

# Università degli Studi di Padova

# Regular fat linearized polynomials

joint work with Valentino Smaldore and Ferdinando Zullo

Corrado Zanella

Finite Geometries 2025 Seventh Irsee Conference



- 1. Regular fat linear sets and polynomials
- 2. The rank-metric code associated with an RFLS
- 3. Points of complementary weights
- 4. r > 2, i > 2
- 5. Back to  $\phi_{\textit{m},\sigma}$



- 1. Regular fat linear sets and polynomials
- 2. The rank-metric code associated with an RFLS
- 3. Points of complementary weights
- 4. r > 2, i > 2
- 5. Back to  $\phi_{m,\sigma}$

# **Definitions**



• The linear set of rank  $\rho$  in PG( $k-1,q^n$ ) associated with an  $\mathbb{F}_q$ -subspace U of  $\mathbb{F}_{q^n}^k$ , dim $\mathbb{F}_q$   $U=\rho$ :

$$L_U = \{\langle \mathbf{v} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{v} \in U, \mathbf{v} \neq \mathbf{0}\}$$

•  $\mathcal{L}_{n,q} = \{\sum_{i=0}^{n-1} a_i X^{q^i} : a_0, \dots, a_{n-1} \in \mathbb{F}_{q^n} \}$ . For any  $f \in \mathcal{L}_{n,q}$  define  $U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n} \}$ . The *linear set* or rank n associated with f is

$$L_f = L_{U_f} = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^*\} \subseteq \mathsf{PG}(1, q^n)$$

• The weight w.r.t.  $L_U$  of a point  $P = \langle \mathbf{v} \rangle_{\mathbb{F}_{q^n}} \in \mathsf{PG}(k-1,q^n)$  is

$$w_{L_U}(P) = w(P) = \dim_{\mathbb{F}_q} (\langle \mathbf{v} \rangle_{\mathbb{F}_{q^n}} \cap U)$$

•  $L_U$  is scattered [Blokhuis - Lavrauw 2000] if  $\dim_{\mathbb{F}_q} \left( \langle \mathbf{v} \rangle_{\mathbb{F}_{q^n}} \cap U \right) \leq 1$  for all  $\mathbf{v} \in \mathbb{F}_{q^n}^k$ 

# **Definitions**



•  $f \in \mathcal{L}_{n,q}$  is scattered if  $L_f$  is scattered; equivalently,

$$x, y \in \mathbb{F}_{q^n}^*, \quad \frac{f(x)}{x} = \frac{f(y)}{y} \Rightarrow \frac{x}{y} \in \mathbb{F}_q$$

- For  $1 < t \mid n$ ,  $L_U \subseteq PG(k-1,q^n)$  is R-  $q^t$  -partially scattered if  $\dim_{\mathbb{F}_q} \left( \langle \mathbf{v} \rangle_{\mathbb{F}_{q^t}} \cap U \right) \le 1$  for all  $\mathbf{v} \in \mathbb{F}_{q^n}^k$  [Longobardi Z 2021]
- [Smaldore Z Zullo 2024]: Let n = 2t, q odd,  $\sigma = q^J$ , gcd(J, t) = 1,  $t \ge 3$ , and

$$\phi_{m,\sigma} = X^{\sigma^{t-1}} + X^{\sigma^{2t-1}} + m\left(X^{\sigma} - X^{\sigma^{t+1}}\right) \in \mathcal{L}_{n,\sigma}$$

For any  $0 \neq m \in \mathbb{F}_{q^t}$ ,  $\phi_{m,\sigma}$  is R-  $q^t$ -partially scattered. If m is neither a  $(\sigma-1)$ -th power nor a  $(\sigma+1)$ -th power of an element of  $E=\{x\in \mathbb{F}_{q^{2t}}: \operatorname{Tr}_{q^{2t}/q^t}(x)=0\}$ , the polynomial  $\phi_{m,\sigma}$  is scattered.

