Group testing via residuation and partial geometries'

Finite Geometries 2025 - Seventh Irsee Conference

Johan Vester Dinesen

Joint work with Oliver W. Gnilke, Marcus Greferath and Cornelia R6Bing.

Department of Mathematics and Systems Analysis,
Aalto University, Finland

September 5, 2025

A!

Aalto University
School of Science

'D., O.W. Gnilke, M. Greferath, C. RéBing. Group testing via residuation and partial geometries.
Advances in Mathematics of Communications, 2025, 19(2): 397-405. doi: 10.3934/amc.2024003’



Group testing

=6 =6 =6 =6 =6 6 = =6

Johan Vester Dinesen / Aalto University 2/12



Group testing

AAdadidiad

=6 =6 =6 =6 =6 6 = =6

Johan Vester Dinesen / Aalto University 2/12



Group testing
AAadldiddi
22 Vd

=6 =6 =6 =6 =6 =6 =6 =6
=%
=%

Johan Vester Dinesen / Aalto University 2/12



Group testing
AAadldiddi
22 Vd

—————————————————————————

=6 =6 =6 =6

Johan Vester Dinesen / Aalto University 2/12



Group testing

=6 =6 =6 =6 =6 =6 =6 =6

Johan Vester Dinesen / Aalto University

AAAAALAA

22

V
Vd

2

z

Vd

Vd

2/12



Group testing
AAadldiddi
22 Vd

=6 =6 =6 =6 =6 e ;e =6
=%
=%

Johan Vester Dinesen / Aalto University 2/12



Group testing
AAadldiddi
22 Vd

=6 =6 =6 =6 =6 e ;e =6
Y
=%

Johan Vester Dinesen / Aalto Univer: sity 2/12



Group testing
AALAAldiALdd
22 Vd

=6 =6 =6 =6 =6 e ;e =6
Y
=%

Johan Vester Dinesen / Aalto Univer: sity 2/12



Group testing

=6 =6 =6 =6 =6 e ;e =6
=N N
N ™
Y
NN
=%
=== P

Johan Vester Dinesen / Aalto Univer: sity 2/12



Group testing
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The problem of testing n items using & tests is modelled by a Boolean n x k matrix H
by x H = yT, where x denotes the items, H the test allocations, y the outcomes.

Johan Vester Dinesen / Aalto University

O O O O O = =

O O O O O o o

_ O = Rk O O O O

o O O O O+~ O O

_ O O O = O O O

== 0O O O O O O

O O O O = O O =

_ O = O O = =

2/12



Introduction

m Group testing was first studied in 1943 by Robert Dorfman to efficiently screen
draftees for syphilis during World War II.
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Linear Algebra on B,
Let B, denote the Boolean semiring (F but 1 + 1 = 1), and BY the semimodule of
n-tuples over B, with component-wise operations from Bo. For x,y € By we impose

the ordering
r<y&x+y=y < supp(z) C supp(y).
Lastly, = denotes the component-wise negation on z, satisfying De Morgan’s laws.
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Residuated Mappings

Definition
Let (A, <4) and (B, <p) be two partially ordered sets. For mappings f: A — B and
g: B — Athe pair (f,g) is a residuated pair, if there holds

flz)<py<=x<4g9(y), forallze Aandy € B.

We call f residuated if there exists a g such that (f, g) is residuated, and we call g its
residual. A residuated pair (f, g) has many nice properties:
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flz)<py<=x<4g9(y), forallze Aandy € B.

We call f residuated if there exists a g such that (f, g) is residuated, and we call g its
residual. A residuated pair (f, g) has many nice properties:
m f and g are monotone mappings and they uniquely determine each other.
B fogof=fandgofog=g,s0go fand fogforms closure and kernel
operators, respectively.
m if A and B are complete lattices then f is residuated if and only if it is a
V-homomorphism and f(04) = 0p.
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Residuated Mappings on B?

As BY is a complete lattice with V = + and A = -, we easily see that
f: By — B is residuated if and only if f(x) = xH for some H € IB%SX’“.
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Let f: BY — IB’; be a residuated mapping represented by the n x k matrix H. Then
the residual mapping g: B — BY is given by the assignment y s GH T .

Theorem (D., Gnilke, Greferath, R6Bing, 2025)

Let f: BY — IBS’Q“ be a residuated mapping represented by the n x k matrix H and let g
be the residual of f. Then the following are equivalent:

H is d-disjunct.

(9 © f)}BHam(Oyd) =1id.
BHam(Oa d) g lm(g)
BHam(la d) c COISP(H)'
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Group testing schemes

Definition
An (n, k, d)-group testing scheme is a residuated mapping f: By — IB%’; together with a

decoder g: BS — BY such that (g o f)| . 0. = id-

m Any d-disjunct n x k matrix H will yield a (n, k, d)-group testing scheme with the
residual g of f being the decoder.
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Group testing schemes

Definition

An (n, k, d)-group testing scheme is a residuated mapping f: By — IB%’; together with a
decoder g: BS — BY such that (g o f)| . 0. = id-

m Any d-disjunct n x k matrix H will yield a (n, k, d)-group testing scheme with the
residual g of f being the decoder.

Furthermore, the group testing scheme also allows us to verify if a given test outcome
is indeed a valid outcome given the test matrix.

