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point (and this is almost all lines of PG(2,q)).

▶ Given a line L in PG(3,q), how many lines are disjoint from
L?



LET’S DO SOME COUNTING

▶ Given a point P in PG(2,q), how many lines are disjoint
from P?

There are q2 + q + 1 − (q + 1) = q2 lines disjoint from a given
point

(and this is almost all lines of PG(2,q)).

▶ Given a line L in PG(3,q), how many lines are disjoint from
L?



LET’S DO SOME COUNTING

▶ Given a point P in PG(2,q), how many lines are disjoint
from P?

There are q2 + q + 1 − (q + 1) = q2 lines disjoint from a given
point (and this is almost all lines of PG(2,q)).

▶ Given a line L in PG(3,q), how many lines are disjoint from
L?



LET’S DO SOME COUNTING

▶ Given a point P in PG(2,q), how many lines are disjoint
from P?

There are q2 + q + 1 − (q + 1) = q2 lines disjoint from a given
point (and this is almost all lines of PG(2,q)).

▶ Given a line L in PG(3,q), how many lines are disjoint from
L?
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SOLUTION 2: LOOK IT UP

Given a line L in PG(3,q), how many lines are disjoint from L?

LEMMA (B. SEGRE 1961 – LECTURES ON MODERN
GEOMETRY)
The number of (j − 1)-dimensional subspaces of PG(n − 1,q)
disjoint from a given (k − 1)-space equals

qkj
[
n − k

j

]
q
,

where
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k

]
q = (qn−1)(qn−1−1)...(qn−k+1−1)

(qk−1)(qk−1−1)...(q−1) .

Here, j = k = 2, n = 4, so there are q2·2[2
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]
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SOLUTION 3: DOUBLE COUNT

Given a line L in PG(3,q), how many lines are disjoint from L?

▶ Count pairs (M, π) where M is any line disjoint from L, and
π is any plane through M.

▶ We find X · (q + 1) =

( # planes π through L) · 0
+ ( # planes π not through L) · (# lines in π disjoint from π ∩ L)

▶ Recursion
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MOTIVATION

The problem that we address in this paper arises from
algorithmic considerations connected with computations in
finite classical groups. In order to show that two isometries,
each leaving invariant a non-degenerate proper subspace,
generate a classical group with high probability a fundamental
problem arises:
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Naive approach:

the probability that a pair of two random
subspaces is ‘good’ is

number of ‘good’ pairs of subspaces
total number of pairs of subspaces

.

So...we should ‘simply’ count these quantities.
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ANZAHL THEOREMS FOR FORMED SPACES

▶ A formed space is a vector space together with a
sesquilinear form.

▶ Comes in symmetric, symplectic, hermitian type
(⇝orthogonal, symplectic, unitary groups)

▶ Totally isotropic points define the classical polar spaces:
quadrics, symplectic spaces, Hermitian varieties.
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passant) lines of a given Q+(3,q) are disjoint from L?

▶ Depends on L being secant, passant, tangent to Q+(3,q)
▶ We can double count as before.
▶ But is there a known formula (for general dimension)?
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▶ An i-singular j-space corresponds to a cone with

(i − 1)-dimensional vertex and base a non-singular
(j − i − 1) quadric/Hermitian variety/symplectic space.

EXAMPLE: n = 4, j = 3, QUADRATIC FORM OF HYPERBOLIC
TYPE
j-spaces correspond to planes meeting Q+(3,q)
▶ either 0-singular (plane meets in conic) or
▶ 1-singular (plane meets in 2 intersecting lines).
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ANZAHL THEOREMS FOR FORMED SPACES

▶ What is the number of i-singular j-spaces w.r.t. a form over
a finite field?

This is a classical result (see books of Hirschfeld or Wan).

EXAMPLE THEOREM
Let αi,j,n be the number of i-singular j-spaces w.r.t. a hermitian form on Fn

q (q square). For 0 ≤ i ≤ min{j, n − j}
and j ≤ n we have that

αi,j,n = q(j−i)(n−j−i)
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BACK TO THE BEGINNING

THE GOAL
Given a non-degenerate polar space in PG(n,q)

find the
proportion of pairs (U,V ) where U,V are disjoint non-singular
subspaces of dimensions j and n − j among all pairs of
non-singular subspaces of dimensions j and n − j .

BY TRANSITIVITY
We can fix U and look for the number of V ’s disjoint from U.
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THE FORMULA

Given π, a non-singular (j − 1)-space, count pairs (τ, σ)
with τ a non-singular (n − j)-space disjoint from π
σ a non-singular hyperplane through τ .

DEFINITION
Consider a non-degenerate hermitian form f on Fn

q2 .
▶ αi,j,n is the number of i-singular j-spaces π.
▶ βi,j,n is the number of non-singular hyperplanes σ ⊇ π in

Fn
q2 .

▶ γi,j,n is the number of non-singular n − j-spaces σ in Fn
q2

such that σ ∩ π is trivial.

We have a formula for α. β follows from elementary double
counting.The goal is a formula for γ0,j,n.
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THE FORMULA

NOT SO ELEMENTARY DOUBLE COUNTING
We count the tuples (σ, τ) with σ a non-singular hyperplane,
and τ ⊆ σ a non-singular (n − j)-space disjoint from π.
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THE METHOD SUMMARISED

▶ Derive a recursion formula for γ
▶ ‘Guess’ the closed formula
▶ Prove the formula by induction
▶ Main work was for complementary case, the general

formula follows by another double counting argument.

The motivation was to find a formula for the 0-singular case but
this method requires us to derive a formula for all i-singular
cases at once.
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THE OTHER CASES

▶ Unitary case forms the blueprint of the main idea

▶ Symplectic case: a bit more complicated because the need
to count with subspaces of codimension 2

▶ Orthogonal case, odd characteristic: much more
complicated because of elliptic, parabolic, and hyperbolic
types, and the fact that the group can have more than one
orbit on i-singular spaces. There are four recursion
formulae depending on the parity of i , j ,n so four different
formula for γ(i,j,δ,λ),(n,ϵ),(n−j,ζ).
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THE OTHER CASES

SAMPLE THEOREM IN ORTHOGONAL CASE (DE
BOECK-VDV)



SOME CONCLUDING REMARKS

▶ GAP was used to verify small cases (for fixed q)

▶ Maple came in handy to help guess the closed formula (for
general q)

▶ We prove that our solution satisfies the recursion by
induction.

▶ Unfortunately, we didn’t manage to get Maple/Sage to
actually do the induction proof, partially because of ‘tricks’
like this:

▶ Orthogonal case, even characteristic: six different
recursion formulae...
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Thank you!
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EXAMPLE: i = 0, j = 3, k = 2, ζ = λ = 1 AND n = 5 (SO
δ = ϵ = η = 0)
Then we are looking for the proportion of pairs of conic planes
of perp type 1 and secant lines to a parabolic quadric Q(4,q)
which span the entire space, among all such pairs. This
proportion is

ρ(3,0,1),(2,1),(5,0),0 =
γ(0,3,0,1),(5,0),(2,1),0

α(0,2,1),(5,0)

= 1 − 1
q

q3 + 2q2 + q − 2
(q + 1)

(
q2 + 1

) .

So ρ(3,0,1),(2,1),(5,0),0 > 1 − 23
20

1
q for q ≥ 3.
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