The probability of two subspaces spanning a classical space

Geertrui Van de Voorde *University of Canterbury*

Joint work with Maarten De Boeck

Finite Geometries (7th Irsee conference) 1–5 September 2025, Irsee, Germany.

▶ Given a point P in PG(2, q), how many lines are disjoint from P?

Given a point P in PG(2, q), how many lines are disjoint from P?

There are $q^2 + q + 1 - (q + 1) = q^2$ lines disjoint from a given point

Given a point P in PG(2, q), how many lines are disjoint from P?

There are $q^2 + q + 1 - (q + 1) = q^2$ lines disjoint from a given point (and this is almost all lines of PG(2, q)).

Given a point P in PG(2, q), how many lines are disjoint from P?

There are $q^2 + q + 1 - (q + 1) = q^2$ lines disjoint from a given point (and this is almost all lines of PG(2, q)).

Given a line L in PG(3, q), how many lines are disjoint from L?

► There are $(q^2 + 1)(q^2 + q + 1)$ lines in PG(3, q)

- ► There are $(q^2 + 1)(q^2 + q + 1)$ lines in PG(3, q)
- ▶ $1 + (q+1)(q^2+q)$ of those meet *L*.

- ► There are $(q^2 + 1)(q^2 + q + 1)$ lines in PG(3, q)
- ▶ $1 + (q+1)(q^2+q)$ of those meet *L*.
- So, there are $(q^2+1)(q^2+q+1)-(q+1)(q^2+q)-1=q^4$ lines disjoint from L (and this is almost all lines of PG(3, q).)

SOLUTION 2: LOOK IT UP

SOLUTION 2: LOOK IT UP

Given a line L in PG(3, q), how many lines are disjoint from L? LEMMA (B. SEGRE 1961 – LECTURES ON MODERN GEOMETRY)

The number of (j-1)-dimensional subspaces of PG(n-1,q) disjoint from a given (k-1)-space equals

$$q^{kj} {n-k \brack j}_q$$

where
$$\binom{n}{k}_q = \frac{(q^n-1)(q^{n-1}-1)...(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)...(q-1)}$$
.

SOLUTION 2: LOOK IT UP

Given a line L in PG(3, q), how many lines are disjoint from L? LEMMA (B. SEGRE 1961 – LECTURES ON MODERN GEOMETRY)

The number of (j-1)-dimensional subspaces of PG(n-1,q) disjoint from a given (k-1)-space equals

$$q^{kj} \begin{bmatrix} n-k \\ j \end{bmatrix}_q$$

where
$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n-1)(q^{n-1}-1)...(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)...(q-1)}$$
.

Here, j = k = 2, n = 4, so there are $q^{2\cdot 2} \begin{bmatrix} 2 \\ 2 \end{bmatrix}_q = q^4$ lines disjoint from a given line in PG(3, q).

Given a line L in PG(3, q), how many lines are disjoint from L?

Count pairs (M, π) where M is any line disjoint from L, and π is any plane through M.

- Count pairs (M, π) where M is any line disjoint from L, and π is any plane through M.
- $\blacktriangleright \text{ We find } X \cdot (q+1) =$

Given a line L in PG(3, q), how many lines are disjoint from L?

- Count pairs (M, π) where M is any line disjoint from L, and π is any plane through M.
- ▶ We find $X \cdot (q+1) =$

```
( # planes \pi through L) · 0
```

+ (# planes π not through L) \cdot (# lines in π disjoint from $\pi \cap L$)

Given a line L in PG(3, q), how many lines are disjoint from L?

- Count pairs (M, π) where M is any line disjoint from L, and π is any plane through M.
- We find $X \cdot (q+1) =$ $(# planes \pi through L) \cdot 0$ $+ (# planes \pi not through L) \cdot (# lines in \pi disjoint from \pi \cap L)$

▶ Recursion

Finite Fields and Their Applications

FINITE FULDS

Volume 82, September 2022, 102055

The probability of spanning a classical space by two non-degenerate subspaces of complementary dimensions

S.P. Glasby $^a \stackrel{\wedge}{\sim} \boxtimes$, Alice C. Niemeyer $^{a \, b} \boxtimes$, Cheryl E. Praeger $^a \boxtimes$

The problem that we address in this paper arises from algorithmic considerations connected with computations in finite classical groups.

