Group testing via residuation and partial geometries¹

Finite Geometries 2025 - Seventh Irsee Conference

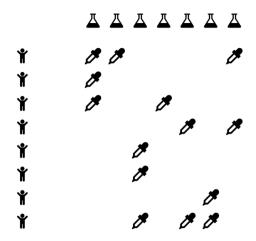
Johan Vester Dinesen

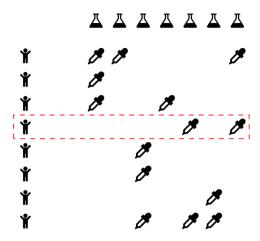
Joint work with Oliver W. Gnilke, Marcus Greferath and Cornelia Rößing.

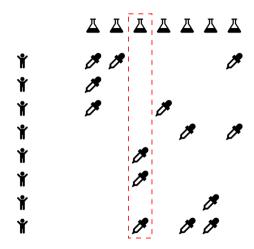
Department of Mathematics and Systems Analysis, Aalto University, Finland

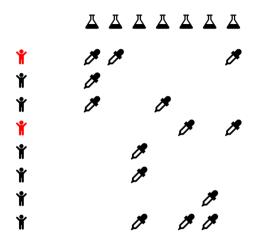
September 5, 2025

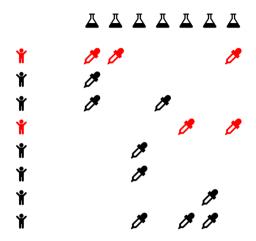
¹'D., O.W. Gnilke, M. Greferath, C. Rößing. Group testing via residuation and partial geometries. Advances in Mathematics of Communications, 2025, 19(2): 397-405. doi: 10.3934/amc.2024003'

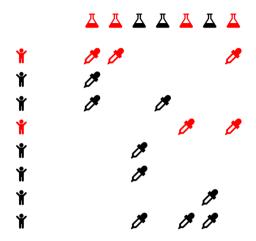


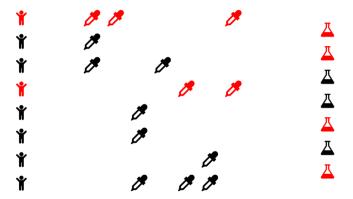












The problem of testing n items using k tests is modelled by a Boolean $n \times k$ matrix H by $x^{\top}H = y^{\top}$, where x denotes the items, H the test allocations, y the outcomes.

Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

What are some natural questions to consider motivated by compressive sensing?

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

What are some natural questions to consider motivated by compressive sensing? We let H be an $n \times k$ matrix over \mathbb{B}_2 , $x \in \mathbb{B}_2^n$ and $y \in \mathbb{B}_2^k$.

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

What are some natural questions to consider motivated by compressive sensing? We let H be an $n \times k$ matrix over \mathbb{B}_2 , $x \in \mathbb{B}_2^n$ and $y \in \mathbb{B}_2^k$.

1 For what sparseness of x can we (explicitly) construct efficient testing matrices such that we can infer x, given xH=y?

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

What are some natural questions to consider motivated by compressive sensing?

We let H be an $n \times k$ matrix over \mathbb{B}_2 , $x \in \mathbb{B}_2^n$ and $y \in \mathbb{B}_2^k$.

- 1 For what sparseness of x can we (explicitly) construct efficient testing matrices such that we can infer x, given xH = y?
- 2 Can we infer x efficiently?

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

What are some natural questions to consider motivated by compressive sensing?

We let H be an $n \times k$ matrix over \mathbb{B}_2 , $x \in \mathbb{B}_2^n$ and $y \in \mathbb{B}_2^k$.

- 1 For what sparseness of x can we (explicitly) construct efficient testing matrices such that we can infer x, given xH = y?
- 2 Can we infer x efficiently?
- For fixed d = supp(x) what are some lower bounds on n, given k (or the converse), such that we have guaranteed inference of x?

- Group testing was first studied in 1943 by Robert Dorfman to efficiently screen draftees for syphilis during World War II.
- Lots of applications! telecommunications, information technology, data science, cyber security, engineering, genomics, forensics, logistics, software testing, material sciences...
- Simple problem statement yielding interesting combinatorial problems.
 - Well-studied through equivalent objects (superimposed codes, cover free families, disjunct systems, coverings of order-interval hypergraphs), but still has many open existence problems.

What are some natural questions to consider motivated by compressive sensing?

