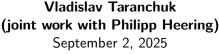
Line-parallelisms of PG(n, 2) from Preparata-like codes



7th Finite Geometry Conference

Irsee, Germany

Definition.

A **line-spread** of PG(n, q) is a partition of the points of PG(n, q) into lines of PG(n, q).

Definition.

A **line-spread** of PG(n, q) is a partition of the points of PG(n, q) into lines of PG(n, q).

▶ Equivalently, a line-spread of PG(n, q) can be thought of as partition of the non-zero vectors of \mathbb{F}_q^{n+1} into 2-dimensional subspaces.

Definition.

A **line-spread** of PG(n, q) is a partition of the points of PG(n, q) into lines of PG(n, q).

- ▶ Equivalently, a line-spread of PG(n, q) can be thought of as partition of the non-zero vectors of \mathbb{F}_q^{n+1} into 2-dimensional subspaces.
- ▶ Simple counting argument implies line-spreads only exist in PG(n, q) if n is odd.

Definition.

A **line-spread** of PG(n, q) is a partition of the points of PG(n, q) into lines of PG(n, q).

- ▶ Equivalently, a line-spread of PG(n, q) can be thought of as partition of the non-zero vectors of \mathbb{F}_q^{n+1} into 2-dimensional subspaces.
- ▶ Simple counting argument implies line-spreads only exist in PG(n, q) if n is odd.
- On the other hand, when n is odd, many line-spreads are known to exist in PG(n, q) for any prime power q.

Definition.

Definition.

A **line-parallelism** (or **line-packing**) of PG(n, q) is a partition of the lines of PG(n, q) into line-spreads.

▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.

Definition.

- ▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.
- ▶ Line-parallelisms of PG(n,q) consist of $\frac{q^n-1}{q-1}$ line-spreads.

Definition.

- ▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.
- ▶ Line-parallelisms of PG(n,q) consist of $\frac{q^n-1}{q-1}$ line-spreads.
- Again, we have a necessary condition that n is odd.

Definition.

- ▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.
- ▶ Line-parallelisms of PG(n,q) consist of $\frac{q^n-1}{q-1}$ line-spreads.
- ▶ Again, we have a necessary condition that *n* is odd. But is it sufficient?

Definition.

- ▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.
- ▶ Line-parallelisms of PG(n,q) consist of $\frac{q^n-1}{q-1}$ line-spreads.
- ▶ Again, we have a necessary condition that *n* is odd. But is it sufficient?
- Sufficient for q=2 (Zaitsev, Zinoviev, and Semakov 1973 and Baker 1976)

Definition.

- ▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.
- ▶ Line-parallelisms of PG(n,q) consist of $\frac{q^n-1}{q-1}$ line-spreads.
- ▶ Again, we have a necessary condition that *n* is odd. But is it sufficient?
- Sufficient for q = 2 (Zaitsev, Zinoviev, and Semakov 1973 and Baker 1976)
- Sufficient for any q > 2 when $n = 2^k 1$ (Beutelspacher 1974)

Definition.

- ▶ Equivalently, this is a partition of all 2-dimensional subspaces of \mathbb{F}_q^{n+1} into line-spreads.
- ▶ Line-parallelisms of PG(n,q) consist of $\frac{q^n-1}{q-1}$ line-spreads.
- ▶ Again, we have a necessary condition that n is odd. But is it sufficient?
- Sufficient for q = 2 (Zaitsev, Zinoviev, and Semakov 1973 and Baker 1976)
- Sufficient for any q > 2 when $n = 2^k 1$ (Beutelspacher 1974)
- ▶ Sufficient for q = 3, 4, 8, 16 (Xu and Feng 2023)

Notions in Coding Theory

Definition.

A **linear code** with parameters $[n, k, d]_q$ is a k-dimensional subspace \mathcal{C} of \mathbb{F}_q^n such that the Hamming distance between any two vectors in \mathcal{C} is at least d.

Notions in Coding Theory

Definition.

A **linear code** with parameters $[n, k, d]_q$ is a k-dimensional subspace \mathcal{C} of \mathbb{F}_q^n such that the Hamming distance between any two vectors in \mathcal{C} is at least d.

Example: Let H be the $t \times (2^t - 1)$ matrix over \mathbb{F}_2 whose columns are formed precisely by all non-zero vectors of \mathbb{F}_2^t .

Notions in Coding Theory

Definition.

