A lower bound on the minimum weight of some geometric codes

Rocco Trombetti

Department of Mathematics and Applications University of Naples Federico II

joint work with: Bence Csajbók, Giovanni Longobardi and Giuseppe Marino

Finite Geometries 2025 Seventh Irsee Conference 31 August - 6 September 2025, Irsee, Germany

Overview

- Geometric codes
- 2 Multisets in affine and projective spaces and geometric codes
- 3 An upper bound on the size of some linear sets
- 4 A new lower bound on the minimum weight of some geometric codes

- $q = p^h$ where p is a prime and $h \in \mathbb{Z}^+$
- $m, k \in \mathbb{Z}^+ : 0 < k \le m-1$

Let

- $q = p^h$ where p is a prime and $h \in \mathbb{Z}^+$
- $m, k \in \mathbb{Z}^+ : 0 < k \le m-1$

Also denote

- by Σ either $\mathrm{PG}(m,q)$ or $\mathrm{AG}(m,q)$

Let

- $q = p^h$ where p is a prime and $h \in \mathbb{Z}^+$
- $m, k \in \mathbb{Z}^+ : 0 < k \le m-1$

Also denote

- by Σ either $\mathrm{PG}(m,q)$ or $\mathrm{AG}(m,q)$
- by A the incidence matrix of points and k-spaces of Σ

$$A = (a_{ij})$$
 where $a_{ij} = \begin{cases} 1 & \text{if point } j \text{ belongs to } k\text{-space } i \\ 0 & \text{otherwise} \end{cases}$

Let

- $q = p^h$ where p is a prime and $h \in \mathbb{Z}^+$
- $m, k \in \mathbb{Z}^+ : 0 < k \le m-1$

Also denote

- by Σ either $\mathrm{PG}(m,q)$ or $\mathrm{AG}(m,q)$
- by A the incidence matrix of points and k-spaces of Σ

$$A = (a_{ij})$$
 where $a_{ij} = \begin{cases} 1 & \text{if point } j \text{ belongs to } k\text{-space } i \\ 0 & \text{otherwise} \end{cases}$

The code $\mathcal{C}_{\Sigma}(m,k,q)$ of points and k-spaces of Σ is the \mathbb{F}_p -span of the rows of A

-
$$\nu = |\Sigma|$$

-
$$\nu = |\Sigma|$$

-
$$c=(c_1,...,c_
u)\in\mathcal{C}=\mathcal{C}_\Sigma(m,k,q)\leq\mathbb{F}_p^
u$$

$$- \nu = |\Sigma|$$

-
$$c=(c_1,...,c_
u)\in\mathcal{C}=\mathcal{C}_\Sigma(m,k,q)\leq\mathbb{F}_p^
u$$

$$supp(c) = \{i \in \{1, ..., \nu\} : c_i \neq 0\} \longrightarrow support of c$$

- $\nu = |\Sigma|$
- $c=(c_1,...,c_
 u)\in\mathcal{C}=\mathcal{C}_\Sigma(m,k,q)\leq\mathbb{F}_p^
 u$

$$supp(c) = \{i \in \{1, ..., \nu\} : c_i \neq 0\} \longrightarrow \text{ support of } c$$

 $w(c) = |supp(c)| \longrightarrow \text{ weight of } c$

- $\nu = |\Sigma|$
- $c=(c_1,...,c_
 u)\in\mathcal{C}=\mathcal{C}_\Sigma(m,k,q)\leq\mathbb{F}_p^
 u$

$$supp(c) = \{i \in \{1, ..., \nu\} : c_i \neq 0\} \longrightarrow \text{ support of } c$$
 $w(c) = |supp(c)| \longrightarrow \text{ weight of } c$
 $d_{\mathcal{C}} = \min\{w(c) : c \in \mathcal{C}_{\Sigma}(m, k, q) \setminus \{0\}\} \longrightarrow \text{ minimum weight of } \mathcal{C}$

Let

 $egin{aligned} - &
u = |\Sigma| \ - & c = (c_1,...,c_
u) \in \mathcal{C} = \mathcal{C}_{\Sigma}(m,k,q) \leq \mathbb{F}_n^
u \end{aligned}$

$$supp(c) = \{i \in \{1, ..., \nu\} : c_i \neq 0\} \longrightarrow \text{ support of } c$$
 $w(c) = |supp(c)| \longrightarrow \text{ weight of } c$
 $d_{\mathcal{C}} = \min \{w(c) : c \in \mathcal{C}_{\Sigma}(m, k, q) \setminus \{0\}\} \longrightarrow \text{ minimum weight of } \mathcal{C}$
 $\dim_{\mathcal{D}}(\mathcal{C}) \longrightarrow \text{ p-rank of } \mathcal{C}$

Let

- $egin{aligned} &
 u = |\Sigma| \ & c = (c_1,...,c_
 u) \in \mathcal{C} = \mathcal{C}_{\Sigma}(m,k,q) \leq \mathbb{F}_p^
 u \end{aligned}$
 - $supp(c) = \{i \in \{1, ..., \nu\} : c_i \neq 0\} \longrightarrow \text{ support of } c$ $w(c) = |supp(c)| \longrightarrow \text{ weight of } c$ $d_{\mathcal{C}} = \min \{w(c) : c \in \mathcal{C}_{\Sigma}(m, k, q) \setminus \{0\}\} \longrightarrow \text{ minimum weight of } \mathcal{C}$ $\dim_{\mathcal{D}}(\mathcal{C}) \longrightarrow \text{ p-rank of } \mathcal{C}$

