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Overview

@ Geometric codes

© Muiltisets in affine and projective spaces and geometric codes

© An upper bound on the size of some linear sets

@ A new lower bound on the minimum weight of some geometric codes
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A
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Let
- g = p" where pis a prime and h € Z*
-mkeZ": 0<k<m-1

Also denote
- by X either PG(m, q) or AG(m, q)

- by A the incidence matrix of points and k-spaces of ¥

1  if point j belongs to k-space i

A= (aij) where a;; = {O otherwise

The code Cs(m, k, q) of points and k-spaces of ¥ is the F,-span of the rows of A
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Codes arising from affine and projective spaces

Let
=g
- c=(c,.,0) €C=Cx(m k,q) <F}

supp(c) ={ie{l,...,v}: ¢ #0} — support of c

w(c) = |supp(c)] — weight of ¢

de = min{w(c): c € Cs(m, k,q)\ {0}} — minimum weight of C
dimp(C) — p-rank of C

Minimum weight, minimum-weight codewords and p-rank of C are known
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Geometric codes

V c1, ¢ € Fy denote by (a,e) = Z}’Il c1jczj (the standard inner product)

The dual code of C = Cs(m, k,q) is

ct= {VEFZ : (v,c)=0VceC} Geometric code

velt & Avt=0
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On the minimum weight of geometric codes

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

L dey(muq)t = (q+P)g"
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J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

1. dCz(m,k,q)J- > (q+ p)qm—k—l

2. When q is even and k = 1, the bound is sharp

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

dCPG(makvq)J_ Z 2(

q7-1 (]_ _ l) + l)
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On the minimum weight of geometric codes

J. Calkin, D. Key, M.J. De Resmini B. Bagchi, S. Inamdar

Des., Codes and Cryptogr. (1999) J. Combin. Theory Ser. A (2002)
L dey(muq)t = (q+P)g" depa(mpayt = 2(%= (1 2) +3)
2. When q is even and k = 1, the bound is sharp

M. Lavrauw, L. Storme, G. Van de Voorde |
Al L ) notation:
L dep(mk,q)t = G’cpc(m—kﬂlq)l — Cra(m,1,9)* = Cpa(m,q)* J
2. p#2 dop(mayt > 357
3.1 p=T7 dopy(mayt = L5 +3
4.1 p>T7 depgmayt = 2L+ 8
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- On the proof of point 1.

- If c€Cpa(2,9)t withonly0and1 = 0#SCPG(2,q): VLCPG(2,q)
coordinates [SN/4 =0 mod p

- |S| = W(C) /

If g > p, then |S| > (p—1)(q +p) |
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P —

A multiset M of X is a pair (S, 1) where

- S is a non empty set of points of &
PG(m, q)

o & = E DAl
R. Trombetti (UNINA) On the minimum weight of some geometric codes




Multisets of X

AG(m,q)

PG(m, q)

R. Trombetti (UNINA)

A multiset M of X is a pair (S, 1) where
- S is a non empty set of points of X

- pu: 8 — ZT is a map that assigns a positive
integer to any element of S (multiplicity)
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Multisets of X

y AG(m, q) A multiset M of X is a pair (S, 1) where
Y — - S is a non empty set of points of X
N\ - pu: S — ZT is a map that assigns a positive
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Multisets of ¥

Let P = {X1,X27

., X, } be the point set of ©
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Multisets of ¥

Let P = {X1,X27

., X, } be the point set of ©

s = (s1, ..,s,,)E]FZ: s,-:{u(xi)

ifx;e8
0 otherwise

1,2,.

o & = E DAl
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Multisets of X

Let P = {x1,x2,..., X, } be the point set of ©

x;) ifx; eS8
s=(s1,...,s) €F, : 5= H(xi) ' i=1,2,...,v characteristic vector of M
P 0 otherwise

R. Trombetti (UNINA) On the minimum weight of some geometric codes 10/21



Multisets of X

Let P = {x1,x2,..., X, } be the point set of ©

x;) ifx; eS8
s=(s1,...,s) €F, : 5= H(xi) ' i=1,2,...,v characteristic vector of M
P 0 otherwise

- o(s) =2 s = (M|

R. Trombetti (UNINA) On the minimum weight of some geometric codes 10/21



Multisets of X

Let P = {x1,x2,..., X, } be the point set of ©

x;) ifx; eS8
s=(s1,...,s) €F, : 5= H(xi) ' i=1,2,...,v characteristic vector of M
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Multisets of X

Let P = {x1,x2,..., X, } be the point set of ©

x;) ifx; eS8
s=(s1,...,s) €F, : 5= H(xi) ' i=1,2,...,v characteristic vector of M
P 0 otherwise

- o(s) =2 s = (M|

- if p(x) =1 Vx €S then M is an ordinary set and in such case o(s) = w(s)

A 0 mod p type multiset M C X is one such that for any line £ C ¥ we have |IM N ¢ =0 J
mod p
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Assume M is a 0 mod p type multiset

If M has at least one point x such that u(x) =1 = |M|>1+(p— 1)%
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Multisets of X
Assume M is a 0 mod p type multiset

If M has at least one point x such that u(x) =1 = |M|>1+(p—1)L=L

q—1
Theorem (B. Csajbdk, G. Longobardi, G. Marino, R.T.)

