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Definition ( Schillewaert, Van de Voorde (2022))

A quasi-polar space is a set of points S in PG(r, g), where r > 2 and g
is a prime power, such that the intersection sizes with hyperplanes match
those of a non-degenerate classical polar space &7 embedded in PG(r, q).

Quasi-quadrics were introduced in 2000 by
De Clerck, Hamilton, O’Keefe, and Penttila.

This idea traces back to Segre, who in 1954 defined an oval in a finite
projective plane as a combinatorial abstraction of a conic in PG(2, q).

Reference:

@ B. Segre, Sulle ovali nei piani lineari finiti, Rendiconti dell’Accademia Nazionale dei
Lincei, (1954).



Quasi-Polar Spaces

Definition ( Schillewaert, Van de Voorde (2022))

A quasi-polar space is a set of points S in PG(r, q), where r > 2 and ¢
is a prime power, such that the intersection sizes with hyperplanes match
those of a non-degenerate classical polar space &7 embedded in PG(r, q).

Quasi-quadrics were introduced in 2000 by
De Clerck, Hamilton, O’Keefe, and Penttila.

This idea traces back to Segre, who in 1954 defined an oval in a finite
projective plane as a combinatorial abstraction of a conic in PG(2, q).

The analogous concept for Hermitian varieties, that is quasi-Hermitian
varieties, was formally introduced in 2010 by De Winter and
Schillewaert.
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The Hermitian Case

A non-singular Hermitian variety H(r, %) in the projective space
PG(r, g°) is defined as the set of absolute points of a non-degenerate
unitary polarity p.

That is,
H(r,q°) ={P € PG(r,q*) | P € P}

where P? is the polar hyperplane of P under the unitary polarity p.

Property

A non-singular Hermitian variety H(r, g°) is a hypersurface with equation:
(X3,..., X)H(Xo, ..., X,)T =0,

where H is a non-singular Hermitian (r + 1) x (r + 1) matrix.
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Projective Equivalence

Any non-singular Hermitian variety in PG(r, g?) can be mapped to any
other non-singular Hermitian variety in PG(r, g?) via a projectivity.

Special Case: The Plane

In the plane, the non-singular Hermitian curve #(2, g?) is also known as
the classical or Hermitian unital.

A unital embedded in PG(2, ¢?) is a set of ¢° + 1 (= |H(2, ¢%)|) points
such that every line of the plane intersects it in either 1 or g + 1 points.






Definition ( De Winter, Schillewaert (2010))

A point set S of PG(r, g%) is a quasi-Hermitian variety if it meets each
hyperplane in either

(¢ +(=1)"")g" - (=)
q> -1 ’

(9" + (—1)'_;)2(zr;1 - (=) i

H(r—1,4)| =

or

PoH(r — 2,¢%)| = (—1) g

points.




Definition ( De Winter, Schillewaert (2010))

A point set S of PG(r, g%) is a quasi-Hermitian variety if it meets each
hyperplane in either

(¢"+ (=)D = (=)
g -1

H(r—1,4)| =

, or

(¢ + (1)) g = (=) b (—1) gt

2\ —
|Pot(r —2,%)| = P

points.

H(r,q?) is a quasi-Hermitian variety, called the classical quasi-Hermitian
variety.
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Quasi-Hermitian Varieties as Two-Character Sets

Property

A quasi-Hermitian variety in the projective space PG(r, g°) is a
two-character set, meaning a point set with exactly two possible
intersection sizes with hyperplanes.

Two-character sets have wide-ranging applications:
@ They give rise to strongly regular graphs.
@ They generate two-weight linear codes.

Key references:
@ R. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete

Math., 3 (1972)
@ R. Calderbank, W. Kantor, The geometry of two-weight codes, The Bulletin of the

London Mathematical Society, 18 (1986)



Cardinality of a quasi-Hermitian variety

Theorem 1 (Schillewaert, Van de Voorde (2022))
Let S be a quasi-Hermitian variety in PG(r, g%) with r > 3, then:

S| = [H(r, ¢)l.

If S C PG(2,q°) is a point set such that every line intersects S in either 1
or g + 1 points, then:

ISle{g®* +q+1, ¢ +1}.




Cardinality of a quasi-Hermitian variety

Theorem 1 (Schillewaert, Van de Voorde (2022))

Let S be a quasi-Hermitian variety in PG(r, g%) with r > 3, then:
S| = |H(r, ¢*)I.

