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Quasi-Polar Spaces

Definition ( Schillewaert, Van de Voorde (2022))

A quasi-polar space is a set of points S in PG(r , q), where r ≥ 2 and q
is a prime power, such that the intersection sizes with hyperplanes match
those of a non-degenerate classical polar space P embedded in PG(r , q).

Quasi-quadrics were introduced in 2000 by
De Clerck, Hamilton, O’Keefe, and Penttila.

This idea traces back to Segre, who in 1954 defined an oval in a finite
projective plane as a combinatorial abstraction of a conic in PG(2, q).
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Quasi-Polar Spaces

Definition ( Schillewaert, Van de Voorde (2022))

A quasi-polar space is a set of points S in PG(r , q), where r ≥ 2 and q
is a prime power, such that the intersection sizes with hyperplanes match
those of a non-degenerate classical polar space P embedded in PG(r , q).

Quasi-quadrics were introduced in 2000 by
De Clerck, Hamilton, O’Keefe, and Penttila.

This idea traces back to Segre, who in 1954 defined an oval in a finite
projective plane as a combinatorial abstraction of a conic in PG(2, q).

The analogous concept for Hermitian varieties, that is quasi-Hermitian
varieties, was formally introduced in 2010 by De Winter and
Schillewaert.



The Hermitian Case

A non-singular Hermitian variety H(r , q2) in the projective space
PG(r , q2) is defined as the set of absolute points of a non-degenerate
unitary polarity ρ.

That is,
H(r , q2) = {P ∈ PG(r , q2) | P ∈ Pρ}

where Pρ is the polar hyperplane of P under the unitary polarity ρ.

Property

A non-singular Hermitian variety H(r , q2) is a hypersurface with equation:

(X q
0 , . . . ,X

q
r )H(X0, . . . ,Xr )

T = 0,

where H is a non-singular Hermitian (r + 1)× (r + 1) matrix.
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Projective Equivalence

Any non-singular Hermitian variety in PG(r , q2) can be mapped to any
other non-singular Hermitian variety in PG(r , q2) via a projectivity.

Special Case: The Plane

In the plane, the non-singular Hermitian curve H(2, q2) is also known as
the classical or Hermitian unital.

A unital embedded in PG(2, q2) is a set of q3 + 1 (= |H(2, q2)|) points
such that every line of the plane intersects it in either 1 or q + 1 points.
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Definition ( De Winter, Schillewaert (2010))

A point set S of PG(r , q2) is a quasi-Hermitian variety if it meets each
hyperplane in either

|H(r − 1, q2)| = (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
, or

|P0H(r − 2, q2)| = (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
+ (−1)r−1qr−1

points.

H(r , q2) is a quasi-Hermitian variety, called the classical quasi-Hermitian
variety.



Definition ( De Winter, Schillewaert (2010))

A point set S of PG(r , q2) is a quasi-Hermitian variety if it meets each
hyperplane in either

|H(r − 1, q2)| = (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
, or

|P0H(r − 2, q2)| = (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
+ (−1)r−1qr−1

points.

H(r , q2) is a quasi-Hermitian variety, called the classical quasi-Hermitian
variety.



Definition ( De Winter, Schillewaert (2010))

A point set S of PG(r , q2) is a quasi-Hermitian variety if it meets each
hyperplane in either

|H(r − 1, q2)| = (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
, or

|P0H(r − 2, q2)| = (qr + (−1)r−1)(qr−1 − (−1)r−1)

q2 − 1
+ (−1)r−1qr−1

points.

H(r , q2) is a quasi-Hermitian variety, called the classical quasi-Hermitian
variety.



Quasi-Hermitian Varieties as Two-Character Sets

Property

A quasi-Hermitian variety in the projective space PG(r , q2) is a
two-character set, meaning a point set with exactly two possible
intersection sizes with hyperplanes.

Why It Matters

Two-character sets have wide-ranging applications:

They give rise to strongly regular graphs.

They generate two-weight linear codes.

Key references:

R. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete
Math., 3 (1972)

R. Calderbank, W. Kantor, The geometry of two-weight codes, The Bulletin of the
London Mathematical Society, 18 (1986)
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Cardinality of a quasi-Hermitian variety

Theorem 1 (Schillewaert, Van de Voorde (2022))

Let S be a quasi-Hermitian variety in PG(r , q2) with r ≥ 3, then:

|S| = |H(r , q2)|.