Minimum weight, minimum-weight codewords and p-rank of C are known

 $orall \ c_1,c_2\in \mathbb{F}_p^
u$ denote by $(c_1,c_2)=\sum_{j=1}^{
u}c_{1j}c_{2j}$ (the standard inner product)

$$orall \ c_1,c_2\in \mathbb{F}_p^
u$$
 denote by $(c_1,c_2)=\sum_{j=1}^{
u}c_{1j}c_{2j}$ (the standard inner product)

The dual code of $C = C_{\Sigma}(m, k, q)$ is

$$\mathcal{C}^{\perp} = \left\{ v \in \mathbb{F}_p^{\nu} : (v, c) = 0 \ \forall c \in \mathcal{C} \right\}$$

$$orall \ c_1,c_2\in \mathbb{F}_p^
u$$
 denote by $(c_1,c_2)=\sum_{j=1}^{
u}c_{1j}c_{2j}$ (the standard inner product)

The dual code of $C = C_{\Sigma}(m, k, q)$ is

$$\mathcal{C}^{\perp} = \left\{ v \in \mathbb{F}_p^{\nu} : (v, c) = 0 \ \forall \ c \in \mathcal{C} \right\}$$
 Geometric code

 $orall \ c_1,c_2\in \mathbb{F}_p^
u$ denote by $(c_1,c_2)=\sum_{j=1}^{
u}c_{1j}c_{2j}$ (the standard inner product)

The dual code of $C = C_{\Sigma}(m, k, q)$ is

$$\mathcal{C}^{\perp} = \left\{ v \in \mathbb{F}_p^{\nu} : (v, c) = 0 \ \forall \, c \in \mathcal{C} \right\}$$
 Geometric code

$$v \in \mathcal{C}^{\perp} \Leftrightarrow Av^t = 0$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

$$1. \ \ d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- $1. \ \ d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- 1. $d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} \geq 2\left(\frac{q^m-1}{q^k-1}\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- 1. $d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

M. Lavrauw, L. Storme, G. Van de Voorde

Finite Fields Appl. (2008)

1.
$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} = d_{\mathcal{C}_{\mathrm{PG}}(m-k+1,1,q)^{\perp}}$$

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} \geq 2\left(\frac{q^m-1}{q^k-1}\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- 1. $d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} \geq 2\left(\frac{q^m-1}{q^k-1}\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$$

M. Lavrauw, L. Storme, G. Van de Voorde

Finite Fields Appl. (2008)

1.
$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} = d_{\mathcal{C}_{\mathrm{PG}}(m-k+1,1,q)^{\perp}}$$

$$\mathcal{C}_{\mathrm{PG}}(m,1,q)^{\perp} = \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- 1. $d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} \geq 2\left(\frac{q^m-1}{q^k-1}\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$$

M. Lavrauw, L. Storme, G. Van de Voorde

Finite Fields Appl. (2008)

- 1. $d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} = d_{\mathcal{C}_{\mathrm{PG}}(m-k+1,1,q)^{\perp}}$
- 2. If $p \neq 2$ $d_{C_{PG}(m,q)^{\perp}} \geq \frac{4}{3} \frac{q^m 1}{q 1} + \frac{2}{3}$

$$C_{\mathrm{PG}}(m,1,q)^{\perp} = C_{\mathrm{PG}}(m,q)^{\perp}$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- 1. $d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} \geq 2\left(\frac{q^m-1}{q^k-1}\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$$

M. Lavrauw, L. Storme, G. Van de Voorde

Finite Fields Appl. (2008)

1.
$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} = d_{\mathcal{C}_{\mathrm{PG}}(m-k+1,1,q)^{\perp}}$$

2. If
$$p \neq 2$$
 $d_{C_{PG}(m,q)^{\perp}} \geq \frac{4}{3} \frac{q^m - 1}{q - 1} + \frac{2}{3}$

3. If
$$p = 7$$
 $d_{C_{PG}(m,q)^{\perp}} \ge \frac{12}{7} \frac{q^m - 1}{q - 1} + \frac{2}{7}$

$$\mathcal{C}_{\mathrm{PG}}(m,1,q)^{\perp} = \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$$

J. Calkin, D. Key, M.J. De Resmini

Des., Codes and Cryptogr. (1999)

- 1. $d_{\mathcal{C}_{\Sigma}(m,k,q)^{\perp}} \geq (q+p)q^{m-k-1}$
- 2. When q is even and k = 1, the bound is sharp

B. Bagchi, S. Inamdar

J. Combin. Theory Ser. A (2002)

$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} \geq 2\left(\frac{q^m-1}{q^k-1}\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$$

M. Lavrauw, L. Storme, G. Van de Voorde

Finite Fields Appl. (2008)

1.
$$d_{\mathcal{C}_{\mathrm{PG}}(m,k,q)^{\perp}} = d_{\mathcal{C}_{\mathrm{PG}}(m-k+1,1,q)^{\perp}}$$

2. If
$$p \neq 2$$
 $d_{\mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}} \geq \frac{4}{3} \frac{q^{m}-1}{q-1} + \frac{2}{3}$

3. If
$$p = 7$$
 $d_{\mathcal{C}_{PG}(m,q)^{\perp}} \ge \frac{12}{7} \frac{q^m - 1}{q - 1} + \frac{2}{7}$

4. If
$$p > 7$$
 $d_{\mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}} \geq \frac{12}{7} \frac{q^m - 1}{q - 1} + \frac{6}{7}$

$$\mathcal{C}_{\mathrm{PG}}(m,1,q)^{\perp} = \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$$

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

1.
$$w(c) \geq (p-1)(q+p)$$

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \geq (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \geq (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \ge (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
 - If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 coordinates

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \ge (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
 - If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 \Rightarrow coordinates

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \geq (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
- If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 \Rightarrow $\emptyset \neq \mathcal{S} \subset \mathrm{PG}(2,q)$ coordinates

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \ge (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
- If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 $\Rightarrow \emptyset \neq \mathcal{S} \subset \mathrm{PG}(2,q) : \forall \ell \subset \mathrm{PG}(2,q)$ coordinates $|\mathcal{S} \cap \ell| \equiv 0 \mod p$

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

- 1. $w(c) \geq (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
- If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 $\Rightarrow \emptyset \neq \mathcal{S} \subset \mathrm{PG}(2,q) : \forall \ell \subset \mathrm{PG}(2,q)$ coordinates $|\mathcal{S} \cap \ell| \equiv 0 \mod p$

If
$$q>p,$$
 then $|\mathcal{S}|\geq (p-1)(q+p)$

On the minimum weight of geometric codes

S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

Adv. Math. 211 (2007)

Assume q>p, and $c\in\mathcal{C}_{\operatorname{PG}}(2,q)^{\perp}$ has only coordinates 0 and 1; then

- 1. $w(c) \geq (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
 - If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 $\Rightarrow \emptyset \neq \mathcal{S} \subset \mathrm{PG}(2,q) : \forall \ell \subset \mathrm{PG}(2,q)$ coordinates $|\mathcal{S} \cap \ell| \equiv 0 \mod p$
 - $|\mathcal{S}| = w(c)$

If q > p, then $|\mathcal{S}| \geq (p-1)(q+p)$

On the minimum weight of geometric codes

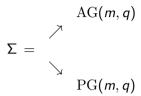
S. Ball, A. Blokhuis, A. Gács, P. Sziklai, Z. Weiner

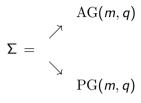
Adv. Math. 211 (2007)

Assume q>p, and $c\in\mathcal{C}_{\operatorname{PG}}(2,q)^{\perp}$ has only coordinates 0 and 1; then

- 1. $w(c) \geq (p-1)(q+p)$
- 2. When $q = p^2$ or when p = 2, the bound is sharp
 - On the proof of point 1.
 - If $c \in \mathcal{C}_{\mathrm{PG}}(2,q)^{\perp}$ with only 0 and 1 $\Leftrightarrow \emptyset \neq \mathcal{S} \subset \mathrm{PG}(2,q) : \forall \ell \subset \mathrm{PG}(2,q)$ coordinates $|\mathcal{S} \cap \ell| \equiv 0 \mod p$
 - $|\mathcal{S}| = w(c)$

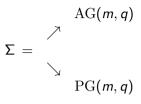
If
$$q > p$$
, then $|\mathcal{S}| \geq (p-1)(q+p)$





A multiset \mathcal{M} of Σ is a pair (\mathcal{S}, μ) where

- ${\mathcal S}$ is a non empty set of points of Σ



A multiset \mathcal{M} of Σ is a pair (\mathcal{S}, μ) where

- ${\mathcal S}$ is a non empty set of points of Σ
- $\mu \colon \mathcal{S} \to \mathbb{Z}^+$ is a map that assigns a positive integer to any element of \mathcal{S} (multiplicity)

$$\Sigma = egin{pmatrix} \operatorname{AG}(m,q) \\ \nearrow \\ & & \\ & & \\ \operatorname{PG}(m,q) \end{pmatrix}$$

Let $T \subseteq \Sigma$ be a subset of Σ

A multiset \mathcal{M} of Σ is a pair (\mathcal{S}, μ) where

- ${\mathcal S}$ is a non empty set of points of Σ
- $\mu \colon \mathcal{S} \to \mathbb{Z}^+$ is a map that assigns a positive integer to any element of \mathcal{S} (multiplicity)

$$\Sigma = egin{pmatrix} \operatorname{AG}(m,q) \\ \nearrow \\ & & \\ & & \\ \operatorname{PG}(m,q) \end{pmatrix}$$

A multiset \mathcal{M} of Σ is a pair (\mathcal{S}, μ) where

- ${\mathcal S}$ is a non empty set of points of Σ
- $\mu \colon \mathcal{S} \to \mathbb{Z}^+$ is a map that assigns a positive integer to any element of \mathcal{S} (multiplicity)

Let $T \subseteq \Sigma$ be a subset of Σ

-
$$|T \cap \mathcal{M}| = \sum_{x \in T \cap \mathcal{S}} \mu(x)$$

$$\Sigma = igwedge_{\mathrm{PG}(m,q)}^{\mathrm{AG}(m,q)}$$

A multiset \mathcal{M} of Σ is a pair (\mathcal{S}, μ) where

- ${\mathcal S}$ is a non empty set of points of Σ
- $\mu \colon \mathcal{S} \to \mathbb{Z}^+$ is a map that assigns a positive integer to any element of \mathcal{S} (multiplicity)