We let H be an $n \times k$ matrix over \mathbb{B}_2 , $x \in \mathbb{B}_2^n$ and $y \in \mathbb{B}_2^k$.

- 1 For what sparseness of x can we (explicitly) construct efficient testing matrices such that we can infer x, given xH = y?
- 2 Can we infer x efficiently?
- For fixed d = supp(x) what are some lower bounds on n, given k (or the converse), such that we have guaranteed inference of x?

Let \mathbb{B}_2 denote the Boolean semiring $(\mathbb{F}_2 \text{ but } 1+1=1)$, and \mathbb{B}_2^n the semimodule of n-tuples over \mathbb{B}_2 with component-wise operations from \mathbb{B}_2 . For $x,y\in\mathbb{B}_2^n$ we impose the ordering

$$x \le y \Leftrightarrow x + y = y \Leftrightarrow \operatorname{supp}(x) \subseteq \operatorname{supp}(y).$$

Lastly, \overline{x} denotes the component-wise negation on x, satisfying De Morgan's laws.

Let \mathbb{B}_2 denote the Boolean semiring $(\mathbb{F}_2$ but 1+1=1), and \mathbb{B}_2^n the semimodule of n-tuples over \mathbb{B}_2 with component-wise operations from \mathbb{B}_2 . For $x,y\in\mathbb{B}_2^n$ we impose the ordering

$$x \le y \Leftrightarrow x + y = y \Leftrightarrow \operatorname{supp}(x) \subseteq \operatorname{supp}(y).$$

Lastly, \overline{x} denotes the component-wise negation on x, satisfying De Morgan's laws.

Definition

Let $H \in \mathbb{B}_2^{n \times k}$ and $d \in \mathbb{N}$. H is

- d-Rev if for any $x \in B_{\operatorname{Ham}}(\mathbf{0},d) \subseteq \mathbb{B}_2^n$ and $z \in \mathbb{B}_2^n$ where xH = zH, then x = z.
- d-disjunct if the sum of any $t \leq d$ rows of H does not contain any other row of H.

Let \mathbb{B}_2 denote the Boolean semiring $(\mathbb{F}_2$ but 1+1=1), and \mathbb{B}_2^n the semimodule of n-tuples over \mathbb{B}_2 with component-wise operations from \mathbb{B}_2 . For $x,y\in\mathbb{B}_2^n$ we impose the ordering

$$x \le y \Leftrightarrow x + y = y \Leftrightarrow \operatorname{supp}(x) \subseteq \operatorname{supp}(y).$$

Lastly, \overline{x} denotes the component-wise negation on x, satisfying De Morgan's laws.

Definition

Let $H \in \mathbb{B}_2^{n \times k}$ and $d \in \mathbb{N}$. H is

- d-Rev if for any $x \in B_{\text{Ham}}(\mathbf{0}, d) \subseteq \mathbb{B}_2^n$ and $z \in \mathbb{B}_2^n$ where xH = zH, then x = z.
- d-disjunct if the sum of any $t \leq d$ rows of H does not contain any other row of H.

d-disjunctness is equivalent to if for any d+1 rows, where you designate one, then there exists a column with a 1 in the designated row, and 0 in the other d rows.

Let \mathbb{B}_2 denote the Boolean semiring $(\mathbb{F}_2$ but 1+1=1), and \mathbb{B}_2^n the semimodule of n-tuples over \mathbb{B}_2 with component-wise operations from \mathbb{B}_2 . For $x,y\in\mathbb{B}_2^n$ we impose the ordering

$$x \le y \Leftrightarrow x + y = y \Leftrightarrow \operatorname{supp}(x) \subseteq \operatorname{supp}(y).$$

Lastly, \overline{x} denotes the component-wise negation on x, satisfying De Morgan's laws.

Definition

Let $H \in \mathbb{B}_2^{n \times k}$ and $d \in \mathbb{N}$. H is

- d-Rev if for any $x \in B_{\text{Ham}}(\mathbf{0}, d) \subseteq \mathbb{B}_2^n$ and $z \in \mathbb{B}_2^n$ where xH = zH, then x = z.
- lacksquare d-disjunct if the sum of any $t \leq d$ rows of H does not contain any other row of H.

d-disjunctness is equivalent to if for any d+1 rows, where you designate one, then there exists a column with a 1 in the designated row, and 0 in the other d rows.

Theorem

 $H \in B_2^{n \times k}$ is d-Rev if and only if it is d-disjunct.