If S ⊆ PG(2, q2) is a point set such that every line intersects S in either 1
or q + 1 points, then:

|S| ∈ {q2 + q + 1, q3 + 1}.

Perspective

We interpret a quasi-Hermitian variety S as higher-dimensional
generalization of a unital. Thus, |S| = |H(r , q2)| for any r ≥ 2.
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BM quasi-Hermitian Variety Construction

Fix a projective frame in PG(r , q2) with homogeneous coordinates
(X0,X1, . . . ,Xr ).

Consider the affine space AG(r , q2) whose infinite hyperplane Σ∞ has
equation X0 = 0.

Then AG(r , q2) has affine coordinates (x1, x2, . . . , xr ) where xi = Xi/X0

for i ∈ {1, . . . , r}.
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Take a ∈ GF(q2) and b ∈ GF(q2) \GF(q) and consider the projective
variety Ba,b of equation

X q
r X

q
0 − XrX

2q−1
0 + aq(X 2q

1 + . . .+ X 2q
r−1)− a(X 2

1 + . . .+ X 2
n )X

2q−2
0

= (bq − b)(X q+1
1 + . . .+ X q+1

r−1 )X
q−1
0 . (1)

Let F ⊂ Σ∞ be the Hermitian cone

F := {(0, x1, . . . , xr )|xq+1
1 + . . .+ xq+1

r−1 = 0}.

If a = 0 then Ba,b is a non-singular Hermitian variety.
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Assumptions

Assume a ̸= 0 and one of the following conditions:

i r and q are both odd and 4aq+1 + (bq − b)2 ̸= 0;

ii r is even, q is odd and 4aq+1 + (bq − b)2 is a non-square in GF(q);

iii r and q are both even and trq/2(
aq+1

(bq+b)2
) = 0;

iv r is odd and q is even.

If r = 2 then Ba,b is a non-classical Buekenhout-Metz unital.
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Case r = 3 and q odd

Ba,b ∩ Σ∞ = ℓ1 ∪ ℓ2 where ℓ1 : X1 − νX2 = 0 = X0, ℓ2 : X1 + νX2 = 0 = X0 and

ν ∈ GF(q2) : ν2 = −1.
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Theorem 2 (A., Cossidente, Korchmáros (2012))

The set Ma,b consisting of the affine points of Ba,b plus the infinite points
of F is a non–classical quasi-Hermitian variety of PG(r , q2), r ≥ 2.

This quasi-Hermitian variety is called a BM quasi-Hermitian variety.
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Crucial Tool: A Non-Standard Model of PG(r , q2)

Fix a ∈ GF(q2)∗.

Define the quadric Qa(m, d) for m = (m1, . . . ,mr−1) ∈ GF(q2)r−1 and
d ∈ GF(q2) as the set of points satisfying:

xr = a(x21 + . . .+ x2r−1) +m1x1 + . . .+mr−1xr−1 + d .

Consider the pair (P,Σ), where:

Points P ∈ P: all points of the affine geometry AG(r , q2);

Hyperplanes π ∈ Σ:

all affine hyperplanes passing through the point at infinity
P∞ = (0, 0, . . . , 0, 1);
all quadrics of the form Qa(m, d).
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Lemma 3 (A., Cossidente, Korchmáros, (2012))

For every non-zero a ∈ GF(q2), (P,Σ) defines an incidence structure Πa

isomorphic to AG(r , q2).
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For every non-zero a ∈ GF(q2), (P,Σ) defines an incidence structure Πa

isomorphic to AG(r , q2).



Completing Πa with its points at infinity in the usual way gives a
projective space Πa isomorphic to PG(r , q2).

Let H(r , q2) : xqr − xr = (bq − b)(xq+1
1 + . . .+ xq+1

r−1 )
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BT Q-H Variety Construction

Let e be an odd number, r ≥ 2 and consider the projective space
PG(r , q2) where q = 2e .

Choose now ε ∈ GF(q2) \GF(q) such that trq2/q(ε) = 1.