If S C PG(2,q°) is a point set such that every line intersects S in either 1
or g + 1 points, then:

S| e{d®+q+1,¢>+1}.

Perspective

| A\,

We interpret a quasi-Hermitian variety S as higher-dimensional
generalization of a unital. Thus, |S| = |H(r, ¢?)| for any r > 2.

‘ ,



@ Constructions of Q-H varieties



Known Constructions of Q-H varieties

All Dimensions r > 2
e De Winter, Schillewaert (2010),



Known Constructions of Q-H varieties

All Dimensions r > 2
e De Winter, Schillewaert (2010),

All Dimensions
e Aguglia, Cossidente, Korchmaros (2012),
e Aguglia (2013),



Known Constructions of Q-H varieties

All Dimensions r > 2
e De Winter, Schillewaert (2010),

All Dimensions
e Aguglia, Cossidente, Korchmaros (2012),
e Aguglia (2013),

Odd Dimensions

e Pavese (2015),



Known Constructions of Q-H varieties

All Dimensions r > 2
e De Winter, Schillewaert (2010),

All Dimensions
e Aguglia, Cossidente, Korchmaros (2012),
e Aguglia (2013),

Odd Dimensions

e Pavese (2015),

Three-Dimensional Constructions
e Lia, Lavrauw, Pavese (2024),
o Lia, Sheekey (2024).
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BM quasi-Hermitian Variety Construction

Fix a projective frame in PG(r, g?) with homogeneous coordinates
(Xo, X1, .., Xp).

Consider the affine space AG(r, g?) whose infinite hyperplane ¥, has
equation Xp = 0.

Then AG(r, g?) has affine coordinates (x1, x2, . . ., x,) where x; = X;/Xo
forie{l,...,r}.



Take a € GF(g?) and b € GF(q?) \ GF(q) and consider the projective
variety I3, ;, of equation
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Take a € GF(g?) and b € GF(q?) \ GF(q) and consider the projective
variety I3, ;, of equation

XIXG = X XZTH 49X+ 4 X)) —a(XE+ . 4+ X2)XET?
= (bq — D)X+ X:'_*f)xs'*l- (1)

Let F C X be the Hermitian cone

Fo={00,x1,...,x) x4 . +x7T =0}

If a =0 then B, is a non-singular Hermitian variety.
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Assume a # 0 and one of the following conditions:
@ r and g are both odd and 4a9+! 4 (b9 — b)? £ 0;
@ riseven, gisodd and 4a9t1 + (b9 — b)? is a non-square in GF(q);

@ r and g are both even and trq/2(ﬁz) =0;

@ risoddand g is even.

If r =2 then 5, is a non-classical Buekenhout-Metz unital.



Case r =3 and ¢q odd

Ba’bﬂzwzﬁluﬁg Whel’eflixl—l/XZZOZXO, fz:Xl—‘rl/XQ:O:XO and
veGF(¢g?):v?=-1

PG(3,q2)

Py




Case r =3 and ¢q odd
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Case r =3 and ¢q odd

Ba7bﬁzoo261U€2 Wherefl ZX1—Z/X2:0=X0, EQZXl—‘rl/Xz:O:XQ and
veGF(¢g?):v?=-1

PG(3,4%)
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@ riseven, gis odd and 429"t + (b9 — b)? is a non-square in GF(q);
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@ risoddand g is even.

Theorem 2 (A., Cossidente, Korchmdros (2012))

The set M, consisting of the affine points of B, plus the infinite points
of F is a non—classical quasi-Hermitian variety of PG(r, g?), r > 2.




Assume a # 0 and one of the following conditions:
@ r and g are both odd and 4a9*! + (b9 — b)? # 0;

ris even, g is odd and 4a9t! + (b9 — b)? is a non-square in GF(q);

qa+1

(]
@ r and g are both even and trq/2(m) =0;
(]

r is odd and g is even.

Theorem 2 (A., Cossidente, Korchmdros (2012))

The set M, consisting of the affine points of B, plus the infinite points
of F is a non—classical quasi-Hermitian variety of PG(r, g?), r > 2.

This quasi-Hermitian variety is called a BM quasi-Hermitian variety.
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Crucial Tool: A Non-Standard Model of PG(r, g°)

Fix a € GF(q?)*.

