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» On the other hand, when n is odd, many line-spreads are
known to exist in PG(n, q) for any prime power q.
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Definition.
A line-parallelism (or line-packing) of PG(n, q) is a partition
of the lines of PG(n, q) into line-spreads.

>

Equivalently, this is a partition of all 2-dimensional
subspaces of F7*! into line-spreads.

Line-parallelisms of PG(n, q) consist of % line-spreads.
Again, we have a necessary condition that n is odd. But is
it sufficient?

Sufficient for g = 2 (Zaitsev, Zinoviev, and Semakov 1973
and Baker 1976)

Sufficient for any g > 2 when n =2k — 1 (Beutelspacher
1974)

Sufficient for g = 3,4,8,16 (Xu and Feng 2023)
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2 Notions in Coding Theory

Definition.

A linear code with parameters [n, k, d]q is a k-dimensional
subspace C of g such that the Hamming distance between any
two vectors in C is at least d.

Example: Let H be the t x (2" — 1) matrix over F; whose
columns are formed precisely by all non-zero vectors of F5.

The null space of H is called the binary linear Hamming code
Ham(t,2) which has parameters

» Length n =2t — 1.
» Dimension k =2t —t — 1.

» Minimum distance d = 3.
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More on the Hamming code

The minimum weight codewords of Ham(t,2) correspond to
lines in PG(t —1,2).

» Minimum weight codewords have three non-zero entries,
say in positions i, j, k.

» Therefore, the columns H;, H;, H, of H must sum to zero,
thus {0, H;, H;, Hx} is a 2-dimensional subspace of F5.

> It follows that the codeword associated with any
2-dimensional subspace in this way belongs to Ham(t, 2).
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2 Partitioning the linear Hamming code

Let P; is a binary code with length n =2t — 1, minimum
distance d = 5, and size such that |Ham(t,2)|/|P;| = 2t~1.
If Ham(t,2) can be partitioned into 2'~! copies of P;,
then:

» The copy of P; containing the zero codeword does not
contain any weight three codewords of Ham(t, 2).

» Thus the minimum weight codewords of Ham(t,2) are split
amongst the remaining 2! — 1 copies of P;.

> Any two codewords of weight 3 in the same copy of P; must
have disjoint supports since P; has minimum distance 5.

» Consequently, each copy of P; contains codewords
corresponding to a line-spread of PG(t — 1,2) and all the
line-spreads together yield a parallelism.
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Preparata-like codes

Definition.
We call a binary code P; Preparata-like if it has length 2t — 1,
contains 222t codewords and has minimum distance 5.

The following is a list of all known Preparata-like codes of
length 2 — 1 which are known to be contained in Ham(t, 2).

> 1968: Preparata constructs the first class of such codes.

> 1983: Baker, van Lint, and Wilson simplify and generalize
Preparata’s construction. This leads to the class of
generalized Preparata codes.

» 2000: van Dam and Fon-Der-Flaass construct crooked
Preparata-like codes from crooked functions.
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2 Partitioning the Hamming code

It is known that any generalized Preparata code gives rise to a
partition of the linear Hamming code of the same length.

> 1973: Zaitsev, Zinoviev, and Semakov prove this fact for
the classical Preparata code. Also independently noted by
Baker in 1976.

» 1983: Baker, van Lint, and Wilson prove this fact for the
generalized Preparata codes.

> 2016: V. A. Zinoviev and D. V. Zinoviev gave a new and
inequivalent partitioning using generalized Preparata codes
via a group theoretic approach.

Theorem (Heering and T. 2025+).

Let P; be any Preparata-like code contained inside the
Hamming code Ham(t,2) of the same length. Then Ham(t,2)
can be partitioned into additive translates of P;.
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Definition (Bending and Fon-Der-Flaass (1998)).
A function f(x) over Fan is called crooked if £(0) = 0 and for
a # 0, the sets

H,={f(x+a)+ f(x):x €Fon}

are all distinct and are the complement of a hyperplane.