The function σ : x → (x)2
e+1
2 is an automorphism of GF(q).

Now, let V r
ε be the variety of PG(r , q2) represented by:

xqr + xr = Γε(x1) + . . .+ Γε(xr−1) (2)

where

Γε(x) = [x + (xq + x)ε]σ+2 + (xq + x)σ + (x2q + x2)ε+ xq+1 + x2.

We define
Hr

ε := (V r
ε \ Σ∞) ∪ F ,

where
F = {(0,X1, . . . ,Xr )| X q+1

1 + . . .+ X q+1
r−1 = 0}.
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The function σ : x → (x)2
e+1
2 is an automorphism of GF(q).

Now, let V r
ε be the variety of PG(r , q2) represented by:

xqr + xr = Γε(x1) + . . .+ Γε(xr−1) (2)

where

Γε(x) = [x + (xq + x)ε]σ+2 + (xq + x)σ + (x2q + x2)ε+ xq+1 + x2.

We define
Hr

ε := (V r
ε \ Σ∞) ∪ F ,

where
F = {(0,X1, . . . ,Xr )| X q+1

1 + . . .+ X q+1
r−1 = 0}.
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Theorem [A. (2013)]

Hr
ε is a non-classical quasi-Hermitian variety in PG(r , q2) which, for

r = 2, corresponds to a Buekenhout–Tits unital.

We refer to Hr
ε as a BT quasi-Hermitian variety in PG(r , q2) for all r ≥ 3.

Automorphism 2-Group Result [A.(2013)]

The elementary abelian 2-group E of order qr , generated by collineations
with matrices of the form:



1 γ1ε γ2ε · · · γr−1ε γr + (
∑r−1

i=1 γi )
σε

0 1 0 · · · 0 γ1 + γ1ε

0 0 1 · · · 0 γ2 + γ2ε

...
...

...
. . .

...
...

0 0 0 · · · 1 γr−1 + γr−1ε

0 0 0 · · · 0 1



with γi ∈ Fq for i = 1, . . . , r , is a subgroup of Aut(Hr
ε).
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A Classical Problem

Having only a few intersection numbers with hyperplanes is a strong
combinatorial property however, this condition alone is not sufficient to
characterize Hermitian varieties.

Problem

Can we find a characterization of Hermitian varieties among
quasi-Hermitian ones?
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Some Known Characterizations

Theorem 4 ( De Winter, Schillewaert (2010))

A quasi-Hermitian variety of PG(r , q2), r ≥ 3 is classical if it has the same
intersection numbers with respect to spaces of codimension 2 as a
non-singular Hermitian variety.

Theorem 5 (A., Bartoli, Storme, Weiner (2018) )

A quasi-Hermitian variety of PG(r , q2), with r = 3 and q = ph > 4, or
r ≥ 4, q = p > 4, or r ≥ 4, q = p2, p > 3 prime, is classical if and only if
it is in the Fp-code spanned by the hyperplanes of PG(r , q2).
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Theorem 6 ( Napolitano (2023))

Let H be a set of points in PG(3, q2), with q ̸= 2, such that:

H has the same size as the Hermitian surface;

H contains no plane;

every line is either fully contained in H or intersects H in at most
q + 1 points;

every plane intersects H in at least q3 + 1 points.

Then H is a quasi-Hermitian variety.

Moreover, if there is no external line, then H is a Hermitian surface.



Research Question and Approach

Problem

Can we characterize BM and BT quasi-Hermitian varieties based on their
incidence properties or their automorphism groups?

Our Approach

Classify these varieties up to projective equivalence.

Determine their full automorphism groups.

Derive group-theoretic characterizations.
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Projective equivalence classes of Ma,b.

How many projectively inequivalent BM Q-H varieties can be obtained
from varying the parameters (a, b)?

Theorem 7 (Baker and Ebert (1982), Ebert (1993))

Let q = pn ≥ 4 be a prime power. Then the number of projectively
inequivalent BM unitals of PG(2, q2) is

1

2n

[
n0 +

∑
k|n

Φ

(
2n

k

)
pk

]
,

where Φ is the Euler Φ-function and n0 is the odd part of n if p > 2 or
n0 = 0 if p = 2.
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Case r = 3

Theorem 8 ( A., Giuzzi (2023))

Let q = pn with p an odd prime. Then the number of projectively
inequivalent BM quasi-Hermitian varieties Ma,b of PG(3, q2) is

1

n

(∑
k|n

Φ
(n
k

)
pk

)
− 2,

where Φ is the Euler Φ-function.

