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Introduction

e S(n,q) : the set of n x n symmetric matrices over Fy.

Definition
A subset C C S(n, q) is called a d-code if rank(A — B) > d for any distinct A, B € C.

Question: What is the largest size of d-codes in S(n, q)?
Answer for a special case: if n = d, then |C| < ¢".

Hint: Compare the first rows.
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A special case: n=d

A classical construction: let B,(x, y) := Tr(axy) where Tr : Fgn — Fq. Define

C={Bi(x,y) :a€Fgn}.
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A special case: n=d

A classical construction: let B,(x, y) := Tr(axy) where Tr : Fgn — Fq. Define

C={Bi(x,y) :a€Fgn}.

When d = n, C C S(n, q) with |C| = g" is equivalent to a symplectic quasifield
(division ring with asseetative multiplication and right-distributive) of order g".

If C is further additive, then C is equivalent to a symplectic/commutative semifield:

B.(x,y) := Tr(a(x * y)), for a commutative semifield multiplication * .

A classical construction problem in finite geometry. It has been conjectured that there
are “many” inequivalent commutative semifields: Dickson 1905, Knuth 1966, Ganley
1981, Cohen-Ganley 1982, Coulter-Matthews 1997 /Ding-Yuan 2006, Kantor 2003,

Budaghyan-Helleseth 2008, Zha- Kyureghyan-Wang 2009, Pott-Z. 2013, Gologlu-Kolsch 2023...
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General case

Theorem (Schmidt 2010, 2015, and 2020)
Let C be a d-code in S(n, q), where C is required to be additive if d is even. Then

" qn(n*d+2)/2’ for n — d even,
| gt D(=d+1)/2 - for n — d odd.
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General case

Theorem (Schmidt 2010, 2015, and 2020)
Let C be a d-code in S(n, q), where C is required to be additive if d is even. Then

" qn(n*d+2)/2’ for n — d even,
| gt D(=d+1)/2 - for n — d odd.

Definition

An additive d-code in 5(n, q) meeting the upper bound above is called maximal.

e Proof: using the association schemes defined on S(n, q) and 2(n, q).

e These bounds are sharp.
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Old and New Constructions



Known constructions for d < n

For all parameters (Schmidt 2010, 2015):

e if n— d is even, take gcd(s, n) =1, a direct construction:
(n—d)/2 _ _
C =4 S(x,y) = Tr(aoxy) + Z Tr(ai(xy? +yx7)):a; € Fgn p;
i=1
e if n—dis odd, given a (d + 2)-code C in S(n+ 1, q) and take an n-dim subspace
C*={Slw:S¢€ecC}, puncturing w.r.t. W

where W is an n-dim subspace of Fg“.
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Known constructions for d < n

Two extra inequivalent constructions of additive 2-codes:

e For n even,

m=2 st st s(m—1) s(m—1) sm -
Si{TI'<EOXy+;3[(Xq y+y7 x>+eb(xq 1y+yq 1x>+axq y>: aO,A.A,am,gE]Fqgm,a,be_*qm}‘,
where g is odd and qum/qm(e) S mqm; see (Longobardi, Lunardon, Trombetti, Z.
2020).
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Known constructions for d < n

Two extra inequivalent constructions of additive 2-codes:

e For n even,

m—2
st st s(m—1 s(m—1) sm
S = {Tr (aoxy+ Z aj (xq y+y7 x) + €b (Xq( ),V+yq X) + ax? }/> oap, - aAm—2 Equm,a,bqum}A,

where g is odd and qum/qm(e) S mqm; see (Longobardi, Lunardon, Trombetti, Z.

2020).
e For n odd, let C be a maximum 2-code in S(n—1,q),

C*: {M(A,V):AGC,VG]FZ_I}a

where M(A,v) = < OT /:) see (Z. 2020).
v
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A new construction

Theorem (Tang, Z. 2025+)

Let n = 2k with k = 3,4,5, s such that gcd(s,2k) = 1. For odd prime power q, the
following set of symmetric bilinear forms is a maximal additive (n — 2)-code

{Tr (boquy i b1 (qu(k—l)y T yqs(k—l)x) T ’17b2 (qu(k—2)y + yqs(k—Z)X)) . b()’ b2 c ]Fqk, b1 c quk} )

where 1 € mqn.
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A new construction

Theorem (Tang, Z. 2025+)

Let n = 2k with k = 3,4,5, s such that gcd(s,2k) = 1. For odd prime power q, the
following set of symmetric bilinear forms is a maximal additive (n — 2)-code

k s(k—1) s(k—1) s(k—2) s(k—2)
{Tr (boqu+b1 (Xq 1y+yq 1x)+77b2 (Xq y +y? X)) Ibo,bze]Fqk,blquzk}.
where 1 € mqn.

o It is symmetric because Tr(box? y) = Tr(%quy + %xqu).

e One only has to prove it for s = 1; see [Theorem 3.2, Neri, Santonastaso, Zullo
2022], [Gow 2009].
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‘C’ _ q2n _ qn(n—d—|—2)/2, d=n-—2.
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‘C’ _ q2n _ qn(n—d—|—2)/2, d=n-—2.
Tr (boquy + by (qufly - qu71x> +nby (qudy - qu72x))
=Tr (y (boqu + blx"ki1 + (blx)qk+1 + r]b2><qk72 + (nng)qk+2)) = Tr(y g(x)).