Let M = (S, i) be a 0 mod p type multiset of AG(m, q), m > 2, g = p" with p > 2 and
h> 1.
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h> 1. If M has at least one point x with u(x) =1, then

L M| > (p—1)(g" " +q"2) +q" 2
2. The bound is sharp

- We may assume here multiplicities of the points of S are between 0 and p — 1

- If denote by (p — 1)M the multiset of ¥ with characteristic vector (p — 1)s then
M|+ |(p — YM]| = p|S]
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Let M = (S, i) be a 0 mod p type multiset of AG(m, q), m > 2, g = p" with p > 2 and
h> 1. If M has at least one point x with u(x) =1, then

L M| > (p—1)(g" " +q"2) +q" 2
2. The bound is sharp

- We may assume here multiplicities of the points of S are between 0 and p — 1
- If denote by (p — 1)M the multiset of ¥ with characteristic vector (p — 1)s then

M|+ 1(p—1)M]| = p|S|
- Since M C X is a 0 mod p type multiset = s = (s1,%,...,5,) € C)%(m, q)
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V =FI! the vector space underlying

—
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[F,-linear set of PG(m, q) with underlying vector space U
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[F,-linear set of PG(m, q) with underlying vector space U

Ly = {(v)r, : ve U\{0}} C PG(m,q)

r = dimg,(U) — rank

Lyl < B
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Tightness of the bound

Let f: Fg"_l — [Py be an Fp-multilinear map
U= {(XO’XL <oy Xm—2, f(X07X17 cee 7Xm—2)7y): X05 X1+ -+, Xm—2 € ]Fq’ S ]Fp} - FgH_l

W ={(x0,x1,-- -, Xm—-2,Y,0): x0,x1,...,Xm02 € Fg, y € Fp} C IFZ’+1

Define S = Ly ALy C PG(m, q) and consider it as a multiset M = (S, p), by taking

1 ifXELu\LW
p(x) = )
p—1 IfXGLw\Lu
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Tightness of the bound
For M = (Lyy ALy, 1) we get the following

Theorem (B. Csajbdk, G. Longobardi, G. Marino, R.T.)
1. M is a 0 mod p type multiset of AG(m, q)
2. There is a hyperplane of PG(m, q) disjoint from LyyALyy

3. M| =(p—1)(@™ 7 + ™)+ q" 2 & |Lynly| = qm 27 + T

m21

l

Theorem (B. Csajbdk, G. Longobardi, G. Marino, R.T.)
Let L be a Fp-linear set of rank hm in PG(m, q), g = p". Then,

B -1 qm—l_l
IL|<gq P T
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A class of 0 mod p type multisets of AG(m, q) attaining the bound

e Scattered polynomial

Let f =377, Laixr e Fq4[X] be an Fp-linearized polynomial

The polynomial f is said to be scattered if the following holds

12-er- 5
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Let Lyy C PG(m, q) such that

U = {(x0,x1,
where f(X) is any scattered polynomial.

-y Xm—2, f(x0),¥): X0, x1,

<y Xm—2 € Fq, y € Fp},
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where f(X) is any scattered polynomial. Consider

-y Xm—2, f(x0),¥): X0, x1,

W = {(x0, x1,
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<y Xm—2 € ]FQ7 y € ]FP}
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Let Lyy C PG(m, q) such that

U = {(xo, x1, -
where f(X) is any scattered polynomial. Consider

-y Xm—2, f(x0),¥): X0, x1,
W = {(x0, x1,

<y Xm—2 € Fq, y € Fp},
- Ly N Ly is an Fp-linear set

-y Xm—2,¥,0): X0, X1,

<y Xm—2 € ]FQ7 y € ]FP}

o [ - = ) A(
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Let Lyy C PG(m, q) such that
U= {(x0;x1, -, xm—2,f(x0),¥): X0, X1, ..., Xm—2 € Fq, y € Fp},
where f(X) is any scattered polynomial. Consider

W = {(x0 X1, - -+, Xm—2,¥,0): X0, X1, -+, Xm—2 € Fg, y € Fp}

- Ly N Ly is an Fp-linear set
- Moreover
m2d—1 gm2-1

LyyNL =
Ly N Lw|=q b1 T 1
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where f(X) is any scattered polynomial. Consider

W = {(x0 X1, - -+, Xm—2,¥,0): X0, X1, -+, Xm—2 € Fg, y € Fp}

- Ly N Ly is an Fp-linear set
- Moreover )
-1 m—s_1
Ny =qr2i—2 4 & =
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1 ifx € Ly \ Lyy

) is a multiset of AG(m, q) whose size attains the bound
p—1 ifxe L\ Ly

Hence M = (Lyy ALy, ) with pu(x) = {

4

- If p=2 M falls into a wider class exhibited by Calkin, Key and De Resmini [Minimum weight and dimension formulas for some
geometric codes. Des., Codes and Cryptogr. (1999)]
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Let Ly C PG(m, q) such that
U= {(x0,X1, -+, Xm—2,(x0),¥): X0, X1, -, Xm—2 € Fq, y € Fp},
where f(X) is any scattered polynomial. Consider

