces of Fn+1

q into line-spreads.
▶ Line-parallelisms of PG(n, q) consist of qn−1

q−1 line-spreads.
▶ Again, we have a necessary condition that n is odd. But is

it sufficient?
▶ Sufficient for q = 2 (Zaitsev, Zinoviev, and Semakov 1973

and Baker 1976)
▶ Sufficient for any q > 2 when n = 2k − 1 (Beutelspacher

1974)
▶ Sufficient for q = 3, 4, 8, 16 (Xu and Feng 2023)
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Notions in Coding Theory2

Definition.
A linear code with parameters [n, k, d ]q is a k-dimensional
subspace C of Fn

q such that the Hamming distance between any
two vectors in C is at least d .

Example: Let H be the t × (2t − 1) matrix over F2 whose
columns are formed precisely by all non-zero vectors of Ft

2.

The null space of H is called the binary linear Hamming code
Ham(t, 2) which has parameters

▶ Length n = 2t − 1.
▶ Dimension k = 2t − t − 1.
▶ Minimum distance d = 3.
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More on the Hamming code2

The minimum weight codewords of Ham(t, 2) correspond to
lines in PG(t − 1, 2).

▶ Minimum weight codewords have three non-zero entries,
say in positions i , j , k.

▶ Therefore, the columns Hi , Hj , Hk of H must sum to zero,
thus {0, Hi , Hj , Hk} is a 2-dimensional subspace of Ft

2.
▶ It follows that the codeword associated with any

2-dimensional subspace in this way belongs to Ham(t, 2).
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Partitioning the linear Hamming code2

Let Pt is a binary code with length n = 2t − 1, minimum
distance d = 5, and size such that |Ham(t, 2)|/|Pt | = 2t−1.

If Ham(t, 2) can be partitioned into 2t−1 copies of Pt ,
then:

▶ The copy of Pt containing the zero codeword does not
contain any weight three codewords of Ham(t, 2).

▶ Thus the minimum weight codewords of Ham(t, 2) are split
amongst the remaining 2t−1 − 1 copies of Pt .

▶ Any two codewords of weight 3 in the same copy of Pt must
have disjoint supports since Pt has minimum distance 5.

▶ Consequently, each copy of Pt contains codewords
corresponding to a line-spread of PG(t − 1, 2) and all the
line-spreads together yield a parallelism.
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Preparata-like codes2

Definition.
We call a binary code Pt Preparata-like if it has length 2t − 1,
contains 22t−2t codewords and has minimum distance 5.

The following is a list of all known Preparata-like codes of
length 2t − 1 which are known to be contained in Ham(t, 2).

▶ 1968: Preparata constructs the first class of such codes.
▶ 1983: Baker, van Lint, and Wilson simplify and generalize

Preparata’s construction. This leads to the class of
generalized Preparata codes.

▶ 2000: van Dam and Fon-Der-Flaass construct crooked
Preparata-like codes from crooked functions.

• •• ••••• •••••
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Partitioning the Hamming code2
It is known that any generalized Preparata code gives rise to a
partition of the linear Hamming code of the same length.

▶ 1973: Zaitsev, Zinoviev, and Semakov prove this fact for
the classical Preparata code. Also independently noted by
Baker in 1976.

▶ 1983: Baker, van Lint, and Wilson prove this fact for the
generalized Preparata codes.

▶ 2016: V. A. Zinoviev and D. V. Zinoviev gave a new and
inequivalent partitioning using generalized Preparata codes
via a group theoretic approach.

Theorem (Heering and T. 2025+).
Let Pt be any Preparata-like code contained inside the
Hamming code Ham(t, 2) of the same length. Then Ham(t, 2)
can be partitioned into additive translates of Pt .

• •• ••••• •••••
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Crooked functions3

Definition (Bending and Fon-Der-Flaass (1998)).
A function f (x) over F2n is called crooked if f (0) = 0 and for
a ̸= 0, the sets

Ha = {f (x + a) + f (x) : x ∈ F2n}

are all distinct and are the complement of a hyperplane.

Definition.
Let f and f ′ be two crooked functions over F2n . We say

1. f ′ is linearly equivalent to f if there exists linear
permutations L1, L2 of F2n such that f ′ = L1fL2.

2. f ′ is affine equivalent to f if there exists affine
permutations A1, A2 of F2n such that f ′ = A1fA2.
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Parallelisms from crooked functions3

Definition.
Let f be a crooked function over F2n and V = F2n × F2. The
coloring function cf : V × V → F2n is defined by

cf ((x , x1), (y , y1)) = f (x) + f (y) + f (x + y) + f (x1y + y1x).

▶ cf is constant and non-zero on lines of PG(n, 2).
▶ Any two lines given the same color F∗

2n do not intersect.
▶ It follows that each color class of lines is a line-spread, and

all together form a line-parallelism.
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▶ cf is constant and non-zero on lines of PG(n, 2).
▶ Any two lines given the same color F∗

2n do not intersect.

▶ It follows that each color class of lines is a line-spread, and
all together form a line-parallelism.
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The equivalence problem3

Definition.
Two line parallelisms Π1 and Π2 of PG(n, 2) are equivalent if
there exists a collineation of PG(n, 2) which maps the
line-spreads of Π1 to the line-spreads of Π2.

Theorem (Heering and T. 2025+).
Let f (x) and f ′(x) be crooked over F2n with n > 1 odd and let
Πf and Πf ′ be the parallelisms induced by cf and cf ′ .

1. If f (x) and f ′(x) are linearly equivalent, then Πf and Πf ′

are equivalent.
2. Suppose further that f (x) and f ′(x) are quadratic and that

n > 3. It holds that Πf and Π′
f are equivalent if and only

f (x) and f ′(x) are affine equivalent.

• •• ••••• •••••
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Survey of known line-parallelisms of PG(n, 2)3

The following list describes all known line-parallelisms of
PG(n, 2) (which also includes our contribution).

1. Crooked line-parallelisms arising from the partition of the
linear Hamming code into additive translates of any
crooked Preparata-like code.

2. Line-parallelisms arising from the partitioning of the linear
Hamming code into cosets of the generalized Preparata
codes via a group theoretical approach.

3. A construction of line-parallelisms of PG(n, 2) by Wettl in
1994, inequivalent to those coming from the generalized
Preparata codes.

4. Specific examples in PG(3, 2), PG(5, 2), PG(7, 2), PG(9, 2)
mostly obtained by computer.
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Conclusion3

Can the coloring function method be used to resolve more cases
for the existence of parallelisms when q > 2?

We have some ideas, come talk to us if you’re interested!
Thank you!
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