Differential analysis through a double cover using the unit circle in a finite field

Daniel J. Katz¹, Kathleen R. O'Connor¹, Kyle Pacheco¹, and Yakov Sapozhnikov^{1,2}

¹Department of Mathematics California State University, Northridge

²Department of Mathematics and Statistical Science University of Idaho

Supported by National Science Foundation Awards 1500856, 1815487 and 2206454

> Finite Geometries 2025 Seventh Irsee Conference Kloster Irsee 02 September 2025

Throughout $F = \mathbb{F}_q = \mathbb{F}_{p^n}$ is a finite field of characteristic p and order $q = p^n$.

Throughout $F = \mathbb{F}_q = \mathbb{F}_{p^n}$ is a finite field of characteristic p and order $q = p^n$.

A power function on F is an $f: F \to F$ where there is a positive integer d such that $f(x) = x^d$ for all $x \in F$.

Throughout $F = \mathbb{F}_q = \mathbb{F}_{p^n}$ is a finite field of characteristic p and order $q = p^n$.

A power function on F is an $f: F \to F$ where there is a positive integer d such that $f(x) = x^d$ for all $x \in F$.

Our power function f is bijective if and only if $\gcd(d,q-1)=1$. Then we say that d is invertible over F (or that f is a power permutation) and we let $e\in\mathbb{Z}_+$ with $e\equiv d^{-1}\pmod{q-1}$ so that $x\mapsto x^e$ is the inverse function of $x\mapsto x^d$.

Throughout $F = \mathbb{F}_q = \mathbb{F}_{p^n}$ is a finite field of characteristic p and order $q = p^n$.

A power function on F is an $f: F \to F$ where there is a positive integer d such that $f(x) = x^d$ for all $x \in F$.

Our power function f is bijective if and only if $\gcd(d, q-1)=1$. Then we say that d is invertible over F (or that f is a power permutation) and we let $e \in \mathbb{Z}_+$ with $e \equiv d^{-1} \pmod{q-1}$ so that $x \mapsto x^e$ is the inverse function of $x \mapsto x^d$.

If $r \in \mathbb{Q}_+$, then we can think of r as an exponent over F if r in reduced form is d_1/d_2 with $\gcd(d_2,q-1)=1$; then $r=d_1/d_2$ is regarded as a positive integer d with $d\equiv d_1d_2^{-1}\pmod{q-1}$.

Throughout $F = \mathbb{F}_q = \mathbb{F}_{p^n}$ is a finite field of characteristic p and order $q = p^n$.

A power function on F is an $f: F \to F$ where there is a positive integer d such that $f(x) = x^d$ for all $x \in F$.

Our power function f is bijective if and only if $\gcd(d, q-1)=1$. Then we say that d is invertible over F (or that f is a power permutation) and we let $e \in \mathbb{Z}_+$ with $e \equiv d^{-1} \pmod{q-1}$ so that $x \mapsto x^e$ is the inverse function of $x \mapsto x^d$.

If $r \in \mathbb{Q}_+$, then we can think of r as an exponent over F if r in reduced form is d_1/d_2 with $\gcd(d_2, q-1)=1$; then $r=d_1/d_2$ is regarded as a positive integer d with $d \equiv d_1d_2^{-1} \pmod{q-1}$.

Cryptographic significance: $x\mapsto x^d$ is arithmetically easy to implement and can be used to scramble data in substitution-boxes in a symmetric cipher.

The Walsh spectrum of a power function measures its correlation with linear functions (important for linear cryptanalysis).

The Walsh spectrum of a power function measures its correlation with linear functions (important for linear cryptanalysis).

For the power function $f: F \to F$ with $f(x) = x^d$, this amounts to looking at the character sums

$$W_{F,d}(a) = \sum_{x \in F} \psi(x^d - ax)$$

for all $a \in F^*$, where $\psi \colon (F,+) \to \mathbb{C}^*$ is the canonical additive character $\psi(x) = \exp(2\pi i \operatorname{Tr}_{F/\mathbb{F}_p}(x)/p)$.

The Walsh spectrum of a power function measures its correlation with linear functions (important for linear cryptanalysis).

For the power function $f: F \to F$ with $f(x) = x^d$, this amounts to looking at the character sums

$$W_{F,d}(a) = \sum_{x \in F} \psi(x^d - ax)$$

for all $a \in F^*$, where $\psi : (F, +) \to \mathbb{C}^*$ is the canonical additive character $\psi(x) = \exp(2\pi i \operatorname{Tr}_{F/\mathbb{F}_p}(x)/p)$.