Let \mathbb{B}_2 denote the Boolean semiring $(\mathbb{F}_2$ but 1+1=1), and \mathbb{B}_2^n the semimodule of n-tuples over \mathbb{B}_2 with component-wise operations from \mathbb{B}_2 . For $x,y\in\mathbb{B}_2^n$ we impose the ordering

$$x \le y \Leftrightarrow x + y = y \Leftrightarrow \operatorname{supp}(x) \subseteq \operatorname{supp}(y).$$

Lastly, \overline{x} denotes the component-wise negation on x, satisfying De Morgan's laws.

Definition

Let $H \in \mathbb{B}_2^{n \times k}$ and $d \in \mathbb{N}$. H is

- d-Rev if for any $x \in B_{\text{Ham}}(\mathbf{0}, d) \subseteq \mathbb{B}_2^n$ and $z \in \mathbb{B}_2^n$ where xH = zH, then x = z.
- lacksquare d-disjunct if the sum of any $t \leq d$ rows of H does not contain any other row of H.

d-disjunctness is equivalent to if for any d+1 rows, where you designate one, then there exists a column with a 1 in the designated row, and 0 in the other d rows.

Theorem

 $H \in B_2^{n \times k}$ is d-Rev if and only if it is d-disjunct.

Definition

Let (A, \leq_A) and (B, \leq_B) be two partially ordered sets. For mappings $f \colon A \to B$ and $g \colon B \to A$ the pair (f,g) is a *residuated pair*, if there holds

$$f(x) \leq_B y \iff x \leq_A g(y)$$
, for all $x \in A$ and $y \in B$.

We call f residuated if there exists a g such that (f,g) is residuated, and we call g its residual. A residuated pair (f,g) has many nice properties:

Definition

Let (A, \leq_A) and (B, \leq_B) be two partially ordered sets. For mappings $f \colon A \to B$ and $g \colon B \to A$ the pair (f,g) is a *residuated pair*, if there holds

$$f(x) \leq_B y \iff x \leq_A g(y)$$
, for all $x \in A$ and $y \in B$.

We call f residuated if there exists a g such that (f,g) is residuated, and we call g its residual. A residuated pair (f,g) has many nice properties:

 \blacksquare f and g are monotone mappings and they uniquely determine each other.

Definition

Let (A, \leq_A) and (B, \leq_B) be two partially ordered sets. For mappings $f \colon A \to B$ and $g \colon B \to A$ the pair (f,g) is a *residuated pair*, if there holds

$$f(x) \leq_B y \iff x \leq_A g(y)$$
, for all $x \in A$ and $y \in B$.

We call f residuated if there exists a g such that (f,g) is residuated, and we call g its residual. A residuated pair (f,g) has many nice properties:

- \blacksquare f and g are monotone mappings and they uniquely determine each other.
- $f \circ g \circ f = f$ and $g \circ f \circ g = g$, so $g \circ f$ and $f \circ g$ forms closure and kernel operators, respectively.

Definition

Let (A, \leq_A) and (B, \leq_B) be two partially ordered sets. For mappings $f \colon A \to B$ and $g \colon B \to A$ the pair (f,g) is a *residuated pair*, if there holds

$$f(x) \leq_B y \iff x \leq_A g(y)$$
, for all $x \in A$ and $y \in B$.

We call f residuated if there exists a g such that (f,g) is residuated, and we call g its residual. A residuated pair (f,g) has many nice properties:

- \blacksquare f and g are monotone mappings and they uniquely determine each other.
- $f \circ g \circ f = f$ and $g \circ f \circ g = g$, so $g \circ f$ and $f \circ g$ forms closure and kernel operators, respectively.
- if A and B are complete lattices then f is residuated if and only if it is a \vee -homomorphism and $f(0_A)=0_B$.

Residuated Mappings on \mathbb{B}_2^n

As \mathbb{B}_2^n is a complete lattice with $\vee = +$ and $\wedge = \cdot$, we easily see that

$$f \colon \mathbb{B}^n_2 \to \mathbb{B}^k_2$$
 is residuated if and only if $f(x) = xH$ for some $H \in \mathbb{B}^{n \times k}_2$.

Residuated Mappings on \mathbb{B}_2^n

As \mathbb{B}_2^n is a complete lattice with $\vee = +$ and $\wedge = \cdot$, we easily see that $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ is residuated if and only if f(x) = xH for some $H \in \mathbb{B}_2^{n \times k}$.