Let $T \subseteq \Sigma$ be a subset of Σ

-
$$|T \cap \mathcal{M}| = \sum_{x \in T \cap \mathcal{S}} \mu(x)$$

-
$$|\mathcal{M}| = \sum_{x \in \mathcal{S}} \mu(x)$$

$$oldsymbol{s} = (s_1, \dots, s_
u) \in \mathbb{F}_p^
u : \ s_i = egin{cases} \mu(x_i) & ext{if } x_i \in \mathcal{S} \ 0 & ext{otherwise} \end{cases} i = 1, 2, \dots,
u$$

$$m{s} = (s_1, \dots, s_
u) \in \mathbb{F}_p^
u : s_i = egin{cases} \mu(x_i) & ext{if } x_i \in \mathcal{S} \\ 0 & ext{otherwise} \end{cases} i = 1, 2, \dots,
u ext{ characteristic vector of } \mathcal{M}$$

$$s = (s_1, \dots, s_{\nu}) \in \mathbb{F}_p^{\nu}$$
: $s_i = \begin{cases} \mu(x_i) & \text{if } x_i \in \mathcal{S} \\ 0 & \text{otherwise} \end{cases}$ $i = 1, 2, \dots, \nu$ characteristic vector of \mathcal{M}

-
$$\sigma(\mathbf{s}) = \sum_{i=1}^{\nu} s_i = |\mathcal{M}|$$

Let $\mathcal{P} = \{x_1, x_2, \dots, x_{\nu}\}$ be the point set of Σ

$$s = (s_1, \dots, s_{\nu}) \in \mathbb{F}_p^{\nu} : s_i = egin{cases} \mu(x_i) & ext{if } x_i \in \mathcal{S} \\ 0 & ext{otherwise} \end{cases} i = 1, 2, \dots,
u ext{ characteristic vector of } \mathcal{M}$$

-
$$\sigma(\mathbf{s}) = \sum_{i=1}^{\nu} s_i = |\mathcal{M}|$$

- if $\mu(x) = 1 \ \forall x \in \mathcal{S}$ then \mathcal{M} is an ordinary set and in such case $\sigma(s) = w(s)$

Let $\mathcal{P} = \{x_1, x_2, \dots, x_{\nu}\}$ be the point set of Σ

$$m{s} = (s_1, \dots, s_
u) \in \mathbb{F}_p^
u : s_i = egin{cases} \mu(x_i) & \text{if } x_i \in \mathcal{S} \\ 0 & \text{otherwise} \end{cases} i = 1, 2, \dots,
u \quad ext{characteristic vector of } \mathcal{M}$$

-
$$\sigma(\mathbf{s}) = \sum_{i=1}^{\nu} s_i = |\mathcal{M}|$$

- if $\mu(x)=1 \ \forall \, x \in \mathcal{S}$ then \mathcal{M} is an ordinary set and in such case $\sigma(\boldsymbol{s})=w(\boldsymbol{s})$

A 0 mod p type multiset $\mathcal{M} \subset \Sigma$ is one such that for any line $\ell \subseteq \Sigma$ we have $|\mathcal{M} \cap \ell| \equiv 0$ mod p

Assume \mathcal{M} is a 0 mod p type multiset

Assume \mathcal{M} is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) \frac{q^m-1}{q-1}$

Assume \mathcal{M} is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

Let $\mathcal{M} = (\mathcal{S}, \mu)$ be a 0 mod p type multiset of $\mathrm{AG}(m,q)$, $m \geq 2$, $q = p^h$ with p > 2 and h > 1.

Assume \mathcal{M} is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

Assume \mathcal{M} is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

1.
$$|\mathcal{M}| \ge (p-1)(q^{m-1}+q^{m-2})+q^{m-2}$$

Assume M is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. $|\mathcal{M}| \ge (p-1)(q^{m-1} + q^{m-2}) + q^{m-2}$
- 2. The bound is sharp

Assume M is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. $|\mathcal{M}| \ge (p-1)(q^{m-1}+q^{m-2})+q^{m-2}$
- 2. The bound is sharp
- We may assume here multiplicities of the points of ${\cal S}$ are between 0 and p-1

Assume M is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. $|\mathcal{M}| \ge (p-1)(q^{m-1}+q^{m-2})+q^{m-2}$
- 2. The bound is sharp
 - We may assume here multiplicities of the points of ${\cal S}$ are between 0 and p-1
 - If denote by $(p-1)\mathcal{M}$ the multiset of Σ with characteristic vector (p-1)s then

$$|\mathcal{M}| + |(p-1)\mathcal{M}| = p|\mathcal{S}|$$

Assume \mathcal{M} is a 0 mod p type multiset

If $\mathcal M$ has at least one point x such that $\mu(x)=1 \ \Rightarrow \ |\mathcal M| \geq 1 + (p-1) rac{q^m-1}{q-1}$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

Let $\mathcal{M}=(\mathcal{S},\mu)$ be a 0 mod p type multiset of $\mathrm{AG}(m,q)$, $m\geq 2$, $q=p^h$ with p>2 and h>1. If \mathcal{M} has at least one point x with $\mu(x)=1$, then