Theorem 9 (A., Giuzzi, Montinaro, Siconolfi (2025))

All BM quasi-Hermitian varieties Ma,b of PG(3, q2), q even are
equivalent.
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Crucial tools

Assume q odd and set:

ℓ1 : X1 − νX2 = 0 = X0, ℓ2 : X1 + νX2 = 0 = X0

where ν ∈ GF(q2) such that ν2 + 1 = 0.

Theorem 10 (A., Giuzzi (2023))

Let Ma,b be a BM quasi-Hermitian variety of PG(3, q2), with q ≡ 1
(mod 4). Then,

through each affine point of Ma,b pass exactly two lines of Ma,b;

through each point at infinity on the union ℓ1 ∪ ℓ2 there pass q + 1
lines of a pencil contained in Ma,b;

through each point at infinity not on ℓ1 ∪ ℓ2 there passes only one line
of Ma,b.



Crucial tools

Theorem 11 (A., Giuzzi (2023))

Let Ma,b be a BM quasi-Hermitian variety of PG(3, q2), with q ≡ 3
(mod 4). Then,

no line of Ma,b passes through any affine point of Ma,b;

through each point at infinity in (Ma,b ∩ Σ∞) \ {P∞} there passes
only one line of Ma,b.

through the point P∞(0, 0, . . . , 1) there are q + 1 lines contained in
Ma,b



Suppose q even and set ℓ∞: X0 = X1 + X2 = 0.

Theorem 12 (A., Giuzzi, Montinaro, Siconolfi (2025))

Let Ma,b be the BM quasi-Hermitian variety of PG(3, q2), with q even.
Then:

through each affine point of Ma,b there passes exactly one line of
Ma,b;

through each point at infinity in Ma,b ∩ ℓ∞ there pass q+1 lines of a
pencil contained in Ma,b.
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Automorphism groups in PG(3, q2), q even prime power

Let ϕs , ψγ , µδ, and τe be the collineations associated with the following
matrices, where:

s, e ∈ GF(q),

δ ∈ GF(q)∗,

γ = (γ1, γ2) ∈ GF(q2)2.

ϕs :


1 0 0 s
0 1 0 0
0 0 1 0
0 0 0 1

 , ψγ(a, b) :


1 γ1 γ2 a(γ21 + γ22) + b(γq+1

1 + γq+1
2 )

0 1 0 (b + bq)γq1
0 0 1 (b + bq)γq2
0 0 0 1



µδ : diag(1, δ, δ, δ
2), τe :


1 0 0 0
0 e + 1 e 0
0 e e + 1 0
0 0 0 1





Theorem 13 (A., Giuzzi, Montinaro, Siconolfi (2025))

The stabilizer of Ma,b in PGL4(q
2), q even, is the group

G (a, b) =
〈
ϕs , ψγ(a, b), τe , µδ : γ ∈ GF(q2)2,s, e, δ ∈ GF(q),δ ̸= 0

〉
of order q6(q − 1).

Theorem 14 ( A., Giuzzi, Montinaro, Siconolfi (2025))

Let σ ∈ PΓL4(q
2) be induced by a generator of Aut(GF(q2)), q even, and

let β ∈ PΓL4(q
2) map M1,ϵ with trq2/q(ϵ) = 1 onto Ma,b. Then the

stabilizer in PΓL4(q
2) of Ma,b is

Γ(a, b) =
〈
ϕs , ψγ(a, b), τe , µδ, σ

β : γ ∈ GF(q2)2,s, e, δ ∈ GF(q),δ ̸= 0
〉
,

and its order is q6(q − 1) log2 q.
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Projective Equivalence Classes of Hr
ε

Case r = 2: The BT quasi-Hermitian varieties coincide with the BT
unitals.

Result: All BT unitals are equivalent under the action of PΓL(3, q2), as
proven by J. Faulkner and G. Van de Voorde (2025), resolving an open
problem posed by Barwick and Ebert in their book Unitals in Projective
Planes (2008).