Finite Fields and Their Applications

FINITE FILLDS

Volume 82, September 2022, 102055

The probability of spanning a classical space by two non-degenerate subspaces of complementary dimensions

S.P. Glasby $^{a} \stackrel{\triangle}{\sim} \boxtimes$, Alice C. Niemeyer $^{a \, b} \boxtimes$, Cheryl E. Praeger $^{a} \boxtimes$

The problem that we address in this paper arises from algorithmic considerations connected with computations in finite classical groups. In order to show that two isometries, each leaving invariant a non-degenerate proper subspace, generate a classical group with high probability a fundamental problem arises:

... show that, with high probability, for a vector space V endowed with a classical form,

... show that, with high probability, for a vector space V endowed with a classical form, two random non-degenerate subspaces whose dimensions sum to $\dim(V)$, are complements of each other.

RECENT RESULTS

SAMPLE THEOREM FROM GLASBY, IHRINGER, MATTHEUS (2023):

Theorem 5.2 Suppose $V=(\mathbb{F}_{q^2})^{e_1+e_2}$ is an (e_1+e_2) -dimensional hermitian space where $e_1,e_2\geq 1$. For $i\in\{1,2\}$, let Y_i denote the set of all non-degenerate e_i -spaces of V. The proportion of pairs $(S_1,S_2)\in Y_1\times Y_2$ for which $S_1\cap S_2=\{0\}$ is at least $1-\frac{c}{q^2}$ where c=2 when $(e_1,e_2,q)=(1,1,2)$, $c=\frac{3}{2}$ when $\min\{e_1,e_2\}=1$ and $(e_1,e_2,q)\neq (1,1,2)$, and c=1.26 otherwise.

RECENT RESULTS

SAMPLE THEOREM FROM GLASBY, IHRINGER, MATTHEUS (2023):

Theorem 5.2 Suppose $V = (\mathbb{F}_{q^2})^{e_1+e_2}$ is an (e_1+e_2) -dimensional hermitian space where $e_1, e_2 \geq 1$. For $i \in \{1, 2\}$, let Y_i denote the set of all non-degenerate e_i -spaces of V. The proportion of pairs $(S_1, S_2) \in Y_1 \times Y_2$ for which $S_1 \cap S_2 = \{0\}$ is at least $1 - \frac{c}{q^2}$ where c = 2 when $(e_1, e_2, q) = (1, 1, 2)$, $c = \frac{3}{2}$ when $\min\{e_1, e_2\} = 1$ and $(e_1, e_2, q) \neq (1, 1, 2)$, and c = 1.26 otherwise.

Similar results in

- Glasby S.P., Niemeyer A.C., Praeger C.E.: The probability of spanning a classical space by two nondegenerate subspaces of complementary dimensions. Finite Fields Their Appl. 82, 102055 (2022).
- Glasby S.P., Niemeyer A.C., Praeger C.E.: Random generation of direct sums of finite non-degenerate subspaces, Linear Algebra Appl. Linear Algebra Appl. 649, 408–432 (2022).

Naive approach:

Naive approach: the probability that a pair of two random subspaces is 'good' is

number of 'good' pairs of subspaces total number of pairs of subspaces.

So...we should 'simply' count these quantities.

- A formed space is a vector space together with a sesquilinear form.
- Comes in symmetric, symplectic, hermitian type (→orthogonal, symplectic, unitary groups)

- A formed space is a vector space together with a sesquilinear form.
- Comes in symmetric, symplectic, hermitian type (→orthogonal, symplectic, unitary groups)
- ► Totally isotropic points define the classical polar spaces: quadrics, symplectic spaces, Hermitian varieties.