# (r, i)-RFLSs



#### Main definition

An (r, i)-regular fat linear set ((r, i)-RFLS) is one that has precisely r points with weight greater than one, and all of these points have weight i  $(r \ge 0, i \ge 2)$ 

# (r, i)-RFLSs



#### Main definition

An (r, i)-regular fat linear set ((r, i)-RFLS) is one that has precisely r points with weight greater than one, and all of these points have weight i  $(r \ge 0, i \ge 2)$ 

- An (r, i)-regular fat linearized polynomial ((r, i)-RFLP) is an  $f \in \mathcal{L}_{n,q}$  such that  $L_f$  is an (r, i)-RFLS
- (r, i)-RFLSs are particular r-fat linear sets, which were defined in [Bartoli - Micheli - Zini - Zullo 2022]
- Any (0, i)-RFLS is a scattered linear set, and conversely
- If  $f \in \mathcal{L}_{n,q}$  is an (r, i)-regular fat q-polynomial, then

$$|L_f| = q^{n-1} + q^{n-2} + \dots + q^i + 1 - (r-1)(q^{i-1} + q^{i-2} + \dots + q)$$

# Examples for r = 1 or i = 2



• The (1, i)-RFLS are called *i-clubs* [Fancsali - Sziklai 2006, 2009] and have been widely studied. I'll focus on r > 1

# Examples for r = 1 or i = 2



- The (1, i)-RFLS are called *i-clubs* [Fancsali Sziklai 2006, 2009] and have been widely studied. I'll focus on r > 1
- [De Boeck Van de Voorde 2022] using [Lavrauw Van de Voorde 2010] deal with LSs or rank  $\rho \leq 4$  in PG(1,  $q^n$ ) and rank 5 in PG(1,  $q^5$ ). In particular, for  $\rho = 4$ :  $|L_U| = q^3 + 1 \ \Rightarrow f \text{ is either } (1,3)\text{-RFLS or } (q+1,2)\text{-RFLS} \\ |L_U| = q^3 + q^2 + 1 \ \Rightarrow f \text{ is } (1,2)\text{-RFLS} \\ |L_U| = q^3 + q^2 q + 1 \ \Rightarrow f \text{ is } (2,2)\text{-RFLS}$
- (r,2)-RFLSs are also investigated in: [Bartoli Micheli Zini Zullo 2022]:  $f=X+\delta X^{q^{n-1}}$ ,  $N_{q^n/q}(\delta)=1$ ,  $L_f$  is (r,2)-RFLS (r is computed)
- Further contributions to i = 2: [Csajbók Marino Polverino Z 2018], [Z 2019], [Polverino Zullo 2020], [Bartoli Csajbók Montanucci 2021], [...]



- 1. Regular fat linear sets and polynomials
- 2. The rank-metric code associated with an RFLS
- 3. Points of complementary weights
- 4. r > 2, i > 2
- 5. Back to  $\phi_{m,\sigma}$

# Associated rank-metric code



• Rank distance between  $x=(x_1,\ldots,x_m)$  and  $y=(y_1,\ldots,y_m)$  in  $\mathbb{F}_{q^n}^m$ :

$$d(x,y) = w(x-y) = \dim_{\mathbb{F}_q} (\langle x_1 - y_1, \dots, x_m - y_m \rangle_{\mathbb{F}_q})$$

•  $[m,k,d]_{q^n/q}$ -code: a k-dimensional  $\mathbb{F}_{q^n}$ -subspace  $\mathcal C$  of  $\mathbb{F}_{q^n}^m$ , where

$$d=\min\{w(x)\colon x\in\mathcal{C},\,x\neq0\}$$

Rank-metric Singleton bound:

$$nk \le \max\{m, n\} (\min\{m, n\} - d + 1)$$

- Now I'll disregard the general frame
- Let  $L_U$  be an (r, i)-RFLS of rank  $\rho$  in PG $(k-1, q^n)$ . Take  $G \in \mathbb{F}_{q^n}^{k \times (nk-\rho)}$  having as columns an  $\mathbb{F}_q$ -basis of

$$U^{\perp'} = \{x \in \mathbb{F}_{q^n}^k \colon \operatorname{Tr}_{q^n/q}(x \cdot u) = 0, \, \forall u \in U\}$$

