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Definitions

• The linear set of rank ρ in PG(k − 1, qn) associated with an
Fq-subspace U of Fk

qn , dimFq U = ρ:

LU = {⟨v⟩Fqn : v ∈ U, v ̸= 0}

• Ln,q = {
∑n−1

i=0 aiX qi : a0, . . . , an−1 ∈ Fqn }. For any f ∈ Ln,q define
Uf = {(x , f (x)) : x ∈ Fqn }. The linear set or rank n associated with
f is

Lf = LUf = {⟨(x , f (x))⟩Fqn : x ∈ F∗
qn } ⊆ PG(1, qn)

• The weight w.r.t. LU of a point P = ⟨v⟩Fqn ∈ PG(k − 1, qn) is

wLU (P) = w(P) = dimFq

(
⟨v⟩Fqn ∩ U

)
• LU is scattered [Blokhuis - Lavrauw 2000] if dimFq

(
⟨v⟩Fqn ∩ U

)
≤ 1

for all v ∈ Fk
qn
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Definitions

• f ∈ Ln,q is scattered if Lf is scattered; equivalently,

x , y ∈ F∗
qn ,

f (x)
x = f (y)

y ⇒ x
y ∈ Fq

• For 1 < t | n, LU ⊆ PG(k − 1, qn) is R- qt -partially scattered if
dimFq

(
⟨v⟩Fqt ∩ U

)
≤ 1 for all v ∈ Fk

qn [Longobardi - Z 2021]

• [Smaldore - Z - Zullo 2024]: Let n = 2t, q odd, σ = qJ ,
gcd(J , t) = 1, t ≥ 3, and

ϕm,σ = Xσt−1
+ Xσ2t−1

+ m
(

Xσ − Xσt+1
)

∈ Ln,σ

For any 0 ̸= m ∈ Fqt , ϕm,σ is R- qt -partially scattered. If m is
neither a (σ − 1)-th power nor a (σ + 1)-th power of an element of
E = {x ∈ Fq2t : Trq2t /qt (x) = 0}, the polynomial ϕm,σ is scattered.
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(r , i)-RFLSs

Main definition
An (r , i)-regular fat linear set ((r , i)-RFLS) is one that has
precisely r points with weight greater than one, and all of these
points have weight i (r ≥ 0, i ≥ 2)

• An (r , i)-regular fat linearized polynomial ((r , i)-RFLP) is an
f ∈ Ln,q such that Lf is an (r , i)-RFLS

• (r , i)-RFLSs are particular r -fat linear sets, which were defined
in [Bartoli - Micheli - Zini - Zullo 2022]

• Any (0, i)-RFLS is a scattered linear set, and conversely
• If f ∈ Ln,q is an (r , i)-regular fat q-polynomial, then

|Lf | = qn−1 +qn−2 + · · ·+qi +1−(r −1)(qi−1 +qi−2 + · · ·+q)
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Examples for r = 1 or i = 2

• The (1, i)-RFLS are called i -clubs [Fancsali - Sziklai 2006,
2009] and have been widely studied. I’ll focus on r > 1

• [De Boeck - Van de Voorde 2022] using [Lavrauw - Van de
Voorde 2010] deal with LSs or rank ρ ≤ 4 in PG(1, qn) and
rank 5 in PG(1, q5). In particular, for ρ = 4:
|LU | = q3 + 1 ⇒ f is either (1, 3)-RFLS or (q + 1, 2)-RFLS
|LU | = q3 + q2 + 1 ⇒ f is (1, 2)-RFLS
|LU | = q3 + q2 − q + 1 ⇒ f is (2, 2)-RFLS

• (r , 2)-RFLSs are also investigated in: [Bartoli - Micheli - Zini -
Zullo 2022]: f = X + δXqn−1 , Nqn/q(δ) = 1, Lf is (r , 2)-RFLS
(r is computed)

• Further contributions to i = 2: [Csajbók - Marino - Polverino
- Z 2018], [Z 2019], [Polverino - Zullo 2020], [Bartoli -
Csajbók - Montanucci 2021], [. . .]
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Associated rank-metric code

• Rank distance between x = (x1, . . . , xm) and y = (y1, . . . , ym) in
Fm

qn :
d(x , y) = w(x − y) = dimFq (⟨x1 − y1, . . . , xm − ym⟩Fq )