Niho's Last Conjecture (1972)

If
$$F = \mathbb{F}_{2^{2m}}$$
, m is even, and $d = 1 + 4(2^m - 1)$, then

 $\{W_{F,d}(a): a \in F^*\}$ contains at most 5 distinct values.

Helleseth–K.–Li (2021) proved Niho's Last Conjecture by showing that for each $a \in F$, the polynomial

$$g_a(x) = x^7 - ax^4 - a^{2^m}x^3 + 1$$

has 0, 1, 2, 3, or 5 (not 4, 6, or 7) roots on the unit circle of F (the unique subgroup of order $2^m + 1$ in $F^* = \mathbb{F}_{2^{2m}}^*$).

Helleseth–K.–Li (2021) proved Niho's Last Conjecture by showing that for each $a \in F$, the polynomial

$$g_a(x) = x^7 - ax^4 - a^{2^m}x^3 + 1$$

has 0, 1, 2, 3, or 5 (not 4, 6, or 7) roots on the unit circle of F (the unique subgroup of order $2^m + 1$ in $F^* = \mathbb{F}_{2^{2m}}^*$).

Method: organize the roots of $g_a(x)$ in \overline{F} into orbits under a strange action, where a root lies on the unit circle if and only if it is in a singleton orbit.

Helleseth–K.–Li (2021) proved Niho's Last Conjecture by showing that for each $a \in F$, the polynomial

$$g_a(x) = x^7 - ax^4 - a^{2^m}x^3 + 1$$

has 0, 1, 2, 3, or 5 (not 4, 6, or 7) roots on the unit circle of F (the unique subgroup of order $2^m + 1$ in $F^* = \mathbb{F}_{2^{2m}}^*$).

Method: organize the roots of $g_a(x)$ in \overline{F} into orbits under a strange action, where a root lies on the unit circle if and only if it is in a singleton orbit.

Prove that the total number of orbits is even by calculating a strange quantity associated with the orbits—involves expressing a degree 42 symmetric polynomial in seven variables as a sum of 218 products of elementary symmetric polynomials.

Helleseth–K.–Li (2021) proved Niho's Last Conjecture by showing that for each $a \in F$, the polynomial

$$g_a(x) = x^7 - ax^4 - a^{2^m}x^3 + 1$$

has 0, 1, 2, 3, or 5 (not 4, 6, or 7) roots on the unit circle of F (the unique subgroup of order $2^m + 1$ in $F^* = \mathbb{F}^*_{2^{2m}}$).

Method: organize the roots of $g_a(x)$ in \overline{F} into orbits under a strange action, where a root lies on the unit circle if and only if it is in a singleton orbit.

Prove that the total number of orbits is even by calculating a strange quantity associated with the orbits—involves expressing a degree 42 symmetric polynomial in seven variables as a sum of 218 products of elementary symmetric polynomials.

Having precisely 4, 6, or 7 singleton orbits is impossible because the total number of orbits is even.

Let $f: F \to F$ be a function (e.g., the power function $f(x) = x^d$).

Let $f: F \to F$ be a function (e.g., the power function $f(x) = x^d$).

For $a, b \in F$, the differential multiplicity of f with respect to a and b is the number $\delta_f(a, b)$ of solutions $(x, y) \in F^2$ of the system

$$y-x = a$$

$$f(y)-f(x) = b,$$

Let $f: F \to F$ be a function (e.g., the power function $f(x) = x^d$).

For $a, b \in F$, the differential multiplicity of f with respect to a and b is the number $\delta_f(a, b)$ of solutions $(x, y) \in F^2$ of the system

$$y - x = a$$

$$f(y) - f(x) = b,$$

or equivalently

$$\delta_f(a,b) = |\{x \in F : f(x+a) - f(x) = b\}|$$

$$= |\{x \in F : (\Delta_a f)(x) = b\}|$$

$$= |(\Delta_a f)^{-1}(\{b\})|,$$

where Δ_a is the discrete derivative in direction a, i.e., $\Delta_a f : F \to F$ is the function with $(\Delta_a f)(x) = f(x+a) - f(x)$.

Let $f: F \to F$ be a function (e.g., the power function $f(x) = x^d$).

For $a, b \in F$, the differential multiplicity of f with respect to a and b is the number $\delta_f(a, b)$ of solutions $(x, y) \in F^2$ of the system

$$y - x = a$$

$$f(y) - f(x) = b,$$

or equivalently

$$\delta_f(a,b) = |\{x \in F : f(x+a) - f(x) = b\}|$$

$$= |\{x \in F : (\Delta_a f)(x) = b\}|$$

$$= |(\Delta_a f)^{-1}(\{b\})|,$$

where Δ_a is the discrete derivative in direction a, i.e., $\Delta_a f : F \to F$ is the function with $(\Delta_a f)(x) = f(x+a) - f(x)$.