Define the quadric O,(m, d) for m = (my,...,m,_1) € GF(g?)"! and
d € GF(g?) as the set of points satisfying:

Xy = a(x12 +...+ x,2_1) +mxy+ ...+ me_1x—_1+d.

Consider the pair (P, X), where:
e Points P € P: all points of the affine geometry AG(r, ¢°);

o Hyperplanes 7 € ¥:

o all affine hyperplanes passing through the point at infinity
Ps =(0,0,...,0,1);
e all quadrics of the form Q,(m, d).



Lemma 3 (A., Cossidente, Korchmdros, (2012))

For every non-zero a € GF(q?), (P, X) defines an incidence structure I,
isomorphic to AG(r, g?).




Lemma 3 (A., Cossidente, Korchmdros, (2012))

For every non-zero a € GF(q?), (P, X) defines an incidence structure I,
isomorphic to AG(r, g?).

AG(r, q?) Pe(0,00,...,5) Py
I,
~~
2 (@1 T, ) = (T1y ey T, T — a2 4 22)))
H i r— 1Ty — d=0 5 o
e Qa(m,d) iz, = a(a} + ...+ 2} ) +mzy + ...+ me gz +d

Tixy =1max) + ...+ Mp Xy +d




Completing I, with its points at infinity in the usual way gives a
projective space I, isomorphic to PG(r, g?).



Completing I, with its points at infinity in the usual way gives a
projective space I, isomorphic to PG(r, g?).

Let #(r,q?): x9 —x, = (b9 — bB)(x7*! + ... +x71])
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BT Q-H Variety Construction

Let e be an odd number, r > 2 and consider the projective space
PG(r, g%) where g = 2¢ .

Choose now & € GF(g?) \ GF(q) such that trgz 4(e) = 1.

etl
The function o : x — (x)? > is an automorphism of GF(q).

Now, let V! be the variety of PG(r, g?) represented by:
X+ xr =To(x1)+ ...+ Te(x—1) (2)
where

Fo(x) =[x+ (x9 4+ x)e] T2 + (xT + x)7 + (x*7 + x*)e + xIT1 4 X2,

We define
HE = (VI\ L) UF,

where
F={0,Xt,.... %) X'+ .+ XM =0}
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Theorem [A. (2013)]

H_ is a non-classical quasi-Hermitian variety in PG(r, g?) which, for
r = 2, corresponds to a Buekenhout—Tits unital.

We refer to H. as a BT quasi-Hermitian variety in PG(r, g?) for all r > 3.

Automorphism 2-Group Result [A.(2013)]

The elementary abelian 2-group E of order q", generated by collineations
with matrices of the form:

—il
1 yie me - ve1e v+ (5 ) e
0 1 0 cee 0 Y1 + 7€
0 0 1 cee 0 Y2 + v2e
0 0 0 1 Yr—1 + Yr—1€
0 0 0 0 1

with v € Fq for i =1,...,r, is a subgroup of Aut(#.).
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combinatorial property however, this condition alone is not sufficient to
characterize Hermitian varieties.



A Classical Problem

Having only a few intersection numbers with hyperplanes is a strong
combinatorial property however, this condition alone is not sufficient to
characterize Hermitian varieties.

Problem

Can we find a characterization of Hermitian varieties among
quasi-Hermitian ones?
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A quasi-Hermitian variety of PG(r, q?), r > 3 is classical if it has the same
intersection numbers with respect to spaces of codimension 2 as a
non-singular Hermitian variety.




Some Known Characterizations

Theorem 4 ( De Winter, Schillewaert (2010))

A quasi-Hermitian variety of PG(r, q?), r > 3 is classical if it has the same
intersection numbers with respect to spaces of codimension 2 as a
non-singular Hermitian variety.

Theorem 5 (A., Bartoli, Storme, Weiner (2018) )

A quasi-Hermitian variety of PG(r, q?), with r =3 and g = p" > 4, or
r>4,qg=p>4 orr>4, q=p? p>3 prime, is classical if and only if
it is in the F,-code spanned by the hyperplanes of PG(r, q%).

‘ -



Theorem 6 ( Napolitano (2023))

Let H be a set of points in PG(3, q%), with q # 2, such that:
@ H has the same size as the Hermitian surface;

@ H contains no plane;

@ every line is either fully contained in H or intersects ‘H in at most
q + 1 points;

@ every plane intersects H in at least q° + 1 points.

Then H is a quasi-Hermitian variety.

Moreover, if there is no external line, then H is a Hermitian surface.
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Research Question and Approach

Can we characterize BM and BT quasi-Hermitian varieties based on their
incidence properties or their automorphism groups?

Our Approach
o Classify these varieties up to projective equivalence.

@ Determine their full automorphism groups.

@ Derive group-theoretic characterizations.




e Automorphism groups and equivalences
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Projective equivalence classes of M .

How many projectively inequivalent BM Q-H varieties can be obtained
from varying the parameters (a, b)? J

Theorem 7 (Baker and Ebert (1982), Ebert (1993))

Let g = p" > 4 be a prime power. Then the number of projectively
inequivalent BM unitals of PG(2, %) is

e ()]

where ® is the Euler ®-function and ng is the odd part of n if p > 2 or
ng=0ifp=2.




Case r =3

Theorem 8 ( A., Giuzzi (2023))

Let g = p" with p an odd prime. Then the number of projectively
inequivalent BM quasi-Hermitian varieties M, , of PG(3, q%) is

Ao (@)e) -2

k|n

where ® s the Euler ®-function.




Case r =3

Theorem 8 ( A., Giuzzi (2023))

Let g = p" with p an odd prime. Then the number of projectively
inequivalent BM quasi-Hermitian varieties M, , of PG(3, q°) is

HORIGEJEES

k|n

where ® s the Euler ®-function.

Theorem 9 (A., Giuzzi, Montinaro, Siconolfi (2025))

All BM quasi-Hermitian varieties M, of PG(3, q%), q even are
equivalent.




Crucial tools

Assume g odd and set:
b1 : Xi—vXo=0=Xp, lr:X14+vXo=0=Xp
where v € GF(q?) such that v? +1 = 0.

Theorem 10 (A., Giuzzi (2023))

Let M, be a BM quasi-Hermitian variety of PG(3, g°), with g =1
(mod 4). Then,

o through each affine point of M, pass exactly two lines of M, p,;

@ through each point at infinity on the union {1 U £y there pass q + 1
lines of a pencil contained in M, p;

@ through each point at infinity not on £1 U {5 there passes only one line
OfMa7b.

.




Crucial tools

Theorem 11 (A., Giuzzi (2023))

Let M, , be a BM quasi-Hermitian variety of PG(3, %), with ¢ =3
(mod 4). Then,

@ no line of M, p, passes through any affine point of M, p;

@ through each point at infinity in (M, N Eoo) \ {Poc} there passes
only one line of M, .

e through the point P, (0,0,...,1) there are g + 1 lines contained in
Ma,b




Suppose g even and set {: Xg = X1 + Xo = 0.



Suppose g even and set {: Xg = X1 + Xo = 0.

Theorem 12 (A., Giuzzi, Montinaro, Siconolfi (2025))

Let M, be the BM quasi-Hermitian variety of PG(3, g?), with q even.
Then:

@ through each affine point of M}, there passes exactly one line of

Ma,bi

@ through each point at infinity in M, N, there pass q + 1 lines of a
pencil contained in M p.

v



Automorphism groups in PG(3, %), q even prime power

Let ¢s, 1y, s, and 7. be the collineations associated with the following
matrices, where:

e s,e € GF(q),
e 0 € GF(q)*,
o 7= (11,72) € GF(¢?)2.

100 s Loy g a(af +93) +blof 498
(01 00 o 1 o0 (b + b9)y
oo o P o o 1 (b+ b7)y3
000 1 00 0 1
1 0 0 0
: 0 e+1 e 0
ps « diag(1,6,6,0%), Te: 0 e es1 0
0 0 0 1



Theorem 13 (A., Giuzzi, Montinaro, Siconolfi (2025))

The stabilizer of M, p, in PGL4(q?), q even, is the group

G(a, b) = (¢s,1(a, b), Te, s : v € GF(q°)?,s, e, € GF(q),6 # 0)

of order ¢°(q — 1).




Theorem 13 (A., Giuzzi, Montinaro, Siconolfi (2025))

The stabilizer of M, p, in PGL4(q?), q even, is the group
(a,b) = (¢s,0(a, b), Te, 15 : v € GF(¢?)?,5, €, € GF(q),6 # 0)

of order q°(q — 1).