Proposition

Let f: BY — BS be a residuated mapping. Theny € im(f) if and only if (f o g)(y) = y.

Suggests we should consider error-correcting codes!

Johan Vester Dinesen / Aalto University 7/12



Error-Correcting Codes on B

As a residuated mapping f: B — ]B%’g induced by a d-disjunct matrix is injective on
Bham(0,d), then for any § < d we can construct codes Cy s C BS as

Cf,& = f(BHaIn(O7 5))1 with ‘Cfﬁ‘ = Z?:O (Tzl)
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Error-Correcting Codes on B

As a residuated mapping f: B — IB%’g induced by a d-disjunct matrix is injective on
Bham(0,d), then for any § < d we can construct codes Cy s C BS as
; B
Cys = f(Buam(0,6)), with [Crs| = >0 (7)-
Motivating Example:
Let H be the 7 x 7 incidence matrix of the Fano plane,
which is 2-disjunct. We can define 2 codes:
m C; 1 has minimum distance 3 = can identify one
infected sample, while also correcting a faulty test.
m Cy 2 has minimum distance 2 = can identity two
infected samples, but cannot correct any faulty

tests. Figure: The Fano plane.

Question: Can we find classes of such codes with efficient decoders?
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Inducing codes from Inversive Planes

Definition (Inversive Planes)

An inversive plane of order n is an incidence structure of points and circles, where
Any circle has n + 1 points,
A unique circle is incident with any given triple of points,
If p1 € 1 and pa ¢ ¢y, there exists a unique circle ¢z such that py, pa2 € ca,
There exists 4 points which are not concircular.

Is also a 3-(n? + 1,n + 1,1)-design, or a S(3,n? + 1,n + 1) Steiner system.
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A unique circle is incident with any given triple of points,
If p1 € 1 and pa ¢ ¢y, there exists a unique circle ¢z such that py, pa2 € ca,
There exists 4 points which are not concircular.

Is also a 3-(n? + 1,n + 1,1)-design, or a S(3,n? + 1,n + 1) Steiner system.

Proposition

Let H be the incidence matrix H of an inversive plane of order n and let

f: B;‘("QH) — IB%Q2+1 be the corresponding residuated mapping. H is then 1-disjunct,
andCy; \ {0} is a constant weight code of minimum distance n + 1.

Thus, inversive planes can be used to generate testing schemes with good
error-correcting capabilities, assuming the prevalence of the underlying disease is low.
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Partial Linear Spaces

Definition

For s,t € N, a finite incidence structure (P, L) of points and lines is a partial linear
space of order (s, 1) if

m Every line is incident with s + 1 points, and every point is incident with ¢ + 1 lines.
m Two different points are connected by at most one line.
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Definition
For s,t € N, a finite incidence structure (P, L) of points and lines is a partial linear
space of order (s, 1) if
m Every line is incident with s + 1 points, and every point is incident with ¢ + 1 lines.
m Two different points are connected by at most one line.

Theorem

Let (P, L) be a partial linear space of order (s,t), and let ¢4, .. ., ¢,, denote a collection
of m < s distinct lines. If ¢ € L with? C {1 U ... U/, thent = {; for some j < m.

Proof.
Suppose for contradiction that £ # ¢; fori = 1,...,m. Then [{ N ¢;| < 1, so

m m
s+l=J<lenJa| <D lent] <m.
i=1 i=1 O
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Corollary

An |L| x | P| incidence matrix H of a partial linear space (P, L) of order (s,t) is
s-disjunct.
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Definition (Generalized quadrangle)

A partial linear space (P, L) of order (s, t) is called a
generalized quadrangle, GQ(s, t), if for any non-incident
point-line pair (p, ¢), there exists a unique point ¢ on ¢
that is connected with p by a line.

Figure: GQ(2,2), or W(2).
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generalized quadrangle, GQ(s, t), if for any non-incident
point-line pair (p, ¢), there exists a unique point ¢ on ¢
that is connected with p by a line.

Definition (Generalized quadrangle) @

Figure: GQ(2,2), or W(2).

Corollary
GQ(s,t) yields a ((s + 1)(st + 1), (t + 1)(st + 1), s)-group testing scheme.
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Final remarks

m Group testing is seeing actual proof of concepts, using 1-disjunct 100 x 20 test
matrix (Stoltze et al., ’'Combinatorial batching of DNA for ultralow-cost detection of
pathogenic variants’, Genome Medicine, 2023.), and has received >€3.000.000
with the intention of clinical implementation in Denmark.
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m Group testing is seeing actual proof of concepts, using 1-disjunct 100 x 20 test
matrix (Stoltze et al., ’'Combinatorial batching of DNA for ultralow-cost detection of
pathogenic variants’, Genome Medicine, 2023.), and has received >€3.000.000
with the intention of clinical implementation in Denmark.

m Optimal 1-disjunct matrices are solved by Sperner’'s Theorem, but even for d = 2
and k € [16] the maximal n is not known (A286874, OEIS).
m Try to construct d-disjunct matrices with "nice" properties:
n > k and for specific d.
Constant weight columns and rows for samples with "equal dilution".

Sparse matrices.
Induces codes with high minimum distance and an efficient decoder.

B Assuming different error models; maybe false positives are more likely than false
negatives, so channel should not have symmetric cross-over probability.
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Thank you for your attention!
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