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Introduction



Introduction

• S(n, q) : the set of n × n symmetric matrices over Fq.

Definition

A subset C ⊆ S(n, q) is called a d-code if rank(A−B) ≥ d for any distinct A,B ∈ C.

Question: What is the largest size of d-codes in S(n, q)?

Answer for a special case: if n = d , then |C| ≤ qn.

Hint: Compare the first rows.
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A special case: n = d

A classical construction: let Ba(x , y) := Tr(axy) where Tr : Fqn → Fq. Define

C = {Ba(x , y) : a ∈ Fqn}.

When d = n, C ⊆ S(n, q) with |C| = qn is equivalent to a symplectic quasifield

(division ring with associative multiplication and right distributive) of order qn.

If C is further additive, then C is equivalent to a symplectic/commutative semifield:

Ba(x , y) := Tr(a(x ∗ y)), for a commutative semifield multiplication ∗ .

A classical construction problem in finite geometry. It has been conjectured that there

are “many” inequivalent commutative semifields: Dickson 1905, Knuth 1966, Ganley

1981, Cohen-Ganley 1982, Coulter-Matthews 1997/Ding-Yuan 2006, Kantor 2003,

Budaghyan-Helleseth 2008, Zha- Kyureghyan-Wang 2009, Pott-Z. 2013, Göloğlu-Kolsch 2023...
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3/18



General case

Theorem (Schmidt 2010, 2015, and 2020)

Let C be a d-code in S(n, q), where C is required to be additive if d is even. Then

|C| ≤

qn(n−d+2)/2, for n − d even,

q(n+1)(n−d+1)/2, for n − d odd.

Definition

An additive d-code in S(n, q) meeting the upper bound above is called maximal.

• Proof: using the association schemes defined on S(n, q) and Q(n, q).

• These bounds are sharp.
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Old and New Constructions



Known constructions for d < n

For all parameters (Schmidt 2010, 2015):

• if n − d is even, take gcd(s, n) = 1, a direct construction:

C =

S(x , y) = Tr(a0xy) +

(n−d)/2∑
i=1

Tr(ai (xy
qis + yxq

is
)) : ai ∈ Fqn

 ;

• if n − d is odd, given a (d + 2)-code C in S(n + 1, q) and take an n-dim subspace

C∗ = {S |W : S ∈ C}, puncturing w.r.t. W

where W is an n-dim subspace of Fn+1
q .
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Known constructions for d < n

Two extra inequivalent constructions of additive 2-codes:

• For n even,

S =

Tr

a0xy +

m−2∑
i=1

ai

(
xq

st
y + yq

st
x

)
+ ϵb

(
xq

s(m−1)
y + yq

s(m−1)
x

)
+ axq

sm
y

 : a0, . . . , am−2 ∈ F
q2m

, a, b ∈ Fqm

 ,

where q is odd and Nq2m/qm(ϵ) ∈ □/ qm ; see (Longobardi, Lunardon, Trombetti, Z.

2020).

• For n odd, let C be a maximum 2-code in S(n − 1, q),

C∗ =
{
M(A, v) : A ∈ C, v ∈ Fn−1

q

}
,

where M(A, v) =

(
0 v

vT A

)
; see (Z. 2020).
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A new construction

Theorem (Tang, Z. 2025+)

Let n = 2k with k = 3, 4, 5, s such that gcd(s, 2k) = 1. For odd prime power q, the
following set of symmetric bilinear forms is a maximal additive (n − 2)-code{

Tr
(
b0x

qk y + b1
(
xqs(k−1)

y + yqs(k−1)

x
)
+ ηb2

(
xqs(k−2)

y + yqs(k−2)

x
))

: b0, b2 ∈ Fqk , b1 ∈ Fq2k

}
.

where η ∈ □/ qn .

• It is symmetric because Tr(b0x
qky) = Tr(b02 x

qky + b0
2 xy

qk ).

• One only has to prove it for s = 1; see [Theorem 3.2, Neri, Santonastaso, Zullo

2022], [Gow 2009].
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Proof

|C| = q2n = qn(n−d+2)/2, d = n − 2.

Tr
(
b0x

qky + b1
(
xq

k−1
y + yq

k−1
x
)
+ ηb2

(
xq

k−2
y + yq

k−2
x
))

=Tr
(
y
(
b0x

qk + b1x
qk−1

+ (b1x)
qk+1

+ ηb2x
qk−2

+ (ηb2x)
qk+2

))
= Tr(y g(x)).

Goal: To show that the q-polynomial g(x) has at most q2 roots. ⇔ the rank of its

Dickson matrix is at least n − 2:

D(f ) :=


a0 a1 · · · an−1

aqn−1 aq0 · · · aqn−2
...

...
. . .

...

aq
n−1

1 aq
n−1

2 · · · aq
n−1

0

 ∈ Fn×n
qn ,

where f :=
∑n−1

i=0 aiX
qi ∈ Fqn [X ].

The i-th row of D(f ) is essentially f q
i
(mod X qn − X ).
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Proof (Continued)

g(x) = b0x
qk + b1x

qk−1
+ (b1x)

qk+1
+ ηb2x

qk−2
+ (ηb2x)

qk+2

g(x) has at most q2 roots ⇔ the rank of its Dickson matrix is at least n − 2

⇐ ∃ (n− 2)× (n− 2) submatrices Di ’s of D(g) such that det(Di ) = 0 for all

i cannot happen except for b0 = b1 = b2 = 0.

For k = 3, n = 2k = 6:

D(g) =



0 ηb2 b1 b0 bq
4

1 (ηb2)
q5

ηb2 0 (ηb2)
q bq1 bq0 bq

5

1

b1 (ηb2)
q 0 (ηb2)

q2 bq
2

1 bq
2

0

b0 bq1 (ηb2)
q2 0 (ηb2)

q3 bq
3

1

bq
4

1 bq0 bq
2

1 (ηb2)
q3 0 (ηb2)

q4

(ηb2)
q5 bq

5

1 bq
2

0 bq
3

1 (ηb2)
q4 0


9/18



Proof (Continued, for k = 3, n = 2k = 6)

Take two 4× 4 submatrices of D(g):

D4 =


0 ηb2 b1 b0

ηb2 0 (ηb2)
q bq1

b1 (ηb2)
q 0 (ηb2)

q2

b0 bq1 (ηb2)
q2 0

 , D̂4 =


0 ηb2 b0 bq

4

1

ηb2 0 bq1 bq0
b0 bq1 0 (ηb2)

q3

bq
4

1 bq0 (ηb2)
q3 0

 .

det(D4) = (b0(ηb2)
q)2 + (ηb2)

2(q2+1) + b
2(q+1)
1 − 2(b0(ηb2)

q2+q+1 + b0(ηb2)
qbq+1

1 + (ηb2)
q2+1bq+1

1 ) = 0

implies

(b0(ηb2)
q + (ηb2)

q2+1 − bq+1
1 )2 = 4b0(ηb2)

q2+q+1.

• As b0, b2 ∈ Fqk and b1 ∈ Fq2k , it contradicts to η ∈ □/ q6 if b0, b2 ̸= 0.

• For b0 = 0 or b2 = 0, we also need the determinant of D̂4.
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Proof (Continued, for k = 5, n = 2k = 10)



0 0 0 ηb2 b1 b0 bq6

1 (ηb2)
q7 0 0

0 0 0 0 (ηb2)
q bq

1 bq
0 bq7

1 (ηb2)
q8 0

0 0 0 0 0 (ηb2)
q2 bq2

1 bq2

0 bq8

1 (ηb2)
q9

ηb2 0 0 0 0 0 (ηb2)
q3 bq3

1 bq3

0 bq9

1

b1 (ηb2)
q 0 0 0 0 0 (ηb2)

q4 bq4

1 bq4

0

b0 bq
1 (ηb2)

q2 0 0 0 0 0 (ηb2)
q5 bq5

1

bq6

1 bq
0 bq2

1 (ηb2)
q3 0 0 0 0 0 (ηb2)

q6

(ηb2)
q7 bq7

1 bq2

0 bq3

1 (ηb2)
q4 0 0 0 0 0

0 (ηb2)
q8 bq8

1 bq3

0 bq4

1 (ηb2)
q5 0 0 0 0

0 0 (ηb2)
q9 bq9

1 bq4

0 bq5

1 (ηb2)
q6 0 0 0


We need to compute the determinants of two 8× 8 principal submatrices M1 and M2

by removing the last two (the 5th and 10th) columns/rows .
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Proof (Continued, for k = 5, n = 2k = 10)

Suppose that det(M1) = 0. By a long ... computation with the help of Maple,

(A1 − B1 − C1 + D1 − E1 + F1 + G1 − H1 + I1 − J1)
2 = 4(ηb2)

q4+q3+q2+q+1∆1,

where

∆1 = (bq
7+q6

1 (ηb2)
q2 −b0b

q7+q2

1 −bq
2

0 bq
6+q

1 +bq
2+q+1

0 −bq0 (ηb2)
q2+q7 +bq

2+q
1 (ηb2)

q7)

and A1 = bq
2+1

0 (ηb2)
q3+q, B1 = b0b

q3+q2

1 (ηb2)
q, C1 = bq0b

q3+1
1 (ηb2)

q2 ,

D1 = bq0 (ηb2)
q4+q2+1, E1 = bq

2

0 bq+1
1 (ηb2)

q3 , F1 = bq
3+q2+q+1

1 , G1 = bq
7+1

1 (ηb2)
q2+q3 ,

H1 = bq+q2

1 (ηb2)
q4+1, I1 = bq

6+q3

1 (ηb2)
q2+q, J1 = (ηb2)

q+q2+q3+q7 .

Clearly, b0, b2 ∈ Fq5 ⇒ ∆1 ∈ Fq5 .

Then the discussion is separated into two cases depending on the value of ∆1 and b2.
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Proof (Continued, for k = 5, n = 2k = 10)

(A1 − B1 − C1 + D1 − E1 + F1 + G1 − H1 + I1 − J1)
2 = 4(ηb2)

q4+q3+q2+q+1∆1.

• If ∆1, b2 ̸= 0, then LHD ∈ □/ q10 leads to contradiction.

• If ∆1 = 0 or b2 = 0, then we need det(M2), and more complicated computations...

For k = 4, n = 2k = 8, the proof is similar and we skip it.
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Equivalence Problems



Equivalence of maximal additive d-codes in S(n, q)

• For a nonzero a ∈ Fq, σ ∈ Aut(Fq), P ∈ GL(n, q) and S0 ∈ S(n,Fq), define

Φ(C ) = aPTCσP + S0, (1)

where Cσ := (cσij ) for C = (cij). Then Φ preserves the rank-distance on S(n, q).

• A map Φ : S(n, q) → S(n, q) preserves the rank-distance only if Φ is defined as in

(1) except for the case with q = 2 and n = 3. (Wan, 1996)

Definition

For two subsets C1, C2 ⊆ S(n, q), if there exists a Φ defined as in (1) such that

Φ(C1) = C2, then we say C1 and C2 are equivalent.
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Our construction is “new”

Comparing with the parameters of known constructions, we only have to show

Tn,s,η :=
{
Tr

(
b0x

qk y + b1
(
xqs(k−1)

y + yqs(k−1)

x
)
+ ηb2

(
xqs(k−2)

y + yqs(k−2)

x
))

: b0, b2 ∈ Fqk , b1 ∈ Fq2k

}
is not equivalent to

C =
{
Tr(a0xy) + Tr(a1(xy

qt + yxq
t
)) : a0, a1 ∈ Fq2k

}
, gcd(n, t) = 1.

Proof. (Routine) Assume equivalence. Comparing coefficients of q-polynomials leads

to contradictions.
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Equivalence between the members

Theorem

For any positive integer k > 2, let n = 2k. For any η1, η2 ∈ □/ q and any integers

s1, s2 satisfying 0 < s1, s2 < 2k and gcd(s1, n) = gcd(s2, n) = 1, Tn,s1,η1 and Tn,s2,η2
are equivalent if and only if one of the following collections of conditions is satisfied:

(a) s1 ≡ s2 (mod n), and there are a ∈ Fqn , i ∈ {0, 1, · · · , n − 1} and

r ∈ {0, . . . ,m − 1} such that ηq
s1 i

2 = a1+qs1(k−2)
ηp

r

1 ;

(b) s1 ≡ −s2 (mod n), and there are a ∈ Fqn , i ∈ {0, 1, · · · , n − 1} and

r ∈ {0, . . . ,m − 1} such that ηq
s1 i

2 = a1+qs1(k+2)
ηp

rqs1(k+2)

1 .
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Conclusive Remarks



Conjecture

“Theorem”

Let n = 2k with k = 3, 4, 5. For odd prime power q, the following set of symmetric
bilinear forms is a maximal additive n − 2 code

Cnew :=
{
Tr

(
b0x

qk y + b1
(
xqk−1

y + yqk−1

x
)
+ ηb2

(
xqk−2

y + yqk−2

x
))

: b0, b2 ∈ Fqk , b1 ∈ Fq2k

}
.

where η ∈ □/ qn .

• Similar situation: maximum scattered linear sets extended from PG(1, q8) to

PG(1, q2k).

References: Longobardi, Marino, Trombetti, Z. A Large Family of Maximum Scattered Linear

Sets of PG (1, qn) and Their Associated MRD Codes. Combinatorica 43: 681-716. 2023.
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Non-additive d-codes in S(n, q)

A bound for non-additive 2δ-codes by Schmidt 2015,

|C| ≤

qn((n+1)/2−δ+1) 1+q1−n

1+q , for odd n,

q(n+1)(n/2−δ+1) 1+q2δ−n−1

1+q , for even n.

• When n = 2δ = d , the upper bound equals qn.

• In general, the upper bound is NOT sharp: computer results by Kiermaier and his

Master student Schmidt 2016.

• First infinite family: When d = 2, n = 3 and q > 2, there are examples of

non-additive 2-codes beyond the additive bound.

q4 + q3 + 1 > q4;

see (Cossidente, Marino, Pavese. 2022) and some better upper bounds on 2-codes

in S(3, q).
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Thanks for your attention!
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