Problem

What occurs in higher-dimensional spaces?
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Theorem 15 (A., Montinaro (submitted))

Let ε1, ε2 ∈ Fq2 : ε2i + εi = δi with T (δi ) = 1, i = 1, 2. Assume

α = ε2 − ε1, B = ( α
δ1
)σ/2, ρ =

(
δ1
δ2

)σ/2+1
and r ≥ 2. The projectivity ξ

represented by the (r + 1)× (r + 1) matrix A below, maps Hr
ε1 onto Hr

ε2

A =



1 Bρ
ε2
ε1

Bρ
ε2
ε1

· · · Bρ
ε2
ε1

(r − 1)ρ2Bσ+2 ε
q+2
2

ε
q+1
1

0
ρε2
ε1

0 · · · 0 Bρ2
ε
q+1
2

ε
q+1
1

0 0
ρε2
ε1

· · · 0 Bρ2
ε
q+1
2

ε
q+1
1

...
...

...
. . .

...
...

0 0 0 · · · ρε2
ε1

Bρ2
ε
q+1
2

ε
q+1
1

0 0 0 · · · 0
ρ2ε

q+1
2

ε
q+1
1



Lemma 16 (A., Montinaro (submitted))

A Sylow 2-subgroup of Aut(Hr
ε) fixes a unique incident point-hyperplane

pair of PG(r , q2).
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Lemma 16 (A., Montinaro (submitted))

A Sylow 2-subgroup of Aut(Hr
ε) fixes a unique incident point-hyperplane

pair of PG(r , q2).



Collineation group of H3
ε

Theorem 17 (A., Montinaro (subm.))

The following hold:

1 Aut(H3
ε) ∩ PGL4(q

2) = E ⟨ϑ⟩, with
ϑ : (x0, x1, x2, x3) → (x0, x2, x1, x3), is a group of order 2q3;

2 Aut(H3
ε) preserves the triple (P∞, ℓ∞,Σ∞).

Theorem 18 (A., Montinaro (subm.))

Aut(H3
ε) = E ⟨ϑ, ϕ⟩, with ϑ : (x0, x1, x2, x3) → (x0, x2, x1, x3) and

ϕ : (x0, x1, x2, x3) → (x20 , x
2
1 , x

2
2 , x

2
3 )


1 1 1 0

0 δ
σ
2 εq 0 δ

σ
2 εq

0 0 δ
σ
2 εq δ

σ
2 εq

0 0 0 δσ+1

 ,

is a group of order 4eq3.
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Tools: some geometric properties

Set ℓ∞ : X0 = X1 + X2 = 0.

Theorem 19 (A., Montinaro (submitted))

Let H3
ε be the BT quasi-Hermitian variety of PG(3, q2). Then the

following statements hold:

1 each affine line contained in H3
ε intersects ℓ∞ at one among the

points Lε
qα
∞ = (0, 1, 1, εqα), where α ∈ GF(q);

2 through each point Lε
qα
∞ , there exist exactly q + 1 coplanar lines

contained in H3
ε , one of which is ℓ∞. Each such set of q + 1 lines

forms a Hermitian cone Π0H(1, q2).
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following statements hold:

1 each affine line contained in H3
ε intersects ℓ∞ at one among the

points Lε
qα
∞ = (0, 1, 1, εqα), where α ∈ GF(q);

2 through each point Lε
qα
∞ , there exist exactly q + 1 coplanar lines

contained in H3
ε , one of which is ℓ∞. Each such set of q + 1 lines

forms a Hermitian cone Π0H(1, q2).
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Construction of MDS codes

Let G1(x), . . . ,GN(x) be N multivariate polynomials over GF(q) and
W ⊂ GF(q)n+1.

Here, the evaluation code C := C(G1, . . . ,GN ;W) defined by G1, . . . ,GN

over a set W is the image of the map

evG1,...,GN
:

{
W → GF(q)N

x → (G1(x), . . . ,GN(x)).

Assume that C has qt codewords and Hamming distance d

.
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The Singleton Bound

The Singleton bound

It is known that for a code C over GF(q) with parameters [N, qt , d ], the
following holds:

qt ≤ qN−d+1

When equality holds, the code is called a Maximum Distance Separable
code (MDS).