Definition.
Let £ and f’ be two crooked functions over Fon. We say
1. " is linearly equivalent to f if there exists linear
permutations Ly, Ly of Fon such that f' = L{fl,.

2. f'is affine equivalent to f if there exists affine
permutations Aq, A> of Fon such that £/ = AjfA,.
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3 Parallelisms from crooked functions

Definition.
Let f be a crooked function over Fon and V = Fon x Fy. The
coloring function ¢f : V x V — Fan is defined by

cr((x,x1), (v 1)) = FO) + £(y) + F(x +y) + Flay + yix).

> ¢ is constant and non-zero on lines of PG(n, 2).
> Any two lines given the same color 5, do not intersect.

> |t follows that each color class of lines is a line-spread, and
all together form a line-parallelism.



3

The equivalence problem

Definition.
Two line parallelisms Iy and Ty of PG(n, 2) are equivalent if

there exists a collineation of PG(n,2) which maps the
line-spreads of [y to the line-spreads of [5.



3 The equivalence problem

Definition.

Two line parallelisms My and My of PG(n,2) are equivalent if
there exists a collineation of PG(n,2) which maps the
line-spreads of [y to the line-spreads of [5.

Theorem (Heering and T. 2025+).
Let f(x) and f’(x) be crooked over Fon with n > 1 odd and let
¢ and [ be the parallelisms induced by ¢f and cf.
1. If f(x) and f’(x) are linearly equivalent, then ¢ and Mg
are equivalent.
2. Suppose further that f(x) and f’(x) are quadratic and that
n > 3. It holds that ¢ and I} are equivalent if and only
f(x) and f’(x) are affine equivalent.



3

Survey of known line-parallelisms of PG(n,2)

The following list describes all known line-parallelisms of
PG(n,2) (which also includes our contribution).



3

Survey of known line-parallelisms of PG(n,2)

The following list describes all known line-parallelisms of
PG(n,2) (which also includes our contribution).

1. Crooked line-parallelisms arising from the partition of the
linear Hamming code into additive translates of any
crooked Preparata-like code.



3

Survey of known line-parallelisms of PG(n,2)

The following list describes all known line-parallelisms of
PG(n,2) (which also includes our contribution).

1. Crooked line-parallelisms arising from the partition of the
linear Hamming code into additive translates of any
crooked Preparata-like code.

2. Line-parallelisms arising from the partitioning of the linear
Hamming code into cosets of the generalized Preparata
codes via a group theoretical approach.



Survey of known line-parallelisms of PG(n,2)

The following list describes all known line-parallelisms of
PG(n,2) (which also includes our contribution).

1. Crooked line-parallelisms arising from the partition of the
linear Hamming code into additive translates of any
crooked Preparata-like code.

2. Line-parallelisms arising from the partitioning of the linear
Hamming code into cosets of the generalized Preparata
codes via a group theoretical approach.

3. A construction of line-parallelisms of PG(n,2) by Wettl in
1994, inequivalent to those coming from the generalized
Preparata codes.



Survey of known line-parallelisms of PG(n,2)

The following list describes all known line-parallelisms of
PG(n,2) (which also includes our contribution).

1. Crooked line-parallelisms arising from the partition of the
linear Hamming code into additive translates of any
crooked Preparata-like code.

2. Line-parallelisms arising from the partitioning of the linear
Hamming code into cosets of the generalized Preparata
codes via a group theoretical approach.

3. A construction of line-parallelisms of PG(n,2) by Wettl in
1994, inequivalent to those coming from the generalized
Preparata codes.

4. Specific examples in PG(3,2), PG(5,2), PG(7,2), PG(9,2)
mostly obtained by computer.
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We have some ideas, come talk to us if you're interested!
Thank you!



	Introduction
	Connections to Coding Theory
	New and old line-parallelisms of PG(n, 2)