• [m, k, d ]qn/q-code: a k-dimensional Fqn -subspace C of Fm
qn , where

d = min{w(x) : x ∈ C, x ̸= 0}

• Rank-metric Singleton bound:
nk ≤ max{m, n}(min{m, n} − d + 1)

• Now I’ll disregard the general frame
• Let LU be an (r , i)-RFLS of rank ρ in PG(k − 1, qn). Take

G ∈ Fk×(nk−ρ)
qn having as columns an Fq-basis of

U⊥′
= {x ∈ Fk

qn : Trqn/q(x · u) = 0, ∀u ∈ U}

• Define C ≤ Fnk−ρ
qn as the rowspace of G
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Associated rank-metric code

Proposition
If i < n, the rank-metric code C associated with LU , an (r , i)-RFLS
of rank ρ in PG(k − 1, qn), is an [nk − ρ, k, n − i ]qn/q-code with

• r(qn − 1) codewords of weight n − i
• (|LU | − r)(qn − 1) codewords of weight n − 1
• (qnk − 1) − |LU |(qn − 1) codewords of weight n, and
•

|LU | = qρ − 1 − r(qi − q)
q − 1
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Associated rank-metric code

• A direct application of the Singleton bound gives, for an
(r , i)-RFLS of rank ρ in PG(k − 1, qn)

ρ ≤ nki/(i + 1) (1)

• From the MacWilliams identities

r ≥
(q2ρ−nk − 1)

(n
2
)

q

(qn − 1)
( i

2
)

q
(2)

• (1), (2) are useless in PG(1, qn)
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Points of complementary weights

A linear set with complementary weights has two points such that
the sum of the weights of the points equals the rank of the linear
set [Napolitano - Polverino - Santonastaso - Zullo 2022]

Theorem [Napolitano - Polverino - Santonastaso - Zullo 2022]
Let LW be an Fq-linear set of rank ρ ≤ n in PG(1, qn) for which
there exist two distinct points P, Q ∈ LW such that w(P) = s,
w(Q) = s ′ and s + s ′ = ρ. Then, LW is PGL(2, qn)-equivalent to a
linear set LU where U = S × S ′, for some Fq-subspaces S and S ′

of Fqn with dimq(S) = s, dimq(S ′) = s ′. Also, S ∩ S ′ = {0} can
be assumed.
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Points of complementary weights

Theorem [Napolitano - Polverino - Santonastaso - Zullo 2022]
Let LW be an Fq-linear set of rank n in PG(1, qn) for which there exist
two distinct points P, Q ∈ LW such that w(P) = s, w(Q) = s ′ and
s + s ′ = n. Then, for some Fq-subspaces S and S ′ of Fqn with
dimq(S) = s, dimq(S ′) = s ′, Fqn = S ⊕ S ′, up to projectivities

LW = LpS,S′ = {⟨(x , pS,S′(x))Fqn : x ∈ F∗
qn }

where pS,S′ is the projection map related to the direct sum S ⊕ S ′.

The polynomial representation of the projection is

pS,S′ =
n−1∑
j=0

(n−1∑
i=t

ξiξ
∗
i

qj

)
X qj

where {ξi} and {ξ∗
j } are dual Fq-bases of Fqn related to S and S ′

We have a lack of neat polynomial representations
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Points of complementary weights

Theorem [Napolitano - Polverino - Santonastaso - Zullo 2022]
Let 1 < t < n and n = ℓt. There exist Fq-linear sets of rank ρ in
PG(1, qn) with one point of weight t, one point of weight s and all others
of weight one for the following values of n, k and s:

• n even, ρ = t + s and any s ∈ {1, . . . , n/2};
• n odd, ρ = t + s and any s ∈ {1, . . . , n−t

2 }.

Corollary
If t divides n, there is a (2, t)-RFLS in PG(1, qn).
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Points of complementary weights

Polynomials ϕm,σ give a simple polynomial representation for some
(2, t)-RFLS in [Napolitano - Polverino - Santonastaso - Zullo 2022]:

Theorem [Smaldore - Z - Zullo 202x]

1. Let t ≥ 3. For any m in the form m = wσ+1 ̸= 0,
w ∈ E = {x ∈ Fq2t : Trq2t /qt (x) = 0}, the linear set associated with
ϕm,σ = Xσt−1 + Xσ2t−1 + m

(
Xσ − Xσt+1

)
is projectively equivalent

to LT×T ′ where T , T ′ = {wx ± xσt−1 | x ∈ Fqt }.