W = {(x0 X1, - -+, Xm—2,¥,0): X0, X1, -+, Xm—2 € Fg, y € Fp}

- Ly N Ly is an Fp-linear set
- Moreover )
-1 m—s_1
\LuﬂLw|=qm_2L e
p—1 qg—1
1 ifx € Ly \ Lyy

) is a multiset of AG(m, q) whose size attains the bound
p—1 ifxe L\ Ly

Hence M = (Lyy ALy, p) with p(x) = {

- If p=2 M falls into a wider class exhibited by Calkin, Key and De Resmini [Minimum weight and dimension formulas for some
geometric codes. Des., Codes and Cryptogr. (1999)]

- The characteristic vector of Ly;ALyy has the same weight as the one associated with a point set constructed by
Lavrauw, Storme and Van de Voorde [Linear codes from projective spaces. Error-correcting codes, finite geometries and cryptography,
Contemp. Math., 523 American Mathematical Society, Providence, Rl (2010)]
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A lower bound on the minimum weight of Cpg(m, q)*

Proposition (B. Csajbdk, G. Longobardi, G. Marino, R.T.)
If M = (S, p) is a 0mod p type multiset of PG(m, q) meeting every hyperplane
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A lower bound on the minimum weight of Cpg(m, q)*

Proposition (B. Csajbdk, G. Longobardi, G. Marino, R.T.)
If M = (S, ) is a0mod p type multiset of PG(m, g) meeting every hyperplane, then

S| > adepe(m-1,q+  and M| = qgom_1,

where 0,1 denote the minimum size of a 0 mod p type multiset in PG(m — 1, q)

I

Theorem (B. Csajbdk, G. Longobardi, G. Marino, R.T.)

Assume q > p, then
de(;(m,q)l > 2(qm—1(p - 1)/P =+ qm—2)

R. Trombetti (UNINA) On the minimum weight of some geometric codes 17/21



A lower bound on the minimum weight of Cpg(m, q)*
Sketch of the proof

o & = E A
R. Trombetti (UNINA) On the minimum weight of some geometric codes



Sketch of the proof

A lower bound on the minimum weight of Cpg(m, q)*

o If p=2 —— Calkin, Key, De Resmini's bound

o & = E DAl
R. Trombetti (UNINA) On the minimum weight of some geometric codes



Sketch of the proof
o lfp>2

A lower bound on the minimum weight of Cpg(m, q)*

o If p=2 —— Calkin, Key, De Resmini's bound

o & = E DAl
R. Trombetti (UNINA) On the minimum weight of some geometric codes



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

sc CPG(m7 q)J_

o & = E DAl
R. Trombetti (UNINA) On the minimum weight of some geometric codes




A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cag(m, q)*

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight = we may assume a component of s equals 1

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight = we may assume a component of s equals 1

o If no component of s equals p — 1

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight = we may assume a component of s equals 1

o If no component of sequals p—1 = w(s)>1+2(¢" 1 +q™2+...+q+1)

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight = we may assume a component of s equals 1
o If no component of sequals p—1 = w(s)>1+2(¢" 1 +q™2+...+q+1)

o If otherwise a component equals p — 1

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight = we may assume a component of s equals 1
o If no component of sequals p—1 = w(s)>1+2(¢" 1 +q™2+...+q+1)

o If otherwise a component equals p—1 = (p —1)s has a component equal to 1

R. Trombetti (UNINA) On the minimum weight of some geometric codes 18/21



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset

If s in Cac(m, q)*t

o scaling s does not change its weight = we may assume a component of s equals 1
o If no component of sequals p—1 = w(s)>1+2(¢" 1 +q™2+...+q+1)
o If otherwise a component equals p—1 = (p —1)s has a component equal to 1

o Since [Ms| + [(p — 1)Ms)| = p|Ss|
et



A lower bound on the minimum weight of Cpg(m, q)*
e Sketch of the proof

o If p=2 —— Calkin, Key, De Resmini's bound
o lfp>2

s € Cpa(m, @)t — Ms CPG(m,q) 0 modp type multiset
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o scaling s does not change its weight = we may assume a component of s equals 1
o If no component of sequals p—1 = w(s)>1+2(¢" 1 +q™2+...+q+1)
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A lower bound on the minimum weight of Cpg(m, q)*
Assume s € Cpg(m, q
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A lower bound on the minimum weight of Cpg(m, q)*

Assume s € Cpg(m, C:’)L

o If there is a hyperplane of PG(m, q) disjoint from Ms — apply previous arguments

o If otherwise all hyperplanes of PG(m, g) meet Ss — an induction argument based on
previous proposition leads to the goal

e Concluding remarks

- For m = 2 we get Bagchi and Inamdar’s bound

- For ¢ > p and p, m > 2 we improve on both Bagchi and Inamdar’s and Lavrauw, Storme
and Van de Voorde's bounds
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