Theorem 14 ( A., Giuzzi, Montinaro, Siconolfi (2025))

Let o € PTL4(q?) be induced by a generator of Aut(GF(q?)), q even, and
let 3 € PTL4(q?) map My with trg,(€) = 1 onto M, . Then the
stabilizer in PTLs(q%) of M, is

[(a,b) = <¢5, (2, b), 7e, s, 0® : v € GF(q?)2s, 8,0 € GF(q),0 # o> ,

and its order is q°(q — 1) log, q.
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Case r = 2: The BT quasi-Hermitian varieties coincide with the BT
unitals.

Result: All BT unitals are equivalent under the action of PTL(3, g?), as
proven by J. Faulkner and G. Van de Voorde (2025), resolving an open
problem posed by Barwick and Ebert in their book Unitals in Projective
Planes (2008).



Projective Equivalence Classes of H'

Case r = 2: The BT quasi-Hermitian varieties coincide with the BT
unitals.

Result: All BT unitals are equivalent under the action of PTL(3, g?), as
proven by J. Faulkner and G. Van de Voorde (2025), resolving an open
problem posed by Barwick and Ebert in their book Unitals in Projective
Planes (2008).

Problem
What occurs in higher-dimensional spaces?




Theorem 15 (A., Montinaro (submitted))

Lete1,e2 € Fpo : 6,2 +ei =0; with T(6;) =1, i =1,2. Assume
] o/2+1
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Lete1,e2 € Fpo : 6,2 +ei =0; with T(6;) =1, i =1,2. Assume

2 s o/2+1 o
a=¢e—e¢1, B= ((%1)”/ L p= (é) and r > 2. The projectivity £
represented by the (r + 1) x (r + 1) matrix A below, maps H., onto H[,
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1 Bp2 Bp2 ... Bp22 (r-— 1),)213“+2i+
€1 £1 £1 5411+1
0 £e2 0 500 0 Bp? Eg+1
e1 E«iljf
0 0 &AL 0 Bp? £l
A = £1 E<lq+1
. L ogtt
0 0 0 2 Bp é’“
2 _q+1
0 0 0 0 r°eg

Lemma 16 (A., Montinaro (submitted))

A Sylow 2-subgroup of Aut(H.) fixes a unique incident point-hyperplane
pair of PG(r, g°).




Collineation group of #2

Theorem 17 (A., Montinaro (subm.))

The following hold:
Q Aut(H3) N PGL4(q?) = E (9), with
¥ : (xo, X1, %2, X3) — (X0, X2, X1, X3), is a group of order 2q>;
Q Aut(H2) preserves the triple (Poo, oo, Too)-




Collineation group of #2

Theorem 17 (A., Montinaro (subm.))

The following hold:
Q Aut(H3) N PGL4(q?) = E (9), with
¥ : (xo, X1, %2, X3) — (X0, X2, X1, X3), is a group of order 2q>;
Q Aut(H2) preserves the triple (Poo, oo, Too)-

Theorem 18 (A., Montinaro (subm.))
Aut(H3) = E (9, ¢), with ¥ : (x0, x1, X2, x3) — (X0, X2, X1, x3) and

1 1 1 0

0 §37¢9 0 539
¢ (x0, X1, X2, X3) — (xg,xf,xg,xg) 0 0 55c0 §%ea

0 0 0 got+l

is a group of order 4eq®.




Tools: some geometric properties

Set fo : Xg = X1+ X5 =0.



Tools: some geometric properties

Set {o : Xp = X1 + X5 = 0.

Theorem 19 (A., Montinaro (submitted))

Let H3 be the BT quasi-Hermitian variety of PG(3, q?). Then the
following statements hold:

© each affine line contained in H2 intersects {, at one among the
points L5:* = (0,1,1,e%), where o € GF(q);

@ through each point L5, there exist exactly q + 1 coplanar lines
contained in H2, one of which is {~,. Each such set of ¢ + 1 lines
forms a Hermitian cone MoH(1, ¢°).




@ Applications
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Construction of MDS codes

Let Gi(x),..., Gn(x) be N multivariate polynomials over GF(q) and
W C GF(q)"L.

Here, the evaluation code C := C(Gy, ..., Gy; W) defined by Gy, ..., Gy
over a set W is the image of the map

. W — GF(q)V
GGy ) (G1(x), ..., Gn(x)).

Assume that C has g* codewords and Hamming distance d.
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The Singleton Bound

The Singleton bound

It is known that for a code C over GF(q) with parameters [N, g*, d], the

following holds:

qt < qN—d+1

When equality holds, the code is called a Maximum Distance Separable
code (MDS).