- 1. $|\mathcal{M}| \ge (p-1)(q^{m-1} + q^{m-2}) + q^{m-2}$
- 2. The bound is sharp
 - We may assume here multiplicities of the points of ${\cal S}$ are between 0 and p-1
- If denote by $(p-1)\mathcal{M}$ the multiset of Σ with characteristic vector (p-1)s then

$$|\mathcal{M}| + |(p-1)\mathcal{M}| = p|\mathcal{S}|$$

- Since $\mathcal{M}\subset \Sigma$ is a 0 mod p type multiset $\Rightarrow oldsymbol{s}=(s_1,s_2,\ldots,s_
u)\in\mathcal{C}_\Sigma^\perp(m,q)$

A digression on topic: linear sets

Remind $q = p^h$

```
Remind q=p^h and denote by V=\mathbb{F}_q^{m+1} the vector space underlying \mathrm{PG}(m,q)
```

Remind
$$q=p^h$$
 and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying $\longrightarrow V\simeq V(h(m+1),p)$ $\mathrm{PG}(m,q)$

Remind
$$q=p^h$$
 and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying $\mathrm{PG}(m,q)$

$$igoplus V\simeq V(\mathit{h}(\mathit{m}+1),\mathit{p})$$
 Let U be an $\mathbb{F}_\mathit{p} ext{-}\mathsf{subspace}$ of V

A digression on topic: linear sets

Remind
$$q=p^h$$
 and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying \longrightarrow $V\simeq V(h(m+1),p)$ $\mathrm{PG}(m,q)$ Let U be an \mathbb{F}_p -subspace of V

$$L_U = \{\langle v \rangle_{\mathbb{F}_q} : v \in U \setminus \{0\}\} \subseteq \mathrm{PG}(m,q)$$

A digression on topic: linear sets

Remind
$$q=p^h$$
 and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying \longrightarrow $V\simeq V(h(m+1),p)$ $\mathrm{PG}(m,q)$ Let U be an \mathbb{F}_p -subspace of V

$$L_U = \{\langle v \rangle_{\mathbb{F}_q} : v \in U \setminus \{0\}\} \subseteq \mathrm{PG}(m,q)$$

$$r = \dim_{\mathbb{F}_p}(U) \longrightarrow \operatorname{rank}$$

A digression on topic: linear sets

Remind
$$q=p^h$$
 and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying \longrightarrow $V\simeq V(h(m+1),p)$ $\mathrm{PG}(m,q)$ Let U be an \mathbb{F}_p -subspace of V

$$L_U = \{\langle v \rangle_{\mathbb{F}_q} : v \in U \setminus \{0\}\} \subseteq \mathrm{PG}(m,q)$$

$$r=\dim_{\mathbb{F}_p}(U) \longrightarrow \mathbf{rank}$$
 $|L_U| \leq rac{p^r-1}{p-1}$

A digression on topic: linear sets

Remind $q=p^h$ and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying \longrightarrow $V\simeq V(h(m+1),p)$ $\mathrm{PG}(m,q)$ Let U be an \mathbb{F}_p -subspace of V

$$L_U = \{\langle v \rangle_{\mathbb{F}_q} : v \in U \setminus \{0\}\} \subseteq \mathrm{PG}(m,q)$$

$$r=\dim_{\mathbb{F}_p}(U) \longrightarrow {\sf rank}$$
 $|L_U| \leq rac{p^r-1}{p-1}$ If $r=h(m-1)+1$ then $orall \, \ell \subseteq \mathrm{PG}(m,q)$ $\ell \cap L_U
eq \emptyset$

A digression on topic: linear sets

Remind
$$q=p^h$$
 and denote by $V=\mathbb{F}_q^{m+1}$ the vector space underlying \longrightarrow $V\simeq V(h(m+1),p)$ Let U be an \mathbb{F}_p -subspace of V

$$L_U = \{\langle v \rangle_{\mathbb{F}_q} : v \in U \setminus \{0\}\} \subseteq \mathrm{PG}(m,q)$$

$$r = \dim_{\mathbb{F}_p}(U) \longrightarrow \operatorname{rank} \ |L_U| \leq rac{p^r - 1}{p - 1}$$

$$\text{If } r = h(m-1)+1 \text{ then } \forall \, \ell \subseteq \mathrm{PG}(m,q) \quad \ell \cap L_U \neq \emptyset \quad |\ell \cap L_U| \equiv 1 \pmod{p}$$

Let $f : \mathbb{F}_q^{m-1} \to \mathbb{F}_q$ be an \mathbb{F}_p -multilinear map

Let $f: \mathbb{F}_q^{m-1} \to \mathbb{F}_q$ be an \mathbb{F}_p -multilinear map

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0, x_1, \dots, x_{m-2}), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\} \subseteq \mathbb{F}_q^{m+1}$$

$$\mathcal{W} = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\} \subseteq \mathbb{F}_q^{m+1}$$

Let $f \colon \mathbb{F}_q^{m-1} \to \mathbb{F}_q$ be an \mathbb{F}_p -multilinear map

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0, x_1, \dots, x_{m-2}), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\} \subseteq \mathbb{F}_q^{m+1}$$

$$W = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\} \subseteq \mathbb{F}_q^{m+1}$$

Define $S = L_{\mathcal{U}} \triangle L_{\mathcal{W}} \subseteq \mathrm{PG}(m, q)$

Let $f \colon \mathbb{F}_q^{m-1} \to \mathbb{F}_q$ be an \mathbb{F}_p -multilinear map

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0, x_1, \dots, x_{m-2}), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, \ y \in \mathbb{F}_p\} \subseteq \mathbb{F}_q^{m+1}$$

$$\mathcal{W} = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\} \subseteq \mathbb{F}_q^{m+1}$$