Theorem (D., Gnilke, Greferath, Rößing, 2025)

Let $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ be a residuated mapping represented by the $n \times k$ matrix H. Then the residual mapping $g: \mathbb{B}_2^k \to \mathbb{B}_2^n$ is given by the assignment $y \mapsto \overline{y}H^\top$.

Residuated Mappings on \mathbb{B}_2^n

As \mathbb{B}_2^n is a complete lattice with $\vee = +$ and $\wedge = \cdot$, we easily see that

 $f \colon \mathbb{B}_2^n \to \mathbb{B}_2^k$ is residuated if and only if f(x) = xH for some $H \in \mathbb{B}_2^{n \times k}$.

Theorem (D., Gnilke, Greferath, Rößing, 2025)

Let $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ be a residuated mapping represented by the $n \times k$ matrix H. Then the residual mapping $g: \mathbb{B}_2^k \to \mathbb{B}_2^n$ is given by the assignment $y \mapsto \overline{y}H^\top$.

Theorem (D., Gnilke, Greferath, Rößing, 2025)

Let $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ be a residuated mapping represented by the $n \times k$ matrix H and let g be the residual of f. Then the following are equivalent:

- lacktriangledown H is d-disjunct.
- $(g \circ f)|_{B_{\mathbf{Ham}}(\mathbf{0},d)} = \mathrm{id}.$
- $B_{\operatorname{Ham}}(\mathbf{0},d)\subseteq \operatorname{im}(g).$
- 4 $B_{\text{Ham}}(\mathbf{1}, d) \subseteq \text{colsp}(H)$.

Group testing schemes

Definition

An (n,k,d)-group testing scheme is a residuated mapping $f\colon \mathbb{B}_2^n \to \mathbb{B}_2^k$ together with a decoder $g\colon \mathbb{B}_2^k \to \mathbb{B}_2^n$ such that $(g\circ f)\big|_{B_{\mathrm{Ham}}(\mathbf{0},d)}=\mathrm{id}.$

Any d-disjunct $n \times k$ matrix H will yield a (n, k, d)-group testing scheme with the residual g of f being the decoder.

Group testing schemes

Definition

An (n,k,d)-group testing scheme is a residuated mapping $f\colon \mathbb{B}_2^n \to \mathbb{B}_2^k$ together with a decoder $g\colon \mathbb{B}_2^k \to \mathbb{B}_2^n$ such that $(g\circ f)\big|_{B_{\mathrm{Ham}}(\mathbf{0},d)}=\mathrm{id}.$

Any d-disjunct $n \times k$ matrix H will yield a (n, k, d)-group testing scheme with the residual g of f being the decoder.

Furthermore, the group testing scheme also allows us to verify if a given test outcome is indeed a valid outcome given the test matrix.

Proposition

Let $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ be a residuated mapping. Then $y \in \text{im}(f)$ if and only if $(f \circ g)(y) = y$.

Group testing schemes

Definition

An (n,k,d)-group testing scheme is a residuated mapping $f\colon \mathbb{B}_2^n \to \mathbb{B}_2^k$ together with a decoder $g\colon \mathbb{B}_2^k \to \mathbb{B}_2^n$ such that $(g\circ f)\big|_{B_{\mathrm{Ham}}(\mathbf{0},d)}=\mathrm{id}.$

Any d-disjunct $n \times k$ matrix H will yield a (n, k, d)-group testing scheme with the residual g of f being the decoder.

Furthermore, the group testing scheme also allows us to verify if a given test outcome is indeed a valid outcome given the test matrix.

Proposition

Let $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ be a residuated mapping. Then $y \in \text{im}(f)$ if and only if $(f \circ g)(y) = y$.

Suggests we should consider error-correcting codes!

Error-Correcting Codes on \mathbb{B}_2^k

As a residuated mapping $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ induced by a d-disjunct matrix is injective on $B_{\mathrm{Ham}}(\mathbf{0},d)$, then for any $\delta \leq d$ we can construct codes $\mathcal{C}_{f,\delta} \subseteq \mathbb{B}_2^k$ as $\mathcal{C}_{f,\delta} = f(B_{\mathrm{Ham}}(\mathbf{0},\delta))$, with $|\mathcal{C}_{f,\delta}| = \sum_{i=0}^{\delta} \binom{n}{i}$.