▶ Given a line L in PG(3, q), how many secant (resp. passant) lines of a given $Q^+(3, q)$ are disjoint from L?

- ▶ Given a line L in PG(3, q), how many secant (resp. passant) lines of a given $Q^+(3, q)$ are disjoint from L?
- ▶ Depends on *L* being secant, passant, tangent to $Q^+(3,q)$

- ▶ Given a line L in PG(3, q), how many secant (resp. passant) lines of a given $Q^+(3, q)$ are disjoint from L?
- ▶ Depends on *L* being secant, passant, tangent to $Q^+(3,q)$
- We can double count as before.
- ▶ But is there a known formula (for general dimension)?

What is the number of points on a quadric or Hermitian variety?

What is the number of points on a quadric or Hermitian variety?

WIKIPEDIA HAS THE ANSWER (NON-SINGULAR FORMS)

Form	n+1	Name	Notation	Number of points	Collineation group
Alternating	2r	Symplectic	W(2r-1,q)	$(q^r+1)\theta_{r-1}(q)$	$P\Gamma Sp(2r,q)$
Hermitian	2r	Hermitian	H(2r-1,q)	$(q^{r-1/2}+1)\theta_{r-1}(q)$	$\mathrm{P}\Gamma\mathrm{U}(2\mathrm{r},\mathrm{q})$
Hermitian	2r+1	Hermitian	H(2r,q)	$(q^{r+1/2}+1)\theta_{r-1}(q)$	$P\Gamma U(2r+1,q)$
Quadratic	2r	Hyperbolic	$Q^+(2r-1,q)$	$(q^{r-1}+1)\theta_{r-1}(q)$	$P\Gamma { m O}^+(2r,q)$
Quadratic	2r+1	Parabolic	Q(2r,q)	$(q^r+1) heta_{r-1}(q)$	$P\Gamma O(2r+1,q)$
Quadratic	2r+2	Elliptic	$Q^-(2r+1,q)$	$(q^{r+1}+1)\theta_{r-1}(q)$	$ ext{P}\Gamma ext{O}^-(2r+2,q)$

For subspaces of higher dimensions?

- ► An *i*-singular *j*-space corresponds to a cone with (i-1)-dimensional vertex and base a non-singular
 - (i i 1) quadric/Hermitian variety/symplectic space.

For subspaces of higher dimensions?

An *i*-singular *j*-space corresponds to a cone with (*i* − 1)-dimensional vertex and base a non-singular (*j* − *i* − 1) quadric/Hermitian variety/symplectic space.

Example: n = 4, j = 3, quadratic form of hyperbolic type

j-spaces correspond to planes meeting $Q^+(3,q)$

For subspaces of higher dimensions?

An *i*-singular *j*-space corresponds to a cone with (*i* − 1)-dimensional vertex and base a non-singular (*j* − *i* − 1) quadric/Hermitian variety/symplectic space.

Example: n = 4, j = 3, quadratic form of hyperbolic type

j-spaces correspond to planes meeting $Q^+(3,q)$

- either 0-singular (plane meets in conic) or
- 1-singular (plane meets in 2 intersecting lines).

► What is the number of *i*-singular *j*-spaces w.r.t. a form over a finite field?

▶ What is the number of *i*-singular *j*-spaces w.r.t. a form over a finite field?

This is a classical result (see books of Hirschfeld or Wan).

▶ What is the number of *i*-singular *j*-spaces w.r.t. a form over a finite field?

This is a classical result (see books of Hirschfeld or Wan).

EXAMPLE THEOREM

Let $\alpha_{i,j,n}$ be the number of i-singular j-spaces w.r.t. a hermitian form on \mathbb{F}_q^n (q square). For $0 \le i \le \min\{j, n-j\}$ and $j \le n$ we have that

$$\alpha_{i,j,n} = q^{(j-i)(n-j-i)} \frac{\varphi_{j-i+1,n}^-(q)}{\varphi_{1,n-j-i}^-(q)\psi_{1,i}^-(q^2)} \ .$$

Here

$$\varphi_{a,b}^{-}(q) = \prod_{k=a}^{b} \left(q^k - (-1)^k \right) \quad \text{and} \quad \psi_{a,b}^{-}(q) = \prod_{k=a}^{b} \left(q^k - 1 \right)$$

THE GOAL

Given a non-degenerate polar space in PG(n, q)

THE GOAL

Given a non-degenerate polar space in PG(n, q) find the proportion of pairs (U, V) where U, V are disjoint non-singular subspaces of dimensions j and n-j

THE GOAL

Given a non-degenerate polar space in PG(n, q) find the proportion of pairs (U, V) where U, V are disjoint non-singular subspaces of dimensions j and n-j among all pairs of non-singular subspaces of dimensions j and n-j.

THE GOAL

Given a non-degenerate polar space in PG(n, q) find the proportion of pairs (U, V) where U, V are disjoint non-singular subspaces of dimensions j and n - j among all pairs of non-singular subspaces of dimensions j and n - j.

BY TRANSITIVITY

We can fix U and look for the number of V's disjoint from U.

Given π , a non-singular (j-1)-space, count pairs (τ, σ) with τ a non-singular (n-j)-space disjoint from π σ a non-singular hyperplane through τ .

Given π , a non-singular (j-1)-space, count pairs (τ, σ) with τ a non-singular (n-j)-space disjoint from π σ a non-singular hyperplane through τ .

DEFINITION

Consider a non-degenerate hermitian form f on $\mathbb{F}_{q^2}^n$.

 $ightharpoonup \alpha_{i,j,n}$ is the number of *i*-singular *j*-spaces π .

Given π , a non-singular (j-1)-space, count pairs (τ, σ) with τ a non-singular (n-j)-space disjoint from π σ a non-singular hyperplane through τ .

DEFINITION

Consider a non-degenerate hermitian form f on $\mathbb{F}_{q^2}^n$.

- $ightharpoonup \alpha_{i,j,n}$ is the number of *i*-singular *j*-spaces π .
- ightarrow $eta_{i,j,n}$ is the number of non-singular hyperplanes $\sigma\supseteq\pi$ in $\mathbb{F}_{q^2}^n$.

Given π , a non-singular (j-1)-space, count pairs (τ,σ) with τ a non-singular (n-j)-space disjoint from π σ a non-singular hyperplane through τ .

DEFINITION

Consider a non-degenerate hermitian form f on $\mathbb{F}_{q^2}^n$.

- $ightharpoonup \alpha_{i,j,n}$ is the number of *i*-singular *j*-spaces π .
- ightarrow $eta_{i,j,n}$ is the number of non-singular hyperplanes $\sigma\supseteq\pi$ in $\mathbb{F}_{q^2}^n$.
- ▶ $\gamma_{i,j,n}$ is the number of non-singular n-j-spaces σ in $\mathbb{F}_{q^2}^n$ such that $\sigma \cap \pi$ is trivial.

Given π , a non-singular (j-1)-space, count pairs (τ,σ) with τ a non-singular (n-j)-space disjoint from π σ a non-singular hyperplane through τ .

DEFINITION

Consider a non-degenerate hermitian form f on $\mathbb{F}_{q^2}^n$.

- $ightharpoonup \alpha_{i,j,n}$ is the number of *i*-singular *j*-spaces π .
- ▶ $β_{i,j,n}$ is the number of non-singular hyperplanes σ ⊇ π in $\mathbb{F}_{q^2}^n$.
- ▶ $\gamma_{i,j,n}$ is the number of non-singular n-j-spaces σ in $\mathbb{F}_{q^2}^n$ such that $\sigma \cap \pi$ is trivial.

We have a formula for α . β follows from elementary double counting. The goal is a formula for $\gamma_{0,j,n}$.