We do not typically consider a = 0 because $\Delta_0 f$ is the zero function.

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$ differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

E

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$ differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

The differential spectrum of f is the multiset

$$\llbracket \delta_f(a,b) : (a,b) \in F^* \times F \rrbracket.$$

E

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$
differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

The differential spectrum of f is the multiset

$$\llbracket \delta_f(a,b) : (a,b) \in F^* \times F \rrbracket.$$

The differential uniformity of f is the largest element of the differential spectrum

$$\delta_f = \max_{(a,b)\in F^*\times F} \delta_f(a,b).$$

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$
differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

The differential spectrum of f is the multiset

$$\llbracket \delta_f(a,b) : (a,b) \in F^* \times F \rrbracket.$$

The differential uniformity of f is the largest element of the differential spectrum

$$\delta_f = \max_{(a,b)\in F^*\times F} \delta_f(a,b).$$

Want δ_f as as small as possible to counter differential cryptanalysis.

Ē

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$

differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

differential uniformity: $\delta_f = \max_{(a,b) \in F^* \times F} \delta_f(a,b)$

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$

differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

differential uniformity: $\delta_f = \max_{(a,b) \in F^* \times F} \delta_f(a,b)$

Perfect nonlinear (PN) or planar function: $\Delta_a f$ is a permutation for every $a \in F^*$, so $\delta_f = 1$.

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$

differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

differential uniformity: $\delta_f = \max_{(a,b) \in F^* \times F} \delta_f(a,b)$

Perfect nonlinear (PN) or planar function: $\Delta_a f$ is a permutation for every $a \in F^*$, so $\delta_f = 1$.

A planar function $f: F \to F$ yields an affine plane with set of points $F \times F$ and lines $L_{a,b} = \{(x, f(x-a) + b) : x \in F\}$ and $L_a = \{(a,y) : y \in F\}$ for all $a,b \in F$.

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$

differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

differential uniformity: $\delta_f = \max_{(a,b) \in F^* \times F} \delta_f(a,b)$

Perfect nonlinear (PN) or planar function: $\Delta_a f$ is a permutation for every $a \in F^*$, so $\delta_f = 1$.

A planar function $f: F \to F$ yields an affine plane with set of points $F \times F$ and lines $L_{a,b} = \{(x, f(x-a) + b) : x \in F\}$ and $L_a = \{(a,y) : y \in F\}$ for all $a, b \in F$.

PN functions exist only if char(F) is odd; are never permutations.

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$

differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

differential uniformity: $\delta_f = \max_{(a,b) \in F^* \times F} \delta_f(a,b)$

Perfect nonlinear (PN) or planar function: $\Delta_a f$ is a permutation for every $a \in F^*$, so $\delta_f = 1$.

A planar function $f: F \to F$ yields an affine plane with set of points $F \times F$ and lines $L_{a,b} = \{(x, f(x-a) + b) : x \in F\}$ and $L_a = \{(a,y) : y \in F\}$ for all $a, b \in F$.

PN functions exist only if char(F) is odd; are never permutations.

The next best possible is an almost perfect nonlinear (APN) function: $\delta_f = 2$.

$$f: F \to F$$
 and $\Delta_a f: F \to F$ with $(\Delta_a f)(x) = f(x+a) - f(x)$

differential multiplicity: $\delta_f(a,b) = |(\Delta_a f)^{-1}(\{b\})|$

differential uniformity: $\delta_f = \max_{(a,b) \in F^* \times F} \delta_f(a,b)$

Perfect nonlinear (PN) or planar function: $\Delta_a f$ is a permutation for every $a \in F^*$, so $\delta_f = 1$.

A planar function $f: F \to F$ yields an affine plane with set of points $F \times F$ and lines $L_{a,b} = \{(x, f(x-a) + b) : x \in F\}$ and $L_a = \{(a,y) : y \in F\}$ for all $a, b \in F$.

PN functions exist only if char(F) is odd; are never permutations.

The next best possible is an almost perfect nonlinear (APN) function: $\delta_f = 2$.

There are APN functions in both even and odd characteristics, and some are permutations.

For f a power function $f(x) = x^d$ on F and $a \in F^*$ and $b \in F$,

$$\delta_f(a,b) = |\{x \in F : (x+a)^d - x^d = b\}|$$

= $|\{y \in F : (y+1)^d - y^d = b/a^d\}|$
= $\delta_f(1,b/a^d)$.