Goal: To show that the g-polynomial g(x) has at most g2 roots.
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‘C’ _ q2n _ qn(n—d—|—2)/2, d=n-—2.
Tr (boquy + by (qufly + qu71x> + nby (qudy + qu72x))
=Tr (y (boqu +bxd (blx)qk+1 +byx® T+ (nng)qk+2)) = Tr(y g(x)).

Goal: To show that the g-polynomial g(x) has at most g2 roots. < the rank of its
Dickson matrix is at least n — 2:

ao a an—1
D(f) = o1 a.g ag'_ 2| ermn,
a?n71 33;71 38;71
where f:= Y"1 a,X9" € Fn[X].

The i-th row of D(f) is essentially f9 (mod X9" — X). 8/18



Proof (Continued)

g(x) = box?" + byx? T + (blx)qk+1 + nbzqu_2 + (77b2x)qk+2
g(x) has at most g? roots < the rank of its Dickson matrix is at least n — 2

< 3 (n—2) x (n—2) submatrices D;'s of D(g) such that det(D;) = 0 for all
i cannot happen except for by = by = by = 0.

For k=3, n=2k =6:

0 nbo by bo bf4 (ntb)qS
nby 0 (nbp)d b b b
b | B w0 (k)T be b
bo b  (nb2)? 0 (nb)¥  bf
b b BT ()T 0 (k)
(nb)® b9 b b (nb)® 0
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Proof (Continued, for kK = 3, n = 2k = 6)

Take two 4 x 4 submatrices of D(g):

0 77b2 b1 bo 0 77b2 bo bi’4
nby 0 (nb2)? by A nby 0 by by
D4 = q # | D4 = q g3
b1 (nb2) 0 (nb2) by b 0 (nb2)
4
bo b  (nb)T 0 b by (nho)” 0

det(Ds) = (bo(nb2)")? + (b)) 4 BT — 2(bo(nba)™ 7 4 bo(nba) b{ ™ + (nb2)” BT = 0
implies
2 2
(bo(nb2)? + (nbe)T 1 — bIT)2 = 4py(nby)T +9+1,

e As by, by € Fqk and b; € ]Fq2k, it contradicts to n € mqe if bg, by # 0.

e For bp = 0 or b, = 0, we also need the determinant of f)4.
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Proof (Continued, for k =5, n =2k = 10)

0 0 0 nby by bo b (k)T 0 0
0 0 0 0 (mk)? b b b () 0
0 0 0 0 0 (mb)” b be bT (b)”
1bs 0 0 0 0 0 (nk)T b b b
b (b2)? 0 0 0 0 0 (k)" b b
bo b (mb)” 0 0 0 0 0 (b)” BT
b b BT ()T 0 0 0 0 0 (nb)”
(k) b7 bg b (b)) 0 0 0 0 0
0 (k)" b b b (@) 0 0 0 0
0 0 (mh)” BT b b (b)T 0 0 0

We need to compute the determinants of two 8 x 8 principal submatrices M; and M,
by removing the last two (the 5th and 10th) columns/rows .
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Proof (Continued, for k =5, n =2k = 10)

Suppose that det(M;) = 0. By a long ... computation with the help of Maple,

(AL~ By — G+ Dy — Er + Fi + Gy — Hy + h — J1)? = 4(nby) 9 T9 T HaHIA,,
where
By = (6] " (nba)™ — bob{ T — BT B4 BT ()™ b))

2 3, 2 3
and Ay = b (1), By = bob{ 7 (nbr)?, G = BB (o),
Dy = bg(nb2)q4+q2+1' £y = by b (nba)T, Fy = bT TTEITE G = b T ()T,
Hy = b7 (o)7L, = b T (nby)TH9, Uy = (o) 7O
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Proof (Continued, for k =5, n =2k = 10)

Suppose that det(M;) = 0. By a long ... computation with the help of Maple,

(AL~ By — G+ Dy — Er + Fi + Gy — Hy + h — J1)? = 4(nby) 9 T9 T HaHIA,,
where
By = (6] " (nba)™ — bob{ T — BT B4 BT ()™ b))

and Ay = b (1), By = bob{ 7 (nbr)?, G = BB (o),
b = bg(ng2)q4+q2+1' b= b(z bzﬂ(nbz)‘f Fo= by P99 Gy = bI T (b)),
Hy = b" " (nb2)® 1, = b{ 9 (nbo)7 19, Jy = (nby)a ot

CIearIy, bg, by € Fqs = A7 € Fqs.
Then the discussion is separated into two cases depending on the value of Ay and b,.
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Proof (Continued, for k =5, n =2k = 10)

(AL — B — G+ Dy — Er + Fi + Gy — Hy + h — Ji)? = 4(nby) T T9 T+ A,

o If Ay, by #0, then LHD € [/l 10 leads to contradiction.

e If Ay =0 or by =0, then we need det(M,), and more complicated computations...
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Proof (Continued, for k =5, n =2k = 10)

(AL — B — G+ Dy — Er + Fi + Gy — Hy + h — Ji)? = 4(nby) T T9 T+ A,

o If Ay, by #0, then LHD € [/l 10 leads to contradiction.

e If Ay =0 or by =0, then we need det(M,), and more complicated computations...

