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SOLUTION 1: DIRECT COUNT

Given a line L in PG(3, g), how many lines are disjoint from L?
» There are (¢ + 1)(¢? + g + 1) lines in PG(3, q)
> 1+ (g +1)(g? + q) of those meet L.
» So, there are

(@ +1)(@P+g+1)—(g+1)(q?+q) —1=g* lines
disjoint from L (and this is almost all lines of PG(3, q).)
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Given aline L in PG(3, g), how many lines are disjoint from L?
LEMMA (B. SEGRE 1961 — LECTURES ON MODERN
GEOMETRY)

The number of (j — 1)-dimensional subspaces of PG(n — 1, q)
disjoint from a given (k — 1)-space equals

I lq

_ (@=1)(@"'=1)..(g" K1)
q (GF=1)(gF—T-1)...(g-1)

Here, j = k = 2, n = 4, so there are g?2 [’;‘]q — ¢* lines disjoint
from a given line in PG(3, q).

where [}]
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SOLUTION 3: DOUBLE COUNT

Given a line L in PG(3, g), how many lines are disjoint from L?

» Count pairs (M, ) where M is any line disjoint from L, and
m is any plane through M.

» Wefind X-(qg+1) =

( # planes 7 through L) - 0
+ ( # planes 7 not through L) - (# lines in 7 disjoint from 7= N L)

» Recursion
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The probability of spanning a classical
space by two non-degenerate subspaces of
complementary dimensions

S.P. Glasby @ & 3, Alice C. Niemeyer @ &, Cheryl E. Praeger ® &

The problem that we address in this paper arises from
algorithmic considerations connected with computations in
finite classical groups. In order to show that two isometries,
each leaving invariant a non-degenerate proper subspace,
generate a classical group with high probability a fundamental
problem arises:
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MOTIVATION

... Show that, with high probability, for a vector space V
endowed with a classical form, two random non-degenerate
subspaces whose dimensions sum to dim(V), are
complements of each other.



RECENT RESULTS

SAMPLE THEOREM FROM GLASBY, IHRINGER, MATTHEUS
(2023):
Theorem 5.2 Suppose V = (]qu)”*e2 is an (e1 + ez)-dimensional hermitian space where

e1,ep > 1. Fori € {1,2}, let Y; denote the set of all non-degenerate e;-spaces of V. The
proportion of pairs (S1, $2) € Y1 x Y for which S1 N Sy = {0} is at least 1 — q% where

c =2when (e1,e2,9) =(1,1,2), c = % when min{e1, ez} = 1 and (e1, e2,q) # (1, 1,2),
and ¢ = 1.26 otherwise.
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SAMPLE THEOREM FROM GLASBY, IHRINGER, MATTHEUS
(2023):
Theorem 5.2 Suppose V = (F, qz)“*e2 is an (e1 + e2)-dimensional hermitian space where
e1,ep > 1. Fori € {1,2}, let Y; denote the set of all non-degenerate e;-spaces of V. The
proportion of pairs (S1, $2) € Y1 x Y for which S1 N Sy = {0} is at least 1 — q% where
¢ =2when (e1,e2,q) = (1,1,2), c = 3 when min{ey, €2} = L and (e1, e2,9) # (1,1,2),
and ¢ = 1.26 otherwise.

Similar results in

» Glasby S.P, Niemeyer A.C., Praeger C.E.: The probability of spanning a classical space by two non-
degenerate subspaces of complementary dimensions. Finite Fields Their Appl. 82, 102055 (2022).

> Glasby S.P., Niemeyer A.C., Praeger C.E.: Random generation of direct sums of finite non-degenerate
subspaces, Linear Algebra Appl. Linear Algebra Appl. 649, 408-432 (2022).
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Naive approach: the probability that a pair of two random
subspaces is ‘good’ is

number of ‘good’ pairs of subspaces
total number of pairs of subspaces °

So...we should ‘simply’ count these quantities.
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ANZAHL THEOREMS FOR FORMED SPACES

> A formed space is a vector space together with a
sesquilinear form.

» Comes in symmetric, symplectic, hermitian type
(~~orthogonal, symplectic, unitary groups)

> Totally isotropic points define the classical polar spaces:
quadrics, symplectic spaces, Hermitian varieties.
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ANZAHL THEOREMS FOR FORMED SPACES

» Given a line L in PG(3, q), how many secant (resp.
passant) lines of a given Q™ (3, q) are disjoint from L?