A **linear code** with parameters $[n, k, d]_q$ is a k-dimensional subspace \mathcal{C} of \mathbb{F}_q^n such that the Hamming distance between any two vectors in \mathcal{C} is at least d.

Example: Let H be the $t \times (2^t - 1)$ matrix over \mathbb{F}_2 whose columns are formed precisely by all non-zero vectors of \mathbb{F}_2^t .

The null space of H is called the **binary linear Hamming code** Ham(t,2) which has parameters

- ▶ Length $n = 2^t 1$.
- ▶ Dimension $k = 2^t t 1$.
- ightharpoonup Minimum distance d=3.

The minimum weight codewords of Ham(t, 2) correspond to lines in PG(t-1, 2).

The minimum weight codewords of Ham(t, 2) correspond to lines in PG(t - 1, 2).

Minimum weight codewords have three non-zero entries, say in positions i, j, k.

The minimum weight codewords of Ham(t, 2) correspond to lines in PG(t - 1, 2).

- Minimum weight codewords have three non-zero entries, say in positions i, j, k.
- ► Therefore, the columns H_i , H_j , H_k of H must sum to zero, thus $\{0, H_i, H_j, H_k\}$ is a 2-dimensional subspace of \mathbb{F}_2^t .

The minimum weight codewords of Ham(t, 2) correspond to lines in PG(t - 1, 2).

- Minimum weight codewords have three non-zero entries, say in positions i, j, k.
- ► Therefore, the columns H_i , H_j , H_k of H must sum to zero, thus $\{0, H_i, H_j, H_k\}$ is a 2-dimensional subspace of \mathbb{F}_2^t .
- It follows that the codeword associated with any 2-dimensional subspace in this way belongs to Ham(t, 2).

Let P_t is a binary code with length $n = 2^t - 1$, minimum distance d = 5, and size such that $|\text{Ham}(t, 2)|/|P_t| = 2^{t-1}$.

Let P_t is a binary code with length $n=2^t-1$, minimum distance d=5, and size such that $|{\rm Ham}(t,2)|/|P_t|=2^{t-1}$. If ${\rm Ham}(t,2)$ can be partitioned into 2^{t-1} copies of P_t , then:

▶ The copy of P_t containing the zero codeword does not contain any weight three codewords of Ham(t, 2).

- ▶ The copy of P_t containing the zero codeword does not contain any weight three codewords of Ham(t, 2).
- ▶ Thus the minimum weight codewords of Ham(t, 2) are split amongst the remaining $2^{t-1} 1$ copies of P_t .

- ▶ The copy of P_t containing the zero codeword does not contain any weight three codewords of Ham(t, 2).
- Thus the minimum weight codewords of Ham(t, 2) are split amongst the remaining $2^{t-1} 1$ copies of P_t .
- Any two codewords of weight 3 in the same copy of P_t must have disjoint supports since P_t has minimum distance 5.

- ▶ The copy of P_t containing the zero codeword does not contain any weight three codewords of Ham(t, 2).
- ▶ Thus the minimum weight codewords of Ham(t, 2) are split amongst the remaining $2^{t-1} 1$ copies of P_t .
- Any two codewords of weight 3 in the same copy of P_t must have disjoint supports since P_t has minimum distance 5.
- Consequently, each copy of P_t contains codewords corresponding to a line-spread of PG(t-1,2) and all the line-spreads together yield a parallelism.

Definition.

We call a binary code P_t **Preparata-like** if it has length $2^t - 1$, contains $2^{2^t - 2t}$ codewords and has minimum distance 5.

Definition.

We call a binary code P_t **Preparata-like** if it has length $2^t - 1$, contains $2^{2^t - 2t}$ codewords and has minimum distance 5.

The following is a list of all known Preparata-like codes of length $2^t - 1$ which are known to be contained in Ham(t, 2).

Definition.

We call a binary code P_t **Preparata-like** if it has length $2^t - 1$, contains 2^{2^t-2t} codewords and has minimum distance 5.

The following is a list of all known Preparata-like codes of length $2^t - 1$ which are known to be contained in Ham(t, 2).

▶ 1968: Preparata constructs the first class of such codes.

Definition.

We call a binary code P_t **Preparata-like** if it has length $2^t - 1$, contains 2^{2^t-2t} codewords and has minimum distance 5.