• Define  $C \leq \mathbb{F}_{q^n}^{nk-\rho}$  as the rowspace of G

## Associated rank-metric code



#### **Proposition**

If i < n, the rank-metric code C associated with  $L_U$ , an (r, i)-RFLS of rank  $\rho$  in PG $(k-1, q^n)$ , is an  $[nk - \rho, k, n - i]_{q^n/q}$ -code with

- $r(q^n 1)$  codewords of weight n i
- $(|L_U| r)(q^n 1)$  codewords of weight n 1
- $(q^{nk}-1)-|L_U|(q^n-1)$  codewords of weight n, and

$$|L_U|=\frac{q^\rho-1-r(q^i-q)}{q-1}$$

## Associated rank-metric code



• A direct application of the Singleton bound gives, for an (r, i)-RFLS of rank  $\rho$  in  $PG(k-1, q^n)$ 

$$\rho \le nki/(i+1) \tag{1}$$

From the MacWilliams identities

$$r \ge \frac{(q^{2\rho - nk} - 1)\binom{n}{2}_q}{(q^n - 1)\binom{i}{2}_q} \tag{2}$$

• (1), (2) are useless in  $PG(1, q^n)$ 



- 1. Regular fat linear sets and polynomials
- 2. The rank-metric code associated with an RFLS
- 3. Points of complementary weights
- 4. r > 2, i > 2
- 5. Back to  $\phi_{m,\sigma}$



A *linear set with complementary weights* has two points such that the sum of the weights of the points equals the rank of the linear set [Napolitano - Polverino - Santonastaso - Zullo 2022]

## Theorem [Napolitano - Polverino - Santonastaso - Zullo 2022]

Let  $L_W$  be an  $\mathbb{F}_q$ -linear set of rank  $\rho \leq n$  in PG(1,  $q^n$ ) for which there exist two distinct points  $P,Q \in L_W$  such that w(P) = s, w(Q) = s' and  $s + s' = \rho$ . Then,  $L_W$  is PGL(2,  $q^n$ )-equivalent to a linear set  $L_W$  where  $U = S \times S'$ , for some  $\mathbb{F}_q$ -subspaces S and S' of  $\mathbb{F}_{q^n}$  with  $\dim_q(S) = s$ ,  $\dim_q(S') = s'$ . Also,  $S \cap S' = \{0\}$  can be assumed.



#### Theorem [Napolitano - Polverino - Santonastaso - Zullo 2022]

Let  $L_W$  be an  $\mathbb{F}_q$ -linear set of rank n in PG(1,  $q^n$ ) for which there exist two distinct points  $P,Q\in L_W$  such that w(P)=s, w(Q)=s' and s+s'=n. Then, for some  $\mathbb{F}_q$ -subspaces S and S' of  $\mathbb{F}_{q^n}$  with  $\dim_q(S)=s$ ,  $\dim_q(S')=s'$ ,  $\mathbb{F}_{q^n}=S\oplus S'$ , up to projectivities

$$L_W = L_{p_{S,S'}} = \{ \langle (x, p_{S,S'}(x))_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^* \}$$

where  $p_{S,S'}$  is the projection map related to the direct sum  $S \oplus S'$ .

The polynomial representation of the projection is

$$p_{S,S'} = \sum_{j=0}^{n-1} \left( \sum_{i=t}^{n-1} \xi_i \xi_i^{*q^j} \right) X^{q^j}$$

where  $\{\xi_i\}$  and  $\{\xi_j^*\}$  are dual  $\mathbb{F}_q$ -bases of  $\mathbb{F}_{q^n}$  related to S and S' We have a lack of neat polynomial representations



#### Theorem [Napolitano - Polverino - Santonastaso - Zullo 2022]

Let 1 < t < n and  $n = \ell t$ . There exist  $\mathbb{F}_q$ -linear sets of rank  $\rho$  in PG(1,  $q^n$ ) with one point of weight t, one point of weight s and all others of weight one for the following values of n, k and s:

- n even,  $\rho = t + s$  and any  $s \in \{1, \dots, n/2\}$ ;
- n odd,  $\rho = t + s$  and any  $s \in \{1, \dots, \frac{n-t}{2}\}$ .

#### Corollary

If t divides n, there is a (2, t)-RFLS in PG $(1, q^n)$ .



Polynomials  $\phi_{m,\sigma}$  give a simple polynomial representation for some (2, t)-RFLS in [Napolitano - Polverino - Santonastaso - Zullo 2022]:

## Theorem [Smaldore - Z - Zullo 202x]

- 1. Let  $t \geq 3$ . For any m in the form  $m = w^{\sigma+1} \neq 0$ ,  $w \in E = \{x \in \mathbb{F}_{q^{2t}} \colon \operatorname{Tr}_{q^{2t}/q^t}(x) = 0\}$ , the linear set associated with  $\phi_{m,\sigma} = X^{\sigma^{t-1}} + X^{\sigma^{2t-1}} + m\left(X^{\sigma} X^{\sigma^{t+1}}\right)$  is projectively equivalent to  $L_{T \times T'}$  where  $T, T' = \{wx \pm x^{\sigma^{t-1}} \mid x \in \mathbb{F}_{q^t}\}$ .
- 2. For t odd,  $\langle (1,0) \rangle_{\mathbb{F}_{q^n}}$  and  $\langle (0,1) \rangle_{\mathbb{F}_{q^n}}$  are the only points of weight t of  $L_{\mathcal{T} \times \mathcal{T}'}$ , and  $L_{\mathcal{T} \times \mathcal{T}'}$  is equivalent to a (2,t)-RFLS in [Napolitano Polverino Santonastaso Zullo 2022].
  - [Zullo 2023] (k, i)-RFLS with  $i \le n/2$  in PG $(k-1, q^n)$
- Further constructions of (2, *i*)-RFLSs in [Alfarano Jurrius Neri Zullo 202x]

# r > 2, i > 2?





To our knowledge, there are no examples of (r, i)-RFLSs in PG $(1, q^n)$  with r > 2 and i > 2 in the literature.

In other words, apart from the examples I am going to show, we don't know of any linear sets with exactly r points of weight i and the rest with weight one for r > 2 and i > 2. If you know of any more, please tell us!



- 1. Regular fat linear sets and polynomials
- 2. The rank-metric code associated with an RFLS
- 3. Points of complementary weights
- 4. r > 2, i > 2
- 5. Back to  $\phi_{m,\sigma}$



#### Theorem [Smaldore - Z - Zullo 202x]

Let q be odd,  $t \geq 3$ ,  $\gcd(s,t) = 1$ ,  $w \in E = \{x \in \mathbb{F}_{q^{2t}} : \operatorname{Tr}_{q^{2t}/q^t}(x) = 0\}$ ,  $w \neq 0$ ,  $\operatorname{N}_{q^t/q}(w^2) \neq (-1)^t$ ,  $I \leq_{\mathbb{F}_q} \mathbb{F}_{q^t}$ ,  $\dim_{\mathbb{F}_q} I = i > 1$ . Define

$$T = T_{s,w,I} = \{x + wx^{q^s} : x \in I\} \subseteq \mathbb{F}_{q^{2t}}$$

Then for any k>1,  $L_{T^k}$  is a  $((q^k-1)/(q-1),i)$ -RFLS of rank ki in  $PG(k-1,q^{2t})$ . The points of weight i are precisely the elements of PG(k-1,q), i.e.  $\langle (a_1,\ldots,a_k)\rangle_{\mathbb{F}_{q^{2t}}}$  with  $(0,\ldots,0)\neq (a_1,\ldots,a_k)\in \mathbb{F}_q^k$ .