2. For t odd, ⟨(1, 0)⟩Fqn and ⟨(0, 1)⟩Fqn are the only points of weight t
of LT×T ′ , and LT×T ′ is equivalent to a (2, t)-RFLS in [Napolitano -
Polverino - Santonastaso - Zullo 2022].

• [Zullo 2023] (k, i)-RFLS with i ≤ n/2 in PG(k − 1, qn)
• Further constructions of (2, i)-RFLSs in [Alfarano - Jurrius - Neri -

Zullo 202x]
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r > 2, i > 2?

To our knowledge, there are no examples of
(r , i)-RFLSs in PG(1, qn) with r > 2 and i >
2 in the literature.

In other words, apart from the examples I am going
to show, we don’t know of any linear sets with
exactly r points of weight i and the rest with weight
one for r > 2 and i > 2. If you know of any more,
please tell us!

Smaldore-Z-Zullo Regular fat linearized polynomials 17 of 23



Table of Contents

1. Regular fat linear sets and polynomials

2. The rank-metric code associated with an RFLS

3. Points of complementary weights

4. r > 2, i > 2

5. Back to ϕm,σ

Smaldore-Z-Zullo Regular fat linearized polynomials 18 of 23



r > 2, i > 2

Theorem [Smaldore - Z - Zullo 202x]
Let q be odd, t ≥ 3, gcd(s, t) = 1, w ∈ E = {x ∈ Fq2t : Trq2t /qt (x) = 0},
w ̸= 0, Nqt /q(w2) ̸= (−1)t , I ≤Fq Fqt , dimFq I = i > 1. Define

T = Ts,w ,I = {x + wxqs
: x ∈ I} ⊆ Fq2t

Then for any k > 1, LT k is a ((qk − 1)/(q − 1), i)-RFLS of rank ki in
PG(k − 1, q2t). The points of weight i are precisely the elements of
PG(k − 1, q), i.e. ⟨(a1, . . . , ak)⟩Fq2t with (0, . . . , 0) ̸= (a1, . . . , ak) ∈ Fk

q .

In particular we have a (q + 1, i)-RFLS in PG(1, q2t) for any i = 2, . . . , t

Remark
For q > 3 there exists w ∈ E , w ̸= 0 such that Nqt /q(w2) ̸= −1, while
Nqt /q(w2) ̸= 1 holds for any w ∈ E .

Smaldore-Z-Zullo Regular fat linearized polynomials 19 of 23



Polynomial form

Theorem [Smaldore - Z - Zullo 202x]
For any µ ∈ Fqt such that Nqt /q(µ) = 1, µ ̸= 1, any rank n
LT 2 ⊆ PG(1, q2t) is equivalent up to the action of ΓL(2, q2t) to Lf , where

f =(µqs
− 1)

(
(µ + 1)X qt

− 2w−qt−s
(X qt−s

− X q2t−s
)
)

+ (µ − 1)
(

(µqs
+ 1)X qt

+ 2wµqs
(X qs

+ X qt+s
)
)

or, for t even and taking µ = −1, to Lϕm,σ
, where

ϕm,σ = Xσt−1 + Xσ2t−1 + m
(

Xσ − Xσt+1
)

is the polynomial introduced
in [Smaldore - Z - Zullo 2024], m being a nonzero (σ + 1)-power of an
element of E and σ = qt−s .

Theorem [Smaldore - Z - Zullo 202x]
All LT k are R- qt -partially scattered linear sets.
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ϕm,σ is always RFLS

Theorem [Smaldore - Z - Zullo 202x]
Let ϕm,σ = Xσt−1 + Xσ2t−1 + m

(
Xσ − Xσt+1

)
∈ Fq2t [X ], t ≥ 3, q odd,

m ∈ F∗
qt .

• If m is a (σ − 1)-power of an element of
E = {x ∈ Fqn : xqt + x = 0}, then Lϕm,σ

is an (r , 2)-RFLS.
• If m is a (σ + 1)-power of an element of E and t is odd, then Lϕm,σ

is a (2, t)-RFLS.
• If m is a (σ + 1)-power of an element of E and t is even, then Lϕm,σ

is a (q + 1, t)-RFLS.
• Otherwise Lϕm,σ

is a (0, −)-RFLS, i.e., scattered.

More examples
(q + 1, t)-RFLSs of rank 2t in PG(1, qℓt), ℓ > 2, ℓ | qt − 1 . . .

Smaldore-Z-Zullo Regular fat linearized polynomials 22 of 23



Have a nice day!
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