For k =4, n =2k = 8, the proof is similar and we skip it.
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Equivalence Problems




Equivalence of maximal additive d-codes in S(n, q)

e For a nonzero a € Fy, 0 € Aut(Fy), P € GL(n,q) and So € S(n,Fq), define
®(C)=aPTCP+ S, (1)

where C7 := (cf7) for C = (c;). Then ® preserves the rank-distance on S(n, q).
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Equivalence of maximal additive d-codes in S(n, q)

e For a nonzero a € Fy, 0 € Aut(Fy), P € GL(n,q) and So € S(n,Fq), define
®(C)=aPTCP+ S, (1)

where C7 := (cf7) for C = (c;). Then ® preserves the rank-distance on S(n, q).
e A map ®:5(n,q) — S(n,q) preserves the rank-distance only if ® is defined as in
(1) except for the case with ¢ =2 and n = 3. (Wan, 1996)
Definition
For two subsets C1,C> C S(n, q), if there exists a ® defined as in (1) such that
®(Cy1) = Ca, then we say C; and C; are equivalent.
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Our construction is “new”

Comparing with the parameters of known constructions, we only have to show

s(k—1) s(k—2

k s(k—1) ) s(k—2)
Tnsm = {Tr (boxq y + by (Xq ya X) +nbo (Xq y+y? x)) tbo, by € F i, b1 € ]quk}

is not equivalent to
C = {Tr(aoxy) + Tr(a1(xy9 + yx9)) : ag, a1 € quk} ,ged(n, t) = 1.

Proof. (Routine) Assume equivalence. Comparing coefficients of g-polynomials leads

to contradictions.
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Equivalence between the members

Theorem

For any positive integer k > 2, let n = 2k. For any n1,m2 € mq and any integers
s1, S» satisfying 0 < si, sy < 2k and gcd(s1, n) = ged(s2,n) =1, Tns, . and Tps, n,
are equivalent if and only if one of the following collections of conditions is satisfied:

(a) s1 = s (mod n), and there are a € Fgn, i € {0,1,--- ,n—1} and
re{0,...,m—1} such that nI" = at+a1 VP,

(b) s; = —s> (mod n), and there are a € Fgn, i € {0,1,--- ,n— 1} and
re{0,...,m— 1} such that ngsli = a1+qsl(k+2)nf’qsl(k+2).
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Conclusive Remarks




“Theorem”

Let n = 2k with-k=3:455. For odd prime power g, the following set of symmetric
bilinear forms is a maximal additive n — 2 code

Crew = {Tr (boquy + b (qufly —0—qu71><) + nbz (qufzy +y‘7k72x)) i bo, b2 €For, b1 € F Qk}
new - . 7 q ) q -

where 1 € gn.

e Similar situation: maximum scattered linear sets extended from PG(1, ¢®) to
PG(1, g%%).

References: Longobardi, Marino, Trombetti, Z. A Large Family of Maximum Scattered Linear

Sets of PG(1,g") and Their Associated MRD Codes. Combinatorica 43: 681-716. 2023.
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Non-additive d-codes in S(n, q)

A bound for non-additive 2§-codes by Schmidt 2015,

g D2-S)HE L for odd 1,
Cl < !

e When n =26 = d, the upper bound equals ¢".
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A bound for non-additive 2§-codes by Schmidt 2015,

g D2-S)HE L for odd 1,

Cl < !
Il < n+1)(n/2—6+1) 1+g* "1
T+q

ql , for even n.

e When n =26 = d, the upper bound equals ¢".
e In general, the upper bound is NOT sharp: computer results by Kiermaier and his
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Non-additive d-codes in S(n, q)

A bound for non-additive 2§-codes by Schmidt 2015,

g D2-S)HE L for odd 1,

< -
= (n+1)(n/2—5+1) 1+¢*°— "1
q -

, for even n.

e When n =26 = d, the upper bound equals ¢".

e In general, the upper bound is NOT sharp: computer results by Kiermaier and his
Master student Schmidt 2016.

e First infinite family: When d =2, n =3 and g > 2, there are examples of
non-additive 2-codes beyond the additive bound.

q*+q*+1>q%

see (Cossidente, Marino, Pavese. 2022) and some better upper bounds on 2-codes
in 5(3,9).
(3.9) 18/18



Thanks for your attention!
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