For f a power function $f(x) = x^d$ on F and $a \in F^*$ and $b \in F$,

$$\delta_f(a,b) = |\{x \in F : (x+a)^d - x^d = b\}|$$

= $|\{y \in F : (y+1)^d - y^d = b/a^d\}|$
= $\delta_f(1,b/a^d)$.

So we define the discrete derivative $\Delta=\Delta_1$ with

$$(\Delta f)(x) = f(x+1) - f(x)$$

For f a power function $f(x) = x^d$ on F and $a \in F^*$ and $b \in F$,

$$\delta_f(a,b) = |\{x \in F : (x+a)^d - x^d = b\}|$$

$$= |\{y \in F : (y+1)^d - y^d = b/a^d\}|$$

$$= \delta_f(1,b/a^d).$$

So we define the discrete derivative $\Delta=\Delta_1$ with

$$(\Delta f)(x) = f(x+1) - f(x)$$

and for each $c \in F$, we define the differential multiplicity for $f(x) = x^d$ over F at c to be

$$\delta_f(c) = \delta_f(1,c) = |(\Delta_1 f)^{-1}(\{c\})| = |(\Delta f)^{-1}(\{c\})|,$$

For f a power function $f(x) = x^d$ on F and $a \in F^*$ and $b \in F$,

$$\delta_f(a,b) = |\{x \in F : (x+a)^d - x^d = b\}|$$

$$= |\{y \in F : (y+1)^d - y^d = b/a^d\}|$$

$$= \delta_f(1,b/a^d).$$

So we define the discrete derivative $\Delta=\Delta_1$ with

$$(\Delta f)(x) = f(x+1) - f(x)$$

and for each $c \in F$, we define the differential multiplicity for $f(x) = x^d$ over F at c to be

$$\delta_f(c) = \delta_f(1,c) = |(\Delta_1 f)^{-1}(\{c\})| = |(\Delta f)^{-1}(\{c\})|,$$

and we define the the reduced differential spectrum of $f(x) = x^d$ over F to be the multiset

$$[\![\delta_f(c):c\in F]\!] = [\![|(\Delta f)^{-1}(\{c\})|:c\in F]\!],$$

For f a power function $f(x) = x^d$ on F and $a \in F^*$ and $b \in F$,

$$\delta_f(a,b) = |\{x \in F : (x+a)^d - x^d = b\}|$$

= $|\{y \in F : (y+1)^d - y^d = b/a^d\}|$
= $\delta_f(1,b/a^d)$.

So we define the discrete derivative $\Delta = \Delta_1$ with

$$(\Delta f)(x) = f(x+1) - f(x)$$

and for each $c \in F$, we define the differential multiplicity for $f(x) = x^d$ over F at c to be

$$\delta_f(c) = \delta_f(1,c) = |(\Delta_1 f)^{-1}(\{c\})| = |(\Delta f)^{-1}(\{c\})|,$$

and we define the the reduced differential spectrum of $f(x) = x^d$ over F to be the multiset

$$[\![\delta_f(c):c\in F]\!] = [\![|(\Delta f)^{-1}(\{c\})|:c\in F]\!],$$

and if you scale up all the frequencies by $|F^*|$, then you obtain the differential spectrum of $f([\delta_f(a,b):(a,b)\in F^*\times F])$.

The reduced differential spectrum of $f(x) = x^d$ over F is $[|(\Delta f)^{-1}(\{c\})| : c \in F]]$, so it has |F| = q elements.

The reduced differential spectrum of $f(x) = x^d$ over F is $[(\Delta f)^{-1}(\{c\})| : c \in F]$, so it has |F| = q elements.

Since the fibers $(\Delta f)^{-1}(\{c\})$ disjointly cover the domain F of Δf , summing the reduced differential spectrum also yields |F| = q.

The reduced differential spectrum of $f(x) = x^d$ over F is $[(\Delta f)^{-1}(\{c\})| : c \in F]$, so it has |F| = q elements.

Since the fibers $(\Delta f)^{-1}(\{c\})$ disjointly cover the domain F of Δf , summing the reduced differential spectrum also yields |F|=q.

If we write a reduced differential spectrum as $n_1[a_1] + \cdots + n_t[a_t]$ (meaning that it has n_j instances of a_j for each j), then

$$\sum_{j=1}^t n_j = q \quad \text{and} \quad \sum_{j=1}^t n_j a_j = q,$$

so the average differential multiplicity is 1.

Reduced differential spectra of APN power functions

The reduced differential spectrum of $f(x) = x^d$ over F is $[(\Delta f)^{-1}(\{c\})| : c \in F]$, so it has |F| = q elements.