If the evaluation code C is MDS, then any t = N — d + 1 of the varieties
V(G;): G;=0, fori=1,..., N, must intersect in exactly one point in the
ambient space W.

Define W := GF(q?) x GF(q?) x T, where T is a transversal of GF(q)
viewed as an additive subgroup of GF(q?).



Determinantal Condition

Consider the subset Q of GF(g?)? such that for each (w},w}) € Q with
i > 5, the following condition holds:

1 wi wy (w1)? (w3)7
1 wf wy (wp)? (w3)?
det [1 w} w3 (W9 (W3] #0 (DetCond)
1 wi wy () (w3)?
1w w3 (uf)? (w3)7



Fix a basis (1, ¢) of GF(g?) regarded as a vector space over GF(q), with
e € GF(q?) \ GF(q) : trg2/q(€) = 0 for g odd or trge q(€) = 1 for q even.
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Fix a basis (1, ¢) of GF(g?) regarded as a vector space over GF(q), with
e € GF(q?) \ GF(q) : trg2/q(€) = 0 for g odd or trge q(€) = 1 for q even.

Writew{:wjo—i—w{leforall i=112andj=1,...,5.

1

Then (DetCond) becomes

det wig Wi Wiy wip | #0 (DetCondq)

[ T o S o
w
w
w
w

for any choice of five elements in €.



Arcs in Projective Space

Condition (DetCondq) states that the rows of the matrix represent the
coordinates of points lying on an arc in AG(4, q).



Arcs in Projective Space

Condition (DetCondq) states that the rows of the matrix represent the
coordinates of points lying on an arc in AG(4, q).

An arc in PG(4, q), that is a set of points such that any five span the
entire space, has maximum size g + 1.



Arcs in Projective Space

Condition (DetCondq) states that the rows of the matrix represent the
coordinates of points lying on an arc in AG(4, q).

An arc in PG(4, q), that is a set of points such that any five span the
entire space, has maximum size g + 1.

Therefore, we have the bound: Q] < q.



Arcs in Projective Space

Condition (DetCondq) states that the rows of the matrix represent the
coordinates of points lying on an arc in AG(4, q).

An arc in PG(4, q), that is a set of points such that any five span the
entire space, has maximum size g + 1.

Therefore, we have the bound: Q] < q.

Theorem 20 (Ball, Lavrauw (2019))

The only (q + 1)-arcs in PG(4, q) for ¢ > 13 odd or q > 8 even, are
projectively equivalent to the normal rational curve:

Fa={(1,t,t2,t3t*) | t € GF(q)} U {(0,0,0,0,1)}.




Defining the Forms F;

We can set
Q= {(t+et’, > +et): t € GF(q)}

so that it corresponds to an arc in AG(4, q).



Defining the Forms F;

We can set
Q= {(t+et?, 3 +et*): t € GF(q)}
so that it corresponds to an arc in AG(4, q).

Now, consider the following forms

Fi(Xo, X1, Xa, X3) = (b — bI)XZ 1 (X7 + X34
X§XS = Xs X0+ 27X + X39) — aXFT A (XP + X3)+
[2a%(wi)? — (b — b)wi]Xg Xy + [2a9(w5)? — (b7 — b)wd] Xy X5+
[2aw] + (b — b9)(wi)IXZT X1 + [2awh + (b — b9)(wh)IIXCT "X,
where (wi,wh) € Qfori=1,...,q.
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These forms F; define BM Q-H varieties such that any subset of five
intersects at exactly one point in W.

Let To = {x € GF(q?) : x9 + x = 0}

Set
C(Fl,. cey Fq;W) =

{(Fl(lvxayaz)aF2(17X)y’z)7'~'7Fq(1ax)y’z))|(x’y72) € W}

Theorem 21 (A., Giuzzi, Siconolfi (2025))

Let g > 13. The code C(F1, ..., Fq; W) is a GF(q)-linear
[9,5, g — 4]-MDS code over Ty.
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Some Equivalent Codes

Write €9 4 & = ag, 50 trg2/4(x0 + €x1) = 2x0 + aox1, for xo, x1 € GF(q).

So To ={x € GF(qz)\trqz/q(x) =0} = {(a0 — 2¢)x0|x0 € GF(q)}.