NOT SO ELEMENTARY DOUBLE COUNTING We count the tuples (σ, τ) with σ a non-singular hyperplane, and $\tau \subseteq \sigma$ a non-singular (n-j)-space disjoint from π .

NOT SO ELEMENTARY DOUBLE COUNTING We count the tuples (σ, τ) with σ a non-singular hyperplane, and $\tau \subseteq \sigma$ a non-singular (n-j)-space disjoint from π .

$$\gamma_{i,j,n}\beta_{0,n-j,n} = \alpha_{1,j-i-1,j-i} \left(\beta_{i+1,j-1,n} - \beta_{i,j,n}\right) \gamma_{i+1,j-1,n-1}
+ \alpha_{0,j-i-1,j-i} \left(\beta_{i,j-1,n} - \beta_{i,j,n}\right) \gamma_{i,j-1,n-1}
+ \left(\begin{bmatrix} j \\ j-1 \end{bmatrix}_{q^2} - \begin{bmatrix} j-i \\ j-i-1 \end{bmatrix}_{q^2}\right) \left(\beta_{i-1,j-1,n} - \beta_{i,j,n}\right) \gamma_{i-1,j-1,n-1}$$

THE METHOD SUMMARISED

- ightharpoonup Derive a recursion formula for γ
- 'Guess' the closed formula
- Prove the formula by induction
- Main work was for complementary case, the general formula follows by another double counting argument.

THE METHOD SUMMARISED

- ightharpoonup Derive a recursion formula for γ
- 'Guess' the closed formula
- Prove the formula by induction
- Main work was for complementary case, the general formula follows by another double counting argument.

The motivation was to find a formula for the 0-singular case but this method requires us to derive a formula for all *i*-singular cases at once.

THE RESULTS (UNITARY CASE)

Theorem 3.7. For $0 \le i \le \min\{j, n-j\}$, $j \le n-1$ and $k \le n-j$, we have that

$$\begin{split} \gamma_{i,j,n,k} &= \beta_{i,j,n,k+j} \gamma_{i,j,k+j} \\ &= q^{(n-k-j)(k+i)+2jk-\binom{j+1}{2}} {n-j-i\brack n-k-j}_q^- \varphi_{1,i}^+(q) \sum_{m=0}^{j-i} (-1)^{mk} \varphi_{i+1,j-m}^+(q) {j-i\brack m}_q^- q^{\binom{m}{2}-m(k-i)} \end{split}$$

THE RESULTS (UNITARY CASE)

Theorem 3.7. For $0 \le i \le \min\{j, n-j\}$, $j \le n-1$ and $k \le n-j$, we have that

$$\begin{split} \gamma_{i,j,n,k} &= \beta_{i,j,n,k+j} \gamma_{i,j,k+j} \\ &= q^{(n-k-j)(k+i)+2jk-\binom{j+1}{2}} {n-j-i\brack n-k-j}_q^- \varphi_{1,i}^+(q) \sum_{m=0}^{j-i} (-1)^{mk} \varphi_{i+1,j-m}^+(q) {j-i\brack m}_q^- q^{\binom{m}{2}-m(k-i)} \end{split}$$

The formula for the exact proportion of good subspaces now follows directly.

Theorem 3.9. For integers j, k, n with $0 \le j, k \le n-1$ and $j+k \le n$, we have

$$\rho_{j,k,n} = q^{jk - \binom{j+1}{2}} \frac{\varphi_{-n-j-k+1,n-k}^-(q)}{\varphi_{n-j+1,n}^-(q)} \sum_{m=0}^j (-1)^{mk} \varphi_{1,j-m}^+(q) \begin{bmatrix} j \\ m \end{bmatrix}_q^- q_2^{(m)} - mk$$

THE RESULTS (UNITARY CASE)

Theorem 3.7. For $0 \le i \le \min\{j, n-j\}, j \le n-1$ and $k \le n-j$, we have that

$$\begin{split} \gamma_{i,j,n,k} &= \beta_{i,j,n,k+j} \gamma_{i,j,k+j} \\ &= q^{(n-k-j)(k+i)+2jk-\binom{j+1}{2}} {n-j-i\brack n-k-j}_q^- \varphi_{1,i}^+(q) \sum_{m=0}^{j-i} (-1)^{mk} \varphi_{i+1,j-m}^+(q) {j-i\brack m}_q^- q^{\binom{m}{2}-m(k-i)} \end{split}$$

The formula for the exact proportion of good subspaces now follows directly.