If the evaluation code C is MDS, then any t = N − d + 1 of the varieties
V (Gi ) : Gi = 0, for i = 1, . . . ,N, must intersect in exactly one point in the
ambient space W.

Define W := GF(q2)×GF(q2)× T , where T is a transversal of GF(q)
viewed as an additive subgroup of GF(q2).
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Determinantal Condition

Consider the subset Ω of GF(q2)2 such that for each (ωi
1, ω

i
2) ∈ Ω with

i ≥ 5, the following condition holds:

det


1 ω1

1 ω1
2 (ω1

1)
q (ω1

2)
q

1 ω2
1 ω2

2 (ω2
1)

q (ω2
2)

q

1 ω3
1 ω3

2 (ω3
1)

q (ω3
2)

q

1 ω4
1 ω4

2 (ω4
1)

q (ω4
2)

q

1 ω5
1 ω5

2 (ω5
1)

q (ω5
2)

q

 ̸= 0 (DetCond)



Fix a basis (1, ϵ) of GF(q2) regarded as a vector space over GF(q), with
ϵ ∈ GF(q2) \GF(q) : trq2/q(ϵ) = 0 for q odd or trq2/q(ϵ) = 1 for q even.

Write ωj
i = ωj

i ,0 + ωj
i ,1ϵ for all i = 1, 2 and j = 1, . . . , 5.

Then (DetCond) becomes

det
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1,0 ω1
2,0 ω1

1,1 ω1
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2,0 ω5
1,1 ω5

2,1

 ̸= 0 (DetCondq)

for any choice of five elements in Ω.
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Arcs in Projective Space

Condition (DetCondq) states that the rows of the matrix represent the
coordinates of points lying on an arc in AG(4, q).

An arc in PG(4, q), that is a set of points such that any five span the
entire space, has maximum size q + 1.

Therefore, we have the bound: |Ω| ≤ q.

Theorem 20 (Ball, Lavrauw (2019))

The only (q + 1)-arcs in PG(4, q) for q > 13 odd or q ≥ 8 even, are
projectively equivalent to the normal rational curve:

Γ4 = {(1, t, t2, t3, t4) | t ∈ GF(q)} ∪ {(0, 0, 0, 0, 1)}.
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Defining the Forms Fi

We can set
Ω := {(t + εt2, t3 + εt4) : t ∈ GF(q)}

so that it corresponds to an arc in AG (4, q).

Now, consider the following forms

Fi (X0,X1,X2,X3) = (b − bq)X q−1
0 (X q+1

1 + X q+1
2 )+

X q
0 X

q
3 − X3X

2q−1
0 + aq(X 2q

1 + X 2q
2 )− aX 2q−2

0 (X 2
1 + X 2

2 )+

[2aq(ωi
1)

q − (bq − b)ωi
1]X

q
0 X

q
1 + [2aq(ωi

2)
q − (bq − b)ωi

2]X
q
0 X

q
2 +

[2aωi
1 + (b − bq)(ωi

1)
q]X 2q−1

0 X1 + [2aωi
2 + (b − bq)(ωi

2)
q]X 2q−1

0 X2

where (ωi
1, ω

i
2) ∈ Ω for i = 1, . . . , q.
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These forms Fi define BM Q-H varieties such that any subset of five
intersects at exactly one point in W.

Let T0 = {x ∈ GF(q2) : xq + x = 0}.

Set
C(F1, . . . ,Fq;W) =

{(F1(1, x , y , z),F2(1, x , y , z), . . . ,Fq(1, x , y , z))|(x , y , z) ∈ W}.

Theorem 21 (A., Giuzzi, Siconolfi (2025))

Let q > 13. The code C(F1, . . . ,Fq;W) is a GF(q)-linear
[q, 5, q − 4]-MDS code over T0.
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Some Equivalent Codes

Write εq + ε = a0, so trq2/q(x0 + εx1) = 2x0 + a0x1, for x0, x1 ∈ GF(q).

So T0 = {x ∈ GF(q2)|trq2/q(x) = 0} = {(a0 − 2ε)x0|x0 ∈ GF(q)}.

Put θ = (a0 − 2ε).