Define $S = L_{\mathcal{U}} \triangle L_{\mathcal{W}} \subseteq \mathrm{PG}(m,q)$ and consider it as a multiset $\mathcal{M} = (S,\mu)$, by taking

$$\mu(x) = \begin{cases} 1 & \text{if } x \in L_{\mathcal{U}} \setminus L_{\mathcal{W}} \\ p - 1 & \text{if } x \in L_{\mathcal{W}} \setminus L_{\mathcal{U}} \end{cases}$$

For $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ we get the following

For $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ we get the following

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

1. \mathcal{M} is a 0 mod p type multiset

For $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ we get the following

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. M is a 0 mod p type multiset
- 2. There is a hyperplane of PG(m,q) disjoint from $L_{\mathcal{U}}\triangle L_{\mathcal{W}}$

For $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ we get the following

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. \mathcal{M} is a 0 mod p type multiset of AG(m,q)
- 2. There is a hyperplane of PG(m,q) disjoint from $L_{\mathcal{U}}\triangle L_{\mathcal{W}}$

For $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ we get the following

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. \mathcal{M} is a 0 mod p type multiset of AG(m,q)
- 2. There is a hyperplane of PG(m,q) disjoint from $L_{\mathcal{U}} \triangle L_{\mathcal{W}}$

3.
$$|\mathcal{M}| = (p-1)(q^{m-1} + q^{m-2}) + q^{m-2} \Leftrightarrow |L_{\mathcal{U}} \cap L_{\mathcal{W}}| = q^{m-2}\frac{q-1}{p-1} + \frac{q^{m-2}-1}{q-1}$$

For $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ we get the following

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

- 1. \mathcal{M} is a 0 mod p type multiset of AG(m,q)
- 2. There is a hyperplane of PG(m,q) disjoint from $L_{\mathcal{U}}\triangle L_{\mathcal{W}}$

3.
$$|\mathcal{M}| = (p-1)(q^{m-1} + q^{m-2}) + q^{m-2} \Leftrightarrow |L_{\mathcal{U}} \cap L_{\mathcal{W}}| = q^{m-2}\frac{q-1}{p-1} + \frac{q^{m-2}-1}{q-1}$$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

Let L be a \mathbb{F}_p -linear set of rank hm in $\mathrm{PG}(m,q)$, $q=p^h$. Then,

$$|L| \le q^{m-1} \frac{q-1}{p-1} + \frac{q^{m-1}-1}{q-1}$$

A class of 0 mod p type multisets of AG(m, q) attaining the bound

Scattered polynomial

Let $f = \sum_{i=0}^{r-1} a_i X^{p^i} \in \mathbb{F}_q[X]$ be an \mathbb{F}_p -linearized polynomial

A class of 0 mod p type multisets of AG(m, q) attaining the bound

Scattered polynomial

Let $f = \sum_{i=0}^{r-1} a_i X^{p^i} \in \mathbb{F}_q[X]$ be an \mathbb{F}_p -linearized polynomial

The polynomial f is said to be scattered if the following holds

$$\left|\left\{\frac{f(x)}{x} : x \in \mathbb{F}_q^*\right\}\right| = \frac{q-1}{p-1}$$

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial.

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial. Consider

$$\mathcal{W} = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\}$$

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, \ y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial. Consider

$$W = \{(x_0, x_1, \dots, x_{m-2}, y, 0) : x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\}$$

- $L_{\mathcal{U}} \cap L_{\mathcal{W}}$ is an \mathbb{F}_p -linear set

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial. Consider

$$\mathcal{W} = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\}$$

- $L_{\mathcal{U}} \cap L_{\mathcal{W}}$ is an \mathbb{F}_p -linear set
- Moreover

$$|L_{\mathcal{U}}\cap L_{\mathcal{W}}|=q^{m-2}rac{q-1}{p-1}+rac{q^{m-2}-1}{q-1}$$

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, \ y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial. Consider

$$\mathcal{W} = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\}$$

- $L_{\mathcal{U}} \cap L_{\mathcal{W}}$ is an \mathbb{F}_p -linear set
- Moreover

$$|L_{\mathcal{U}}\cap L_{\mathcal{W}}|=q^{m-2}\frac{q-1}{p-1}+\frac{q^{m-2}-1}{q-1}$$

Hence $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ with $\mu(x) = \begin{cases} 1 & \text{if } x \in L_{\mathcal{U}} \setminus L_{\mathcal{W}} \\ p-1 & \text{if } x \in L_{\mathcal{W}} \setminus L_{\mathcal{U}} \end{cases}$ is a multiset of $\mathrm{AG}(m,q)$ whose size attains the bound

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial. Consider

$$W = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\}$$

- $L_{\mathcal{U}} \cap L_{\mathcal{W}}$ is an \mathbb{F}_p -linear set
- Moreover

$$|L_{\mathcal{U}}\cap L_{\mathcal{W}}|=q^{m-2}\frac{q-1}{p-1}+\frac{q^{m-2}-1}{q-1}$$

Hence $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ with $\mu(x) = \begin{cases} 1 & \text{if } x \in L_{\mathcal{U}} \setminus L_{\mathcal{W}} \\ p-1 & \text{if } x \in L_{\mathcal{W}} \setminus L_{\mathcal{U}} \end{cases}$ is a multiset of $\mathrm{AG}(m,q)$ whose size attains the bound