Theorem 3.9. For integers j, k, n with $0 \le j, k \le n-1$ and $j+k \le n$, we have

$$\rho_{j,k,n} = q^{jk - \binom{j+1}{2}} \frac{\varphi_{n-j-k+1,n-k}^-(q)}{\varphi_{n-j+1,n}^-(q)} \sum_{m=0}^j (-1)^{mk} \varphi_{1,j-m}^+(q) {j\brack m}_q^- q_2^{(m)-mk}$$

REMARK

Getting from the exact proportion to a bound of the form $1 - c \frac{1}{q^2}$ is still *a lot* of work.

Unitary case forms the blueprint of the main idea

- Unitary case forms the blueprint of the main idea
- Symplectic case: a bit more complicated because the need to count with subspaces of codimension 2

- Unitary case forms the blueprint of the main idea
- Symplectic case: a bit more complicated because the need to count with subspaces of codimension 2
- Orthogonal case, odd characteristic: much more complicated because of elliptic, parabolic, and hyperbolic types, and the fact that the group can have more than one orbit on i-singular spaces.

- Unitary case forms the blueprint of the main idea
- Symplectic case: a bit more complicated because the need to count with subspaces of codimension 2
- ▶ Orthogonal case, odd characteristic: *much* more complicated because of elliptic, parabolic, and hyperbolic types, and the fact that the group can have more than one orbit on *i*-singular spaces. There are four recursion formulae depending on the parity of i, j, n so four different formula for $\gamma_{(i,j,\delta,\lambda),(n,\epsilon),(n-j,\zeta)}$.

SAMPLE THEOREM IN ORTHOGONAL CASE (DE BOECK-VDV)

Theorem 4.19. Let n, j, i be integers with $0 \le i \le j$ and $i + j \le n$, such that n is even and j is odd. Let $\delta \in \{0, \pm 1\}$ and $\varepsilon, \lambda \in \{\pm 1\}$ with $j - i - \delta \equiv 1 \pmod 2$. If i is odd, then

$$\begin{split} \gamma_{(i,j,\delta),(n,\varepsilon),(n-j,0),\varepsilon} &= q^{\frac{3}{2}jn - \frac{1}{4}n^2 - \frac{5}{4}j^2 - \frac{1}{2}n + \frac{1}{2}j - \frac{1}{4}} \left(\sum_{m=0}^{\frac{n-j-i}{2}} \chi_{1,\frac{n-j+1}{2} - m}(q) {n-j-i-1 \choose m} \right)_{q^2} q^{m(m-j+i+1)} \\ &+ \left(\delta q^{\frac{1}{2}i - \frac{1}{2}j} - \varepsilon q^{\frac{1}{2}n-j} + \delta \varepsilon q^{\frac{1}{2}n - \frac{3}{2}j + \frac{1}{2}i} \right) \sum_{m=0}^{\frac{n-j-i}{2}} \chi_{1,\frac{n-j-1}{2} - m}(q) {n-j-i-1 \choose m} _{q^2} q^{m(m-j+i+1)}. \end{split}$$

If i is even, then

$$\begin{split} \gamma_{(i,j,0),(n,\varepsilon),(n-j,0),\varepsilon} = & q^{\frac{3}{2}jn - \frac{1}{4}n^2 - \frac{5}{4}j^2 - \frac{1}{2}n + \frac{1}{2}j - \frac{1}{4}} \left(\sum_{m=0}^{\frac{n-j-i-1}{2}} \chi_{1,\frac{n-j+1}{2}-m}(q) \begin{bmatrix} \frac{n-j-i-1}{2} \\ m \end{bmatrix}_{q^2} q^{m(m-j+i)} \right) \\ & - \varepsilon q^{\frac{1}{2}n-j} \sum_{m=0}^{\frac{n-j-i-1}{2}} \chi_{1,\frac{n-j-1}{2}-m}(q) \begin{bmatrix} \frac{n-j-i-1}{2} \\ m \end{bmatrix}_{q^2} q^{m(m-j+i)} \end{split}$$