Put 6 = (ao — 26).
Theorem 22 (A., Giuzzi, Siconolfi (2025))

The code C' := (0~Y)C(Fy, F1, ..., Fq; W) is equivalent to a g-ary
Reed-Solomon code. In particular, it can be further extended to a
[g+1,5,q9 — 3]q Reed-Solomon code.

The extended Reed-Solomon code is obtained by C’ adding to each
codeword the component Fgy1(1,x,y,z) where

Fq+1(Xo, X1, Xo, X3) = (bq — b)XgXo + 23X2X67
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Non-degeneracy and Minimal Codes

Let C be a g-ary linear [n, r, d]| code. The support of a codeword
c=(c,...,cn) €Cis: supp(c) := {i: ¢ # 0}.

The support of the code C is: supp(C) := J.c¢ supp(c).

The code C is non-degenerate if: supp(C) = {1,...,n}.

A codeword ¢ € C is minimal if for every non-zero codeword ¢’ € C such
that: supp(c’) C supp(c), we have ¢’ € (c).

The code C is minimal if all its non-zero codewords are minimal.

References:
@ Alfarano, Borello, Neri (2022)
@ Scotti (2024)
@ Alon, Bishnoi, Das, Neri (2024)
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Code — Projective System

Let C be a non-degenerate g-ary
linear [n, r, d] code. Its projective
system is the (multi)set Q of points
in PG(r — 1, q) corresponding to
the columns of any generator

matrix of C.

Projective System — Code

Any (multi)set Q of points in
PG(r — 1, q) defines a code C(2)
whose generator matrix has as
columns the coordinates of the
points in .

Minimum Distance
For a code C = C(£2), the minimum distance is given by:

d = |Q| —max{|Q2NM|:Mis a hyperplane of PG((2))}.




Characterization of Minimal Codes

Theorem 23 (Alfarano, Borello, Neri (2022))

Let Q be a set of points in PG(r, q) such that () = PG(r,q). Then the
code C(K2) is minimal if and only if for every hyperplane I of PG(r, q),

(NNQ) =0,

i.e., Q is a cutting set.




Characterization of Minimal Codes

Theorem 23 (Alfarano, Borello, Neri (2022))

Let Q be a set of points in PG(r, q) such that () = PG(r,q). Then the
code C(K2) is minimal if and only if for every hyperplane I of PG(r, q),

(NNQ) =0,

i.e., Q is a cutting set.

Sufficient Condition (Ashikhmin—Barg)(1994)

A g-ary linear code C is minimal if % > =1 \where Wimin and Wmax are
the minimum and maximum weights of non-zero codewords.

‘ ,
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Minimality of the Code Associated with Q-H Varieties

If H is a quasi-Hermitian variety in PG(r, g?), then the associated code
C(H) has exactly two distinct weights.

Although the sufficient condition for minimality does not hold in this case,
the Characterization Theorem for minimal codes can still be applied.

Theorem 24 (A., Giuzzi, Ceria (2022))

Let H be a quasi-Hermitian variety in PG(r, q?). Then, the code C(H) is
minimal.
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Codes from V!

Let us consider the BT quasi-Hermitian variety:

HE=(VI\ L) UF.

What can be said about the code C! := C(V!)? |

Key Properties

o It is a few-weight code.

@ In some cases, the code is minimal

Theorem 25 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The linear code C! generated by the projective points of V! in PG(r, g°) is
a (r + 1)-dimensional minimal code for r = 3 and e =3 (mod 4) orr > 4
and any odd integer e.

v




Key Lemma (A., Giuzzi, Longobardi, Siconolfi (submitted))
Let r > 2 and g = 2° with e > 3 odd. Then the Fermat hypersurface F}
of degree n = 2% +1in PG(r, q?), defined by:

FroXg+XP+-+X"=0

spans the entire projective space: (F!) = PG(r, ¢°).
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Key Lemma (A., Giuzzi, Longobardi, Siconolfi (submitted))
Let r > 2 and g = 2° with e > 3 odd. Then the Fermat hypersurface F/,
of degree n = 2% 1+ 1in PG(r, g°), defined by:

FroX§+ X+ +X"=0

spans the entire projective space: (F!) = PG(r, ¢°).

The intersection V! N X is represented by:

e—1 e—1 e—1
Xo=X272 X272+l x27 o

To determine the length and the weights of the projective linear code C/,
with r > 3, it is necessary to compute the number of GF(g?)-rational
points of the Fermat hypersurface 772,




Proposition 26 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The number N2 of GF(q?)-rational points of F}, in PG(r,q?), r > 2,
satisfies the following properties:

@ ife=1 (mod 4) then Ny = 0,2(r —1);
@ ife =3 (mod 4) then

Np < (n— 1)q2r=Y 4 ng?(r=2) 4 Og2(r —3).