 If p = 2 M falls into a wider class exhibited by Calkin, Key and De Resmini [Minimum weight and dimension formulas for some geometric codes. Des., Codes and Cryptogr. (1999)]

$$\mathcal{U} = \{(x_0, x_1, \dots, x_{m-2}, f(x_0), y) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, \ y \in \mathbb{F}_p\},\$$

where f(X) is any scattered polynomial. Consider

$$W = \{(x_0, x_1, \dots, x_{m-2}, y, 0) \colon x_0, x_1, \dots, x_{m-2} \in \mathbb{F}_q, y \in \mathbb{F}_p\}$$

- $L_{\mathcal{U}} \cap L_{\mathcal{W}}$ is an \mathbb{F}_p -linear set
- Moreover

$$|L_{\mathcal{U}} \cap L_{\mathcal{W}}| = q^{m-2} \frac{q-1}{p-1} + \frac{q^{m-2}-1}{q-1}$$

Hence $\mathcal{M} = (L_{\mathcal{U}} \triangle L_{\mathcal{W}}, \mu)$ with $\mu(x) = \begin{cases} 1 & \text{if } x \in L_{\mathcal{U}} \setminus L_{\mathcal{W}} \\ p-1 & \text{if } x \in L_{\mathcal{W}} \setminus L_{\mathcal{U}} \end{cases}$ is a multiset of $\mathrm{AG}(m,q)$ whose size attains the bound

- If p = 2 M falls into a wider class exhibited by Calkin, Key and De Resmini [Minimum weight and dimension formulas for some geometric codes. Des., Codes and Cryptogr. (1999)]
- The characteristic vector of L_U △L_W has the same weight as the one associated with a point set constructed by Lavrauw, Storme and Van de Voorde [Linear codes from projective spaces. Error-correcting codes, finite geometries and cryptography,
 Contemp. Math., 523 American Mathematical Society, Providence, RI (2010)]

Proposition (B. Csajbók, G. Longobardi, G. Marino, R.T.)

If $\mathcal{M} = (\mathcal{S}, \mu)$ is a $0 \mod p$ type multiset of $\mathrm{PG}(m,q)$ meeting every hyperplane

Proposition (B. Csajbók, G. Longobardi, G. Marino, R.T.)

If $\mathcal{M} = (\mathcal{S}, \mu)$ is a $0 \mod p$ type multiset of $\mathrm{PG}(m,q)$ meeting every hyperplane, then

$$|\mathcal{S}| \geq q d_{\mathcal{C}_{PG}(m-1,q)^{\perp}} \quad ext{ and } \quad |\mathcal{M}| \geq q \sigma_{m-1},$$

where σ_{m-1} denote the minimum size of a $0 \mod p$ type multiset in PG(m-1,q)

Proposition (B. Csajbók, G. Longobardi, G. Marino, R.T.)

If $\mathcal{M} = (\mathcal{S}, \mu)$ is a $0 \mod p$ type multiset of $\mathrm{PG}(m,q)$ meeting every hyperplane, then

$$|\mathcal{S}| \geq q d_{\mathcal{C}_{PG}(m-1,q)^{\perp}} \quad ext{ and } \quad |\mathcal{M}| \geq q \sigma_{m-1},$$

where σ_{m-1} denote the minimum size of a $0 \mod p$ type multiset in $\operatorname{PG}(m-1,q)$

Proposition (B. Csajbók, G. Longobardi, G. Marino, R.T.)

If $\mathcal{M} = (\mathcal{S}, \mu)$ is a $0 \mod p$ type multiset of $\mathrm{PG}(m,q)$ meeting every hyperplane, then

$$|\mathcal{S}| \geq q d_{\mathcal{C}_{PG}(m-1,q)^{\perp}} \quad ext{ and } \quad |\mathcal{M}| \geq q \sigma_{m-1},$$

where σ_{m-1} denote the minimum size of a $0 \mod p$ type multiset in $\operatorname{PG}(m-1,q)$

Theorem (B. Csajbók, G. Longobardi, G. Marino, R.T.)

Assume q > p, then

$$d_{\mathcal{C}_{PG}(m,q)^{\perp}} \geq 2(q^{m-1}(p-1)/p + q^{m-2})$$

Sketch of the proof

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$$

- Sketch of the proof
 - If p=2 \longrightarrow Calkin, Key, De Resmini's bound
 - If p > 2

$$ig|_{m{s}} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{m{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$oxedsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{oldsymbol{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If
$${m s}$$
 in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$ig|_{m{s}} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{m{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If
$$m{s}$$
 in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

o scaling s does not change its weight

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$m{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{m{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If
$$m{s}$$
 in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

 \circ scaling $m{s}$ does not change its weight \Rightarrow we may assume a component of $m{s}$ equals 1

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$oxedsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{oldsymbol{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If
$$oldsymbol{s}$$
 in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- \circ scaling $m{s}$ does not change its weight \Rightarrow we may assume a component of $m{s}$ equals 1
- o If no component of \boldsymbol{s} equals p-1

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$m{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{m{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If $m{s}$ in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- \circ scaling $m{s}$ does not change its weight \Rightarrow we may assume a component of $m{s}$ equals 1
- o If no component of **s** equals $p-1 \Rightarrow w(s) \geq 1 + 2(q^{m-1} + q^{m-2} + \ldots + q + 1)$