► GAP was used to verify small cases (for fixed *q*)

- ► GAP was used to verify small cases (for fixed *q*)
- Maple came in handy to help guess the closed formula (for general q)

- GAP was used to verify small cases (for fixed q)
- Maple came in handy to help guess the closed formula (for general q)
- We prove that our solution satisfies the recursion by induction.

- GAP was used to verify small cases (for fixed q)
- Maple came in handy to help guess the closed formula (for general q)
- We prove that our solution satisfies the recursion by induction.
- Unfortunately, we didn't manage to get Maple/Sage to actually do the induction proof, partially because of 'tricks' like this:

Lemma 2.10. For integers $b \ge a \ge 0$ we have

$$\begin{bmatrix} b \\ a \end{bmatrix}_q = q^a \begin{bmatrix} b-1 \\ a \end{bmatrix}_q + \begin{bmatrix} b-1 \\ a-1 \end{bmatrix}_q \qquad and \qquad \begin{bmatrix} b \\ a \end{bmatrix}_q = \begin{bmatrix} b-1 \\ a \end{bmatrix}_q + q^{b-a} \begin{bmatrix} b-1 \\ a-1 \end{bmatrix}_q.$$

- GAP was used to verify small cases (for fixed q)
- Maple came in handy to help guess the closed formula (for general q)
- We prove that our solution satisfies the recursion by induction.
- Unfortunately, we didn't manage to get Maple/Sage to actually do the induction proof, partially because of 'tricks' like this:

Lemma 2.10. For integers $b \ge a \ge 0$ we have

$$\begin{bmatrix} b \\ a \end{bmatrix}_q = q^a \begin{bmatrix} b-1 \\ a \end{bmatrix}_q + \begin{bmatrix} b-1 \\ a-1 \end{bmatrix}_q \qquad \text{and} \qquad \begin{bmatrix} b \\ a \end{bmatrix}_q = \begin{bmatrix} b-1 \\ a \end{bmatrix}_q + q^{b-a} \begin{bmatrix} b-1 \\ a-1 \end{bmatrix}_q.$$

Orthogonal case, even characteristic: six different recursion formulae...

Thank you!

M. De Boeck and G. Van de Voorde. Anzahl theorems for trivially intersecting subspaces generating a non-singular subspace I: symplectic and hermitian forms. *Linear Algebra Appl.* **699** (2024), 367–402.

M. De Boeck and G. Van de Voorde. Anzahl theorems for disjoint subspaces generating a non-degenerate subspace: quadratic forms. *Combinatorial Theory* (2025), **5 (2)**, # 12.

EXAMPLE:
$$i=0, j=3, k=2, \zeta=\lambda=1$$
 and $n=5$ (so $\delta=\epsilon=\eta=0$)

Then we are looking for the proportion of pairs of conic planes of perp type 1 and secant lines to a parabolic quadric $\mathcal{Q}(4,q)$ which span the entire space, among all such pairs. This proportion is

$$\begin{split} \rho_{(3,0,1),(2,1),(5,0),0} &= \frac{\gamma_{(0,3,0,1),(5,0),(2,1),0}}{\alpha_{(0,2,1),(5,0)}} \\ &= 1 - \frac{1}{q} \frac{q^3 + 2q^2 + q - 2}{(q+1)(q^2 + 1)} \,. \end{split}$$

So
$$\rho_{(3,0,1),(2,1),(5,0),0} > 1 - \frac{23}{20} \frac{1}{a}$$
 for $q \ge 3$.