Error-Correcting Codes on \mathbb{B}_2^k

As a residuated mapping $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ induced by a d-disjunct matrix is injective on $B_{\mathrm{Ham}}(\mathbf{0},d)$, then for any $\delta \leq d$ we can construct codes $\mathcal{C}_{f,\delta} \subseteq \mathbb{B}_2^k$ as $\mathcal{C}_{f,\delta} = f(B_{\mathrm{Ham}}(\mathbf{0},\delta))$, with $|\mathcal{C}_{f,\delta}| = \sum_{i=0}^{\delta} \binom{n}{i}$.

Motivating Example:

Let H be the 7×7 incidence matrix of the Fano plane, which is 2-disjunct. We can define 2 codes:

- $C_{f,1}$ has minimum distance $3 \Rightarrow$ can identify one infected sample, while also correcting a faulty test.
- $C_{f,2}$ has minimum distance $2 \Rightarrow$ can identity two infected samples, but cannot correct any faulty tests.

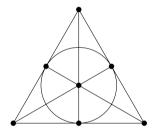


Figure: The Fano plane.

Error-Correcting Codes on \mathbb{B}_2^k

As a residuated mapping $f: \mathbb{B}_2^n \to \mathbb{B}_2^k$ induced by a d-disjunct matrix is injective on $B_{\mathrm{Ham}}(\mathbf{0},d)$, then for any $\delta \leq d$ we can construct codes $\mathcal{C}_{f,\delta} \subseteq \mathbb{B}_2^k$ as $\mathcal{C}_{f,\delta} = f(B_{\mathrm{Ham}}(\mathbf{0},\delta))$, with $|\mathcal{C}_{f,\delta}| = \sum_{i=0}^{\delta} \binom{n}{i}$.

Motivating Example:

Let H be the 7×7 incidence matrix of the Fano plane, which is 2-disjunct. We can define 2 codes:

- $C_{f,1}$ has minimum distance $3 \Rightarrow$ can identify one infected sample, while also correcting a faulty test.
- $C_{f,2}$ has minimum distance $2 \Rightarrow$ can identity two infected samples, but cannot correct any faulty tests.

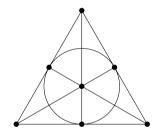


Figure: The Fano plane.

Question: Can we find classes of such codes with efficient decoders?

Inducing codes from Inversive Planes

Definition (Inversive Planes)

An inversive plane of order n is an incidence structure of points and circles, where

- **1** Any circle has n+1 points,
- 2 A unique circle is incident with any given triple of points,
- 3 If $p_1 \in c_1$ and $p_2 \notin c_1$, there exists a unique circle c_2 such that $p_1, p_2 \in c_2$,
- 4 There exists 4 points which are not concircular.

Is also a 3- $(n^2 + 1, n + 1, 1)$ -design, or a $S(3, n^2 + 1, n + 1)$ Steiner system.

Inducing codes from Inversive Planes

Definition (Inversive Planes)

An inversive plane of order n is an incidence structure of points and circles, where

- **1** Any circle has n+1 points,
- 2 A unique circle is incident with any given triple of points,
- 3 If $p_1 \in c_1$ and $p_2 \notin c_1$, there exists a unique circle c_2 such that $p_1, p_2 \in c_2$,
- 4 There exists 4 points which are not concircular.

Is also a 3- $(n^2 + 1, n + 1, 1)$ -design, or a $S(3, n^2 + 1, n + 1)$ Steiner system.

Proposition

Let H be the incidence matrix H of an inversive plane of order n and let $f: \mathbb{B}_2^{n(n^2+1)} \to \mathbb{B}_2^{n^2+1}$ be the corresponding residuated mapping. H is then 1-disjunct, and $\mathcal{C}_{f,1} \setminus \{0\}$ is a constant weight code of minimum distance n+1.

Thus, inversive planes can be used to generate testing schemes with good error-correcting capabilities, assuming the prevalence of the underlying disease is low.

Partial Linear Spaces

Definition

For $s,t\in\mathbb{N}$, a finite incidence structure (P,L) of points and lines is a *partial linear space* of order (s,t) if

- lacktriangle Every line is incident with s+1 points, and every point is incident with t+1 lines.
- Two different points are connected by at most one line.

Partial Linear Spaces

Definition

For $s,t\in\mathbb{N}$, a finite incidence structure (P,L) of points and lines is a *partial linear space* of order (s,t) if

- lacktriangle Every line is incident with s+1 points, and every point is incident with t+1 lines.
- Two different points are connected by at most one line.