In particular we have a (q+1,i)-RFLS in PG $(1,q^{2t})$  for any  $i=2,\ldots,t$ 

#### Remark

For q > 3 there exists  $w \in E$ ,  $w \neq 0$  such that  $N_{q^t/q}(w^2) \neq -1$ , while  $N_{q^t/q}(w^2) \neq 1$  holds for any  $w \in E$ .

# Polynomial form



### Theorem [Smaldore - Z - Zullo 202x]

For any  $\mu\in\mathbb{F}_{q^t}$  such that  $N_{q^t/q}(\mu)=1$ ,  $\mu\neq 1$ , any rank n  $L_{T^2}\subseteq \mathsf{PG}(1,q^{2t})$  is equivalent up to the action of  $\mathsf{\Gamma L}(2,q^{2t})$  to  $L_f$ , where

$$f = (\mu^{q^{s}} - 1) \left( (\mu + 1)X^{q^{t}} - 2w^{-q^{t-s}}(X^{q^{t-s}} - X^{q^{2t-s}}) \right)$$
  
 
$$+ (\mu - 1) \left( (\mu^{q^{s}} + 1)X^{q^{t}} + 2w\mu^{q^{s}}(X^{q^{s}} + X^{q^{t+s}}) \right)$$

or, for t even and taking  $\mu=-1$ , to  $L_{\phi_{m,\sigma}}$ , where  $\phi_{m,\sigma}=X^{\sigma^{t-1}}+X^{\sigma^{2t-1}}+m\left(X^{\sigma}-X^{\sigma^{t+1}}\right)$  is the polynomial introduced in [Smaldore - Z - Zullo 2024], m being a nonzero  $(\sigma+1)$ -power of an element of E and  $\sigma=q^{t-s}$ .

## Theorem [Smaldore - Z - Zullo 202x]

All  $L_{T^k}$  are R-  $q^t$ -partially scattered linear sets.



- 1. Regular fat linear sets and polynomials
- 2. The rank-metric code associated with an RFLS
- 3. Points of complementary weights
- 4. r > 2, i > 2
- 5. Back to  $\phi_{m,\sigma}$

# $\phi_{m,\sigma}$ is always RFLS



#### Theorem [Smaldore - Z - Zullo 202x]

Let 
$$\phi_{m,\sigma} = X^{\sigma^{t-1}} + X^{\sigma^{2t-1}} + m\left(X^{\sigma} - X^{\sigma^{t+1}}\right) \in \mathbb{F}_{q^{2t}}[X], \ t \geq 3, \ q \ \text{odd}, \ m \in \mathbb{F}_{q^t}^*.$$

- If m is a  $(\sigma-1)$ -power of an element of  $E=\{x\in \mathbb{F}_{q^n}\colon x^{q^t}+x=0\}$ , then  $L_{\phi_{m,\sigma}}$  is an (r,2)-RFLS.
- If m is a  $(\sigma+1)$ -power of an element of E and t is odd, then  $L_{\phi_{m,\sigma}}$  is a (2,t)-RFLS.
- If m is a  $(\sigma+1)$ -power of an element of E and t is even, then  $L_{\phi_{m,\sigma}}$  is a (q+1,t)-RFLS.
- Otherwise  $L_{\phi_{m,\sigma}}$  is a (0,-)-RFLS, i.e., scattered.

#### More examples

(q+1,t)-RFLSs of rank 2t in PG $(1,q^{\ell t})$ ,  $\ell>2$ ,  $\ell\mid q^t-1\ldots$ 

# Have a nice day!