The following is a list of all known Preparata-like codes of length $2^t - 1$ which are known to be contained in Ham(t, 2).

- ▶ 1968: Preparata constructs the first class of such codes.
- 1983: Baker, van Lint, and Wilson simplify and generalize Preparata's construction. This leads to the class of generalized Preparata codes.

Definition.

We call a binary code P_t **Preparata-like** if it has length $2^t - 1$, contains 2^{2^t-2t} codewords and has minimum distance 5.

The following is a list of all known Preparata-like codes of length $2^t - 1$ which are known to be contained in Ham(t, 2).

- ▶ 1968: Preparata constructs the first class of such codes.
- 1983: Baker, van Lint, and Wilson simplify and generalize Preparata's construction. This leads to the class of generalized Preparata codes.
- ➤ 2000: van Dam and Fon-Der-Flaass construct crooked Preparata-like codes from crooked functions.

It is known that any generalized Preparata code gives rise to a partition of the linear Hamming code of the same length.

It is known that any generalized Preparata code gives rise to a partition of the linear Hamming code of the same length.

▶ 1973: Zaitsev, Zinoviev, and Semakov prove this fact for the classical Preparata code. Also independently noted by Baker in 1976.

It is known that any generalized Preparata code gives rise to a partition of the linear Hamming code of the same length.

- ▶ 1973: Zaitsev, Zinoviev, and Semakov prove this fact for the classical Preparata code. Also independently noted by Baker in 1976.
- ▶ 1983: Baker, van Lint, and Wilson prove this fact for the generalized Preparata codes.

It is known that any generalized Preparata code gives rise to a partition of the linear Hamming code of the same length.

- ▶ 1973: Zaitsev, Zinoviev, and Semakov prove this fact for the classical Preparata code. Also independently noted by Baker in 1976.
- ▶ 1983: Baker, van Lint, and Wilson prove this fact for the generalized Preparata codes.
- ▶ 2016: V. A. Zinoviev and D. V. Zinoviev gave a new and inequivalent partitioning using generalized Preparata codes via a group theoretic approach.

It is known that any generalized Preparata code gives rise to a partition of the linear Hamming code of the same length.

- ▶ 1973: Zaitsev, Zinoviev, and Semakov prove this fact for the classical Preparata code. Also independently noted by Baker in 1976.
- ▶ 1983: Baker, van Lint, and Wilson prove this fact for the generalized Preparata codes.
- ▶ 2016: V. A. Zinoviev and D. V. Zinoviev gave a new and inequivalent partitioning using generalized Preparata codes via a group theoretic approach.

Theorem (Heering and T. 2025+).

Let P_t be any Preparata-like code contained inside the Hamming code $\operatorname{Ham}(t,2)$ of the same length. Then $\operatorname{Ham}(t,2)$ can be partitioned into additive translates of P_t .

Crooked functions

Definition (Bending and Fon-Der-Flaass (1998)).

A function f(x) over \mathbb{F}_{2^n} is called crooked if f(0)=0 and for $a\neq 0$, the sets

$$H_{\mathsf{a}} = \{ f(\mathsf{x} + \mathsf{a}) + f(\mathsf{x}) : \mathsf{x} \in \mathbb{F}_{2^n} \}$$

are all distinct and are the complement of a hyperplane.

Crooked functions

Definition (Bending and Fon-Der-Flaass (1998)).

A function f(x) over \mathbb{F}_{2^n} is called crooked if f(0) = 0 and for $a \neq 0$, the sets

$$H_a = \{ f(x+a) + f(x) : x \in \mathbb{F}_{2^n} \}$$

are all distinct and are the complement of a hyperplane.

Definition.

Let f and f' be two crooked functions over \mathbb{F}_{2^n} . We say

- 1. f' is **linearly equivalent** to f if there exists linear permutations L_1, L_2 of \mathbb{F}_{2^n} such that $f' = L_1 f L_2$.
- 2. f' is **affine equivalent** to f if there exists affine permutations A_1 , A_2 of \mathbb{F}_{2^n} such that $f' = A_1 f A_2$.

Definition.

Let f be a crooked function over \mathbb{F}_{2^n} and $V = \mathbb{F}_{2^n} \times \mathbb{F}_2$. The coloring function $c_f : V \times V \to \mathbb{F}_{2^n}$ is defined by

$$c_f((x,x_1),(y,y_1)) = f(x) + f(y) + f(x+y) + f(x_1y+y_1x).$$

Definition.