Q ife=3andr=2then Nz = (q+1)>




Proposition 26 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The number N2 of GF(q?)-rational points of F}, in PG(r,q?), r > 2,
satisfies the following properties:

@ ife=1 (mod 4) then Ny = 0,2(r —1);
@ ife =3 (mod 4) then

Np < (n— 1)q2r=Y 4 ng?(r=2) 4 Og2(r —3).

Q ife=3andr=2then Nz = (q+1)>

Proposition 27 (A., Giuzzi, Longobardi, Siconolfi (submitted))

If e =3 (mod 4), then the weights of the projective code C2 := C(V3)
belong to the set

{®,° - a*+3¢°,4° —a*+2¢°,° — ¢ +3¢° + g — 2,
® —q®+2¢°+q-2}.




Theorem 28 (A., Giuzzi, Longobardi, Siconolfi (submitted))

The linear code C2 = C(V2) for q = 2° and e > 1 an odd integer is a
5-dimensional minimal code with the following parameters

Q /fe=1 (mod 4), then C? has length |V?| = q" + ¢* + g° + 1 and weights

4,9 - +d"+a-d*d - +¢* + ¢,
- +d.d - +q" -9 - +q" — 44}

Q Ife =3, then C? has length |V%| = q" + q* +2¢° + ¢° + 1 and weights

{a.¢" - +d"+3¢° - ¢*,a' — "+ q* +2¢° + ¢*,
I - +d"+26%d - +d*+2¢° - 4’0" - ¢’ + ¢* +2¢° — 2¢°}.
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Definition 29 (Cutting Gap)

Let © be a non-empty set of points in PG(r,q), and let 0 < k < r. The
k-th cutting gap of € is defined as:

Tk(Q) = k — min {dim ((M N Q)) : dim(M) = k}.




Cutting Gap: Measuring Cutting Sets

Definition 29 (Cutting Gap)

Let © be a non-empty set of points in PG(r,q), and let 0 < k < r. The
k-th cutting gap of € is defined as:

Tk(Q) = k — min {dim ((M N Q)) : dim(M) = k}.

Q is a k-fold strong blocking set if and only if 74,(2) = 0, according to the
definitions in

@ A.A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Linear nonbinary covering
codes and saturating sets in projective spaces, Adv. Math. Commun. 5, (2011)



Cutting Sets and Their Properties

We also refer to this property as being k-cutting. Thus, Q is a k-cutting
set if 74(Q2) = 0.



Cutting Sets and Their Properties

We also refer to this property as being k-cutting. Thus, Q is a k-cutting
set if 74(Q2) = 0.

In particular, Q is a cutting set or, more in detail, a cutting set with
respect to the hyperplanes, when 7,_1(Q2) = 0.



Cutting Sets and Their Properties

We also refer to this property as being k-cutting. Thus, Q is a k-cutting
set if 74(Q2) = 0.

In particular, Q is a cutting set or, more in detail, a cutting set with
respect to the hyperplanes, when 7,_1(Q2) = 0.

Proposition 30 (A. Giuzzi, Longobardi, Siconolfi, (submitted))

Let Q be a k-cutting set in PG(r,q). Then Q is also ¢-cutting for all
k</t<r.




Cutting Gap of Hermitian Varieties

Proposition 31 (A., Giuzzi, Longobardi, Siconolfi, (submitted))

Let H" = H(r, q°) be a non-degenerate Hermitian variety in PG(r, g°).
Then the cutting gap satisfies:
0 ift>|5],
Tr—t(H") =

1 ift<|%].
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Future Research Directions

o Characterization via cutting gaps: Investigate whether the cutting
gaps listed in the last previous proposition characterize Hermitian
varieties among quasi-Hermitian ones.

o Automorphism groups: Complete the determination of the full
automorphism group of BT and BM quasi-Hermitian varieties in
PG(r, g?) for all dimensions r > 4 and any q.

e Sylow 2-subgroups: Explore whether the property that any Sylow
2-subgroup of the collineation group of a BT Q-H variety fixes a
unique incident point-hyperplane pair in PG(r, %) can be used to
characterize the BT Q-H varieties.
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