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$oxedsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{oldsymbol{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If $m{s}$ in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- \circ scaling $m{s}$ does not change its weight \Rightarrow we may assume a component of $m{s}$ equals 1
- \circ If no component of $m{s}$ equals $p-1 \ \Rightarrow \ w(m{s}) \geq 1 + 2(q^{m-1} + q^{m-2} + \ldots + q + 1)$
- \circ If otherwise a component equals p-1

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$oxed{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{oldsymbol{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If \boldsymbol{s} in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- \circ scaling ${\boldsymbol s}$ does not change its weight \Rightarrow we may assume a component of ${\boldsymbol s}$ equals 1
- o If no component of s equals $p-1 \Rightarrow w(s) \geq 1 + 2(q^{m-1} + q^{m-2} + \ldots + q + 1)$
- \circ If otherwise a component equals $p-1 \Rightarrow (p-1)s$ has a component equal to 1

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$ig|_{m{s}} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{m{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If $m{s}$ in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- \circ scaling $m{s}$ does not change its weight \Rightarrow we may assume a component of $m{s}$ equals 1
- o If no component of s equals $p-1 \Rightarrow w(s) \geq 1 + 2(q^{m-1} + q^{m-2} + \ldots + q + 1)$
- \circ If otherwise a component equals $p-1 \Rightarrow (p-1)s$ has a component equal to 1
- Since $|\mathcal{M}_s| + |(p-1)\mathcal{M}_s| = p|\mathcal{S}_s|$

- Sketch of the proof
 - If $p = 2 \longrightarrow Calkin$, Key, De Resmini's bound
 - If p > 2

$$ig|_{m{s}} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}
ightarrow \mathcal{M}_{m{s}} \subseteq \mathrm{PG}(m,q)$$
 0 mod p type multiset

If $m{s}$ in $\mathcal{C}_{\mathrm{AG}}(m,q)^{\perp}$

- \circ scaling $m{s}$ does not change its weight \Rightarrow we may assume a component of $m{s}$ equals 1
- o If no component of s equals $p-1 \Rightarrow w(s) \geq 1 + 2(q^{m-1} + q^{m-2} + \ldots + q + 1)$
- \circ If otherwise a component equals $p-1 \Rightarrow (p-1)s$ has a component equal to 1
- $\circ \ \mathsf{Since} \ |\mathcal{M}_{\boldsymbol{s}}| + |(p-1)\mathcal{M}_{\boldsymbol{s}})| = p|\mathcal{S}_{\boldsymbol{s}}| \ \Rightarrow \ 2((p-1)q^{m-1} + pq^{m-2}) \leq p|\mathcal{S}_{\boldsymbol{s}}|$

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

 \circ If there is a hyperplane of $\mathrm{PG}(m,q)$ disjoint from $\mathcal{M}_s \longrightarrow$ apply previous arguments

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

- \circ If there is a hyperplane of $\mathrm{PG}(m,q)$ disjoint from $\mathcal{M}_s \longrightarrow$ apply previous arguments
- \circ If otherwise all hyperplanes of $\mathrm{PG}(m,q)$ meet $\mathcal{S}_{m{s}}$

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

- o If there is a hyperplane of $\mathrm{PG}(m,q)$ disjoint from $\mathcal{M}_s \longrightarrow \mathrm{apply}$ previous arguments
- o If otherwise all hyperplanes of $\mathrm{PG}(m,q)$ meet $\mathcal{S}_s \longrightarrow$ an induction argument based on previous proposition leads to the goal

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

- \circ If there is a hyperplane of $\mathrm{PG}(m,q)$ disjoint from $\mathcal{M}_s \longrightarrow$ apply previous arguments
- o If otherwise all hyperplanes of $\mathrm{PG}(m,q)$ meet $\mathcal{S}_s \longrightarrow$ an induction argument based on previous proposition leads to the goal

 \downarrow

Concluding remarks

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

- \circ If there is a hyperplane of $\mathrm{PG}(m,q)$ disjoint from $\mathcal{M}_s \longrightarrow$ apply previous arguments
- o If otherwise all hyperplanes of $\mathrm{PG}(m,q)$ meet $\mathcal{S}_s \longrightarrow$ an induction argument based on previous proposition leads to the goal

 \downarrow

Concluding remarks

- For m = 2 we get Bagchi and Inamdar's bound

Assume $oldsymbol{s} \in \mathcal{C}_{\mathrm{PG}}(m,q)^{\perp}$

- \circ If there is a hyperplane of $\mathrm{PG}(m,q)$ disjoint from $\mathcal{M}_s \longrightarrow$ apply previous arguments
- o If otherwise all hyperplanes of $\mathrm{PG}(m,q)$ meet $\mathcal{S}_s \longrightarrow$ an induction argument based on previous proposition leads to the goal

 \downarrow

Concluding remarks

- For m = 2 we get Bagchi and Inamdar's bound
- For q > p and p, m > 2 we improve on both Bagchi and Inamdar's and Lavrauw, Storme and Van de Voorde's bounds

COMBINATORICS 2026

NAPLES, ITALY - MAY 25-29 2026

SPEAKERS

Anurag Bishnoi
Alain Couvreur
Tao Feng
Sam Mattheus
Gretchen L. Matthews
Maria Montanucci
Valentina Pepe
Martin Škoviera
Tommaso Traetta
Yue Zhou

Das Ende