Let f be a crooked function over \mathbb{F}_{2^n} and $V = \mathbb{F}_{2^n} \times \mathbb{F}_2$. The coloring function $c_f : V \times V \to \mathbb{F}_{2^n}$ is defined by

$$c_f((x,x_1),(y,y_1)) = f(x) + f(y) + f(x+y) + f(x_1y+y_1x).$$

 $ightharpoonup c_f$ is constant and non-zero on lines of PG(n,2).

Definition.

Let f be a crooked function over \mathbb{F}_{2^n} and $V = \mathbb{F}_{2^n} \times \mathbb{F}_2$. The coloring function $c_f : V \times V \to \mathbb{F}_{2^n}$ is defined by

$$c_f((x,x_1),(y,y_1)) = f(x) + f(y) + f(x+y) + f(x_1y+y_1x).$$

- $ightharpoonup c_f$ is constant and non-zero on lines of PG(n,2).
- ▶ Any two lines given the same color $\mathbb{F}_{2^n}^*$ do not intersect.

Definition.

Let f be a crooked function over \mathbb{F}_{2^n} and $V = \mathbb{F}_{2^n} \times \mathbb{F}_2$. The coloring function $c_f : V \times V \to \mathbb{F}_{2^n}$ is defined by

$$c_f((x,x_1),(y,y_1)) = f(x) + f(y) + f(x+y) + f(x_1y+y_1x).$$

- $ightharpoonup c_f$ is constant and non-zero on lines of PG(n,2).
- ▶ Any two lines given the same color $\mathbb{F}_{2^n}^*$ do not intersect.
- ▶ It follows that each color class of lines is a line-spread, and all together form a line-parallelism.

The equivalence problem

Definition.

Two line parallelisms Π_1 and Π_2 of PG(n,2) are **equivalent** if there exists a collineation of PG(n,2) which maps the line-spreads of Π_1 to the line-spreads of Π_2 .

The equivalence problem

Definition.

Two line parallelisms Π_1 and Π_2 of PG(n, 2) are **equivalent** if there exists a collineation of PG(n, 2) which maps the line-spreads of Π_1 to the line-spreads of Π_2 .

Theorem (Heering and T. 2025+).

Let f(x) and f'(x) be crooked over \mathbb{F}_{2^n} with n > 1 odd and let Π_f and $\Pi_{f'}$ be the parallelisms induced by c_f and $c_{f'}$.

- 1. If f(x) and f'(x) are linearly equivalent, then Π_f and $\Pi_{f'}$ are equivalent.
- 2. Suppose further that f(x) and f'(x) are quadratic and that n > 3. It holds that Π_f and Π_f' are equivalent if and only f(x) and f'(x) are affine equivalent.

The following list describes all known line-parallelisms of PG(n, 2) (which also includes our contribution).

 Crooked line-parallelisms arising from the partition of the linear Hamming code into additive translates of any crooked Preparata-like code.

- Crooked line-parallelisms arising from the partition of the linear Hamming code into additive translates of any crooked Preparata-like code.
- Line-parallelisms arising from the partitioning of the linear Hamming code into cosets of the generalized Preparata codes via a group theoretical approach.

- Crooked line-parallelisms arising from the partition of the linear Hamming code into additive translates of any crooked Preparata-like code.
- Line-parallelisms arising from the partitioning of the linear Hamming code into cosets of the generalized Preparata codes via a group theoretical approach.
- 3. A construction of line-parallelisms of PG(n, 2) by Wettl in 1994, inequivalent to those coming from the generalized Preparata codes.

- Crooked line-parallelisms arising from the partition of the linear Hamming code into additive translates of any crooked Preparata-like code.
- Line-parallelisms arising from the partitioning of the linear Hamming code into cosets of the generalized Preparata codes via a group theoretical approach.
- 3. A construction of line-parallelisms of PG(n, 2) by Wettl in 1994, inequivalent to those coming from the generalized Preparata codes.
- 4. Specific examples in PG(3,2), PG(5,2), PG(7,2), PG(9,2) mostly obtained by computer.

Conclusion

Can the coloring function method be used to resolve more cases for the existence of parallelisms when q>2?

Conclusion

Can the coloring function method be used to resolve more cases for the existence of parallelisms when q>2?

We have some ideas, come talk to us if you're interested! Thank you!