Theorem 22 (A., Giuzzi, Siconolfi (2025))

The code C′ := (θ−1)C(F1,F1, . . . ,Fq;W) is equivalent to a q-ary
Reed-Solomon code. In particular, it can be further extended to a
[q + 1, 5, q − 3]q Reed-Solomon code.

The extended Reed-Solomon code is obtained by C′ adding to each
codeword the component Fq+1(1, x , y , z) where

Fq+1(X0,X1,X2,X3) = (bq − b)X q
2 X0 + 2aX2X

q
0

.
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Non-degeneracy and Minimal Codes

Let C be a q-ary linear [n, r , d ] code. The support of a codeword
c = (c1, . . . , cn) ∈ C is: supp(c) := {i : ci ̸= 0}.

The support of the code C is: supp(C) :=
⋃

c∈C supp(c).

The code C is non-degenerate if: supp(C) = {1, . . . , n}.

A codeword c ∈ C is minimal if for every non-zero codeword c ′ ∈ C such
that: supp(c ′) ⊆ supp(c), we have c ′ ∈ ⟨c⟩.

The code C is minimal if all its non-zero codewords are minimal.

References:

Alfarano, Borello, Neri (2022)

Scotti (2024)

Alon, Bishnoi, Das, Neri (2024)
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Code → Projective System

Let C be a non-degenerate q-ary
linear [n, r , d ] code. Its projective
system is the (multi)set Ω of points
in PG(r − 1, q) corresponding to
the columns of any generator
matrix of C.

Projective System → Code

Any (multi)set Ω of points in
PG(r − 1, q) defines a code C(Ω)
whose generator matrix has as
columns the coordinates of the
points in Ω.

Minimum Distance

For a code C = C(Ω), the minimum distance is given by:

d = |Ω| −max{|Ω ∩ Π| : Π is a hyperplane of PG(⟨Ω⟩)}.
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whose generator matrix has as
columns the coordinates of the
points in Ω.

Minimum Distance

For a code C = C(Ω), the minimum distance is given by:

d = |Ω| −max{|Ω ∩ Π| : Π is a hyperplane of PG(⟨Ω⟩)}.
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Characterization of Minimal Codes

Theorem 23 (Alfarano, Borello, Neri (2022))

Let Ω be a set of points in PG(r , q) such that ⟨Ω⟩ = PG(r , q). Then the
code C(Ω) is minimal if and only if for every hyperplane Π of PG(r , q),

⟨Π ∩ Ω⟩ = Π,

i.e., Ω is a cutting set.

Sufficient Condition (Ashikhmin–Barg)(1994)

A q-ary linear code C is minimal if wmin
wmax

> q−1
q , where wmin and wmax are

the minimum and maximum weights of non-zero codewords.
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Minimality of the Code Associated with Q-H Varieties

If H is a quasi-Hermitian variety in PG(r , q2), then the associated code
C(H) has exactly two distinct weights.

Although the sufficient condition for minimality does not hold in this case,
the Characterization Theorem for minimal codes can still be applied.

Theorem 24 (A., Giuzzi, Ceria (2022))

Let H be a quasi-Hermitian variety in PG(r , q2). Then, the code C(H) is
minimal.
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Codes from V r
ε

Let us consider the BT quasi-Hermitian variety:

Hr
ε = (V r

ε \ Σ∞) ∪ F .

What can be said about the code Cr
ε := C(V r

ε)?

Key Properties

It is a few-weight code.

In some cases, the code is minimal

Theorem 25 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The linear code Cr
ε generated by the projective points of V r

ε in PG(r , q2) is
a (r + 1)-dimensional minimal code for r = 3 and e ≡ 3 (mod 4) or r ≥ 4
and any odd integer e.
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Key Lemma (A., Giuzzi, Longobardi, Siconolfi (submitted))

Let r ≥ 2 and q = 2e with e ≥ 3 odd. Then the Fermat hypersurface F r
n

of degree n = 2
e−1
2 + 1 in PG(r , q2), defined by:

F r
n : X n

0 + X n
1 + · · ·+ X n

r = 0

spans the entire projective space: ⟨F r
n⟩ = PG(r , q2).

The intersection V r
ε ∩ Σ∞ is represented by:

X0 = X 2
e−1
2 +1

1 + X 2
e−1
2 +1

2 + · · ·+ X 2
e−1
2 +1

r−1 = 0.

Remark

To determine the length and the weights of the projective linear code Cr
ε ,

with r ≥ 3, it is necessary to compute the number of GF(q2)-rational
points of the Fermat hypersurface F r−2

n .
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Proposition 26 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The number Nq2 of GF(q2)-rational points of F r
n in PG(r , q2), r ≥ 2,

satisfies the following properties:

1 if e ≡ 1 (mod 4) then Nq2 = θq2(r − 1);

2 if e ≡ 3 (mod 4) then

Nq2 ≤ (n − 1)q2(r−1) + nq2(r−2) + θq2(r − 3).

3 if e = 3 and r = 2 then Nq2 = (q + 1)2.

Proposition 27 (A., Giuzzi, Longobardi, Siconolfi (submitted))

If e ≡ 3 (mod 4), then the weights of the projective code C3
ε := C(V3

ε )
belong to the set

{q5, q5 − q3 + 3q2, q5 − q3 + 2q2, q5 − q3 + 3q2 + q − 2,

q5 − q3 + 2q2 + q − 2}.
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Theorem 28 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The linear code C4
ε = C(V4

ε ) for q = 2e and e > 1 an odd integer is a
5-dimensional minimal code with the following parameters

1 If e ≡ 1 (mod 4), then C4
ε has length |V4

ε | = q7 + q4 + q2 + 1 and weights

{q7, q7 − q5 + q4 + q3 − q2, q7 − q5 + q4 + q2,

q7 − q5 + q4, q7 − q5 + q4 − q2, q7 − q5 + q4 − 4q2};

2 If e = 3, then C4
ε has length |V4

ε | = q7 + q4 + 2q3 + q2 + 1 and weights

{q7, q7 − q5 + q4 + 3q3 − q2, q7 − q5 + q4 + 2q3 + q2,

q7 − q5 + q4 + 2q3, q7 − q5 + q4 + 2q3 − q2, q7 − q5 + q4 + 2q3 − 2q2}.



Cutting Gap: Measuring Cutting Sets

Definition 29 (Cutting Gap)

Let Ω be a non-empty set of points in PG(r , q), and let 0 ≤ k ≤ r . The
k-th cutting gap of Ω is defined as:

τk(Ω) = k −min {dim (⟨Π ∩ Ω⟩) : dim(Π) = k} .

Ω is a k-fold strong blocking set if and only if τk(Ω) = 0, according to the
definitions in

A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Linear nonbinary covering
codes and saturating sets in projective spaces, Adv. Math. Commun. 5, (2011)
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Cutting Sets and Their Properties

We also refer to this property as being k-cutting. Thus, Ω is a k-cutting
set if τk(Ω) = 0.

In particular, Ω is a cutting set or, more in detail, a cutting set with
respect to the hyperplanes, when τr−1(Ω) = 0.

Proposition 30 (A. Giuzzi, Longobardi, Siconolfi, (submitted))

Let Ω be a k-cutting set in PG(r , q). Then Ω is also ℓ-cutting for all
k ≤ ℓ ≤ r .
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Cutting Gap of Hermitian Varieties

Proposition 31 (A., Giuzzi, Longobardi, Siconolfi, (submitted))

Let Hr = H(r , q2) be a non-degenerate Hermitian variety in PG(r , q2).
Then the cutting gap satisfies:

τr−t(Hr ) =


0 if t >

⌊
r
2

⌋
,

1 if t ≤
⌊
r
2

⌋
.
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Future Research Directions

• Characterization via cutting gaps: Investigate whether the cutting
gaps listed in the last previous proposition characterize Hermitian
varieties among quasi-Hermitian ones.

• Automorphism groups: Complete the determination of the full
automorphism group of BT and BM quasi-Hermitian varieties in
PG(r , q2) for all dimensions r ≥ 4 and any q.

• Sylow 2-subgroups: Explore whether the property that any Sylow
2-subgroup of the collineation group of a BT Q-H variety fixes a
unique incident point-hyperplane pair in PG(r , q2) can be used to
characterize the BT Q-H varieties.
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