Theorem

Let (P,L) be a partial linear space of order (s,t), and let ℓ_1,\ldots,ℓ_m denote a collection of $m\leq s$ distinct lines. If $\ell\in L$ with $\ell\subseteq \ell_1\cup\ldots\cup\ell_m$ then $\ell=\ell_j$ for some $j\leq m$.

Partial Linear Spaces

Definition

For $s,t\in\mathbb{N}$, a finite incidence structure (P,L) of points and lines is a *partial linear space* of order (s,t) if

- lacktriangle Every line is incident with s+1 points, and every point is incident with t+1 lines.
- Two different points are connected by at most one line.

Theorem

Let (P,L) be a partial linear space of order (s,t), and let ℓ_1,\ldots,ℓ_m denote a collection of $m\leq s$ distinct lines. If $\ell\in L$ with $\ell\subseteq \ell_1\cup\ldots\cup\ell_m$ then $\ell=\ell_j$ for some $j\leq m$.

Proof.

Suppose for contradiction that $\ell \neq \ell_i$ for $i=1,\ldots,m$. Then $|\ell \cap \ell_i| \leq 1$, so

$$s+1=|\ell| \le \left|\ell \cap \bigcup_{i=1}^m \ell_i\right| \le \sum_{i=1}^m |\ell \cap \ell_i| \le m.$$

Corollary

An $|L| \times |P|$ incidence matrix H of a partial linear space (P,L) of order (s,t) is s-disjunct.

Corollary

An $|L| \times |P|$ incidence matrix H of a partial linear space (P,L) of order (s,t) is s-disjunct.

Definition (Generalized quadrangle)

A partial linear space (P,L) of order (s,t) is called a generalized quadrangle, GQ(s,t), if for any non-incident point-line pair (p,ℓ) , there exists a unique point q on ℓ that is connected with p by a line.

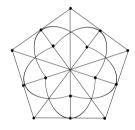


Figure: GQ(2,2), or W(2).

Corollary

An $|L| \times |P|$ incidence matrix H of a partial linear space (P,L) of order (s,t) is s-disjunct.

Definition (Generalized quadrangle)

A partial linear space (P,L) of order (s,t) is called a generalized quadrangle, GQ(s,t), if for any non-incident point-line pair (p,ℓ) , there exists a unique point q on ℓ that is connected with p by a line.

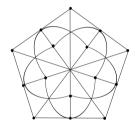


Figure: GQ(2,2), or W(2).

Corollary

GQ(s,t) yields a ((s+1)(st+1),(t+1)(st+1),s)-group testing scheme.

Final remarks

■ Group testing is seeing actual proof of concepts, using 1-disjunct 100 × 20 test matrix (Stoltze et al., 'Combinatorial batching of DNA for ultralow-cost detection of pathogenic variants', Genome Medicine, 2023.), and has received ≥€3.000.000 with the intention of clinical implementation in Denmark.

Final remarks

- Group testing is seeing actual proof of concepts, using 1-disjunct 100 × 20 test matrix (Stoltze et al., 'Combinatorial batching of DNA for ultralow-cost detection of pathogenic variants', Genome Medicine, 2023.), and has received ≥€3.000.000 with the intention of clinical implementation in Denmark.
- Optimal 1-disjunct matrices are solved by Sperner's Theorem, but even for d=2 and $k \in [16]$ the maximal n is not known (A286874, OEIS).

Final remarks

- Group testing is seeing actual proof of concepts, using 1-disjunct 100 × 20 test matrix (Stoltze et al., 'Combinatorial batching of DNA for ultralow-cost detection of pathogenic variants', Genome Medicine, 2023.), and has received ≥€3.000.000 with the intention of clinical implementation in Denmark.
- Optimal 1-disjunct matrices are solved by Sperner's Theorem, but even for d=2 and $k\in[16]$ the maximal n is not known (A286874, OEIS).
- Try to construct *d*-disjunct matrices with "nice" properties:
 - 1 $n \gg k$ and for specific d.
 - Constant weight columns and rows for samples with "equal dilution".
 - 3 Sparse matrices.
 - 4 Induces codes with high minimum distance and an efficient decoder.
 - Assuming different error models; maybe false positives are more likely than false negatives, so channel should not have symmetric cross-over probability.
 - 5 ...?

Thank you for your attention!