» Depends on L being secant, passant, tangent to 9 (3, q)
» We can double count as before.
» But is there a known formula (for general dimension)?
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» What is the number of points on a quadric or Hermitian
variety?

WIKIPEDIA HAS THE ANSWER (NON-SINGULAR FORMS)

Form
Alternating
Hermitian
Hermitian
Quadratic
Quadratic

Quadratic

n+1 Name

Notation

2r Symplectic | W (2r — 1,q)

2r Hermitian | H(2r —1,q)

2r + 1| Hermitian | H(2r,q)

2r Hyperbolic | Q" (2r — 1,q)

2r + 1| Parabolic | Q(2r,q)

2r + 2 | Elliptic

Q (2r+1,9)

Number of points

¢ +1)0,-1(9)

7+ 16, (g
7+ 16, (g

¢ +1)6r-1(q)
¢ +1)6,1(q)

4t

+1)0,-1(q)

)
)

Collineation group
PI'Sp(2r,q)
PTU(2r,q)
PrU(2r+1,q)
Pro*(2r,q)
Pro(2r+1,q)
PrO™(2r +2,q)
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ANZAHL THEOREMS FOR FORMED SPACES

For subspaces of higher dimensions?

» An j-singular j-space corresponds to a cone with
(i — 1)-dimensional vertex and base a non-singular
(j — i — 1) quadric/Hermitian variety/symplectic space.

EXAMPLE: n =4, j = 3, QUADRATIC FORM OF HYPERBOLIC

TYPE
j-spaces correspond to planes meeting 97 (3, q)

» either 0-singular (plane meets in conic) or
» 1-singular (plane meets in 2 intersecting lines).
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» What is the number of i-singular j-spaces w.r.t. a form over
a finite field?
This is a classical result (see books of Hirschfeld or Wan).

EXAMPLE THEOREM
Let aj j  be the number of /-singular j-spaces w.r.t. a hermitian form on ]Fg (g square). For0 < i < min{j, n — j}
and j < nwe have that
=== __Fiziz1.n(9)
@1 i@y (d?)

Yij,n =

Here
b

0ap@ =TT (¢ = (=1) and vy @ =TI (¢ -1)

k=a k=a
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BACK TO THE BEGINNING

THE GOAL

Given a non-degenerate polar space in PG(n, q) find the
proportion of pairs (U, V) where U, V are disjoint non-singular
subspaces of dimensions j and n — j among all pairs of
non-singular subspaces of dimensions j and n — j.

BY TRANSITIVITY
We can fix U and look for the number of V’s disjoint from U.
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THE FORMULA

Given 7, a non-singular (j — 1)-space, count pairs (7, )
with 7 a non-singular (n — j)-space disjoint from =
o a non-singular hyperplane through 7.
DEFINITION
Consider a non-degenerate hermitian form f on Fgg.
> «;;nis the number of i-singular j-spaces .
» 3 nis the number of non-singular hyperplanes o O m in
ng.
» 7. is the number of non-singular n — j-spaces o in Ing
such that o N 7 is trivial.

We have a formula for . g follows from elementary double
counting.The goal is a formula for g j .



THE FORMULA

NOT SO ELEMENTARY DOUBLE COUNTING
We count the tuples (o, 7) with o a non-singular hyperplane,
and 7 C o a non-singular (n — j)-space disjoint from .



THE FORMULA

NOT SO ELEMENTARY DOUBLE COUNTING
We count the tuples (o, 7) with o a non-singular hyperplane,
and 7 C o a non-singular (n — j)-space disjoint from .

Yij,nBo,n—jin = 1 j—i—1,j—i (Bit1,j—1,n — Bij,n) Vitt j—1,n—1
+ o j—i—1,j—i (Bij—1,n — Bijn) Vij—1,n—1

. L
+ (L d 1] — L ! 1] ) (Bi=1,j=1,n — Bij.n) Yi-1,j—1,n-1
— g AL P
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formula follows by another double counting argument.



THE METHOD SUMMARISED

» Derive a recursion formula for ~
» ‘Guess’ the closed formula
» Prove the formula by induction

» Main work was for complementary case, the general
formula follows by another double counting argument.
The motivation was to find a formula for the 0-singular case but
this method requires us to derive a formula for all i-singular
cases at once.
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Vigink = Bigin ki Vit
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THE RESULTS (UNITARY CASE)

Theorem 3.7. For 0 <i<min{j,n—j}, j <n—1and k <n—j, we have that
Vigink = Bigin ki Vit

_ ke kr2ir-(5) [P =] g 1)k J=A (1) =me—i)
q nek—j q%,z(q)Z( Pliag-m@| | @

m=0

» The formula for the exact proportion of good subspaces
now follows directly.

Theorem 3.9. For integers j, k,n with0 < j,k <n—1 and j + k < n, we have

; Prjk (9) < il
pj,k,n:q]k (%") Prn—j—k+1n-k Z 17Llc4p+] o )[ ] q(Q)-mk

Crjr1n(®) A% Mg




THE RESULTS (UNITARY CASE)

Theorem 3.7. For 0 <i<min{j,n—j}, j <n—1and k <n—j, we have that
Visginok = Bigink+iYioj.k+j
] o ) X U0 2] @
» The formula for the exact proportion of good subspaces
now follows directly.

Theorem 3.9. For integers j, k,n with0 < j,k <n—1 and j + k < n, we have

_ j R
_ ,k,(7+1)4pn_]_k+1m-k<11) mk, + J () —mk
P = 8 Enmimtettnc k) S gkt (g7 | g
pria) PO,

REMARK
Getting from the exact proportion to a bound of the form
1— c# is still a lot of work.
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THE OTHER CASES

» Unitary case forms the blueprint of the main idea

» Symplectic case: a bit more complicated because the need
to count with subspaces of codimension 2

» Orthogonal case, odd characteristic: much more
complicated because of elliptic, parabolic, and hyperbolic
types, and the fact that the group can have more than one
orbit on j-singular spaces. There are four recursion
formulae depending on the parity of i, j, n so four different

formula for i s ). (n.e).(n—j.c)-



THE OTHER CASES

SAMPLE THEOREM IN ORTHOGONAL CASE (DE
BOECK-VDV)

Theorem 4.19. Let n,j,i be integers with 0 < i < j and i + j < n, such that n is even and j is
odd. Let § € {0,£1} and e, A € {£1} withj—i—8=1 (mod 2). Ifi is odd, then

n—j—i

8 1,2 82 1,414 1 Ll n—j—i _q .
V3,60, (mee), (n—iy0)e = q2ITAM 4T mamtaiTy Z le"}“_m(q)[ 2 ] gm(m—i+i+1)
m=0 m q?
1, 1 1. Y B noj—i g L
+ (qul—ﬂ —eqi™I +55q5"—71+51) Z X1 n,],,im(q)[ 2 ] gmim=ititl)
m=0 t m q*

If i is even, then

n—j—i-1
P

V(6,3,0),(n.€),(n—34,0).c = m

xl,nﬁm,m(q)[ ] gt
-

m

L aoipil n—j—i=1
_eqin—i Z X1,¥Am(‘1)[ 2 ] gm(m=i+)
m=0 q?
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SOME CONCLUDING REMARKS

» GAP was used to verify small cases (for fixed q)

» Maple came in handy to help guess the closed formula (for
general q)

» We prove that our solution satisfies the recursion by
induction.

» Unfortunately, we didn’t manage to get Maple/Sage to
actually do the induction proof, partially because of ‘tricks’
like this:

Lemma 2.10. For integers b > a > 0 we have

IR i R e T o R e I

» Orthogonal case, even characteristic: six different
recursion formulae...



Thank you!

ﬁ M. De Boeck and G. Van de Voorde. Anzahl theorems for trivially intersecting subspaces generating a
non-singular subspace I: symplectic and hermitian forms. Linear Algebra Appl. 699 (2024), 367-402.

ﬁ M. De Boeck and G. Van de Voorde. Anzahl theorems for disjoint subspaces generating a non-degenerate
subspace: quadratic forms. Combinatorial Theory (2025), 5 (2), # 12.



EXAMPLE: i =0,/=8,k=2,(=XA=1ANDNn=25(S0O
0=e=n=0)

Then we are looking for the proportion of pairs of conic planes
of perp type 1 and secant lines to a parabolic quadric Q(4, q)
which span the entire space, among all such pairs. This
proportion is

7(0,3,0,1),(5,0),(2,1),0
a(0,2,1),(5,0)
18 +2¢°+qg-2
qg(@+1)(g?+1)

P(3,0,1),(2,1),(5,0),0 =

S0 p(3,0,1),(2,1),(50,0 > 1 — g%g for g > 3.



	The problem