Since the fibers $(\Delta f)^{-1}(\{c\})$ disjointly cover the domain F of Δf , summing the reduced differential spectrum also yields |F| = q.

If we write a reduced differential spectrum as $n_1[a_1] + \cdots + n_t[a_t]$ (meaning that it has n_i instances of a_i for each j), then

$$\sum_{j=1}^t n_j = q \quad \text{and} \quad \sum_{j=1}^t n_j a_j = q,$$

so the average differential multiplicity is 1.

So an APN power function f over F has reduced spectrum

$$\frac{q-N}{2}[0]+N[1]+\frac{q-N}{2}[2],$$

where N = 0 when if char(F) = 2. When char(F) is odd, N is odd, with N = 1 when d is odd, but N can be larger when d is even.

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f : F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.

Ĉ

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Then for every $c \in F$, we have

$$\left|(\Delta f)^{-1}(\{c\})\right| = egin{cases} 1 & ext{if } c \in \mathbb{F}_3, \ 1 + \eta(1-c^{3^k+1}) & ext{otherwise,} \end{cases}$$

where η is the quadratic character for F: so $\eta(1-c^{3^k+1})$ modulo 3 is $(1-c^{3^k+1})^{(q-1)/2}$.

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Then for every $c \in F$, we have

$$\left| (\Delta f)^{-1}(\{c\}) \right| = egin{cases} 1 & ext{if } c \in \mathbb{F}_3, \ 1 + \eta (1 - c^{3^k + 1}) & ext{otherwise,} \end{cases}$$

where η is the quadratic character for F: so $\eta(1-c^{3^k+1})$ modulo 3 is $(1-c^{3^k+1})^{(q-1)/2}$.

So f is an APN function with reduced differential spectrum

$$\frac{3^n-3}{2}[0]+3[1]+\frac{3^n-3}{2}[2].$$

Ĉ

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f : F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Then for every $c \in F$, we have

$$\left|(\Delta f)^{-1}(\{c\})\right| = egin{cases} 1 & ext{if } c \in \mathbb{F}_3, \ 1 + \eta(1-c^{3^k+1}) & ext{otherwise}, \end{cases}$$
 where η is the quadratic character for F : so $\eta(1-c^{3^k+1})$ modulo

3 is $(1-c^{3^k+1})^{(q-1)/2}$.

So f is an APN function with reduced differential spectrum

$$\frac{3^n-3}{2}[0]+3[1]+\frac{3^n-3}{2}[2].$$

Given any $c \in F$, there is a algorithm for determining which elements lie in $(\Delta f)^{-1}(\{c\})$ using $O(n) = O(\log q)$ operations (where an operation is either one the four field operations of F or an exponentiation of an element of F to some power).

9

Permuting fibers

Lemma

Let $g: A \to B$, let σ be a permutation of A, and let $f = g \circ \sigma$. Then for each $b \in B$ we have

$$f^{-1}({b}) = \sigma^{-1}(g^{-1}({b})),$$

so that the multiset of cardinalities of fibers of f is the same as the multiset of cardinalities of fibers of g.

Permuting fibers

Lemma

Let $g: A \to B$, let σ be a permutation of A, and let $f = g \circ \sigma$. Then for each $b \in B$ we have

$$f^{-1}(\{b\}) = \sigma^{-1}(g^{-1}(\{b\})),$$

so that the multiset of cardinalities of fibers of f is the same as the multiset of cardinalities of fibers of g.

Lemma

Let $g: A \to B$, let π be a permutation of B, and let $f = \pi \circ g$. Then for each $b \in B$ we have

$$f^{-1}(\{b\}) = g^{-1}(\{\pi^{-1}(b)\}),$$

so that the multiset of cardinalities of fibers of f is the same as the multiset of cardinalities of fibers of g.

Let $f(x) = x^d$ be a power function over F where $d = d_1/d_2$ for positive integers d_1, d_2 with $gcd(d_2, q - 1) = 1$.

Let $f(x) = x^d$ be a power function over F where $d = d_1/d_2$ for positive integers d_1, d_2 with $gcd(d_2, q - 1) = 1$.

Let $\pi: F \to F$ and $\sigma: F \to F$ be the permutations with $\pi(x) = x^{q-2} + 1$ and $\sigma(x) = x^{d_2}$.

Let $f(x) = x^d$ be a power function over F where $d = d_1/d_2$ for positive integers d_1, d_2 with $gcd(d_2, q - 1) = 1$.

Let $\pi: F \to F$ and $\sigma: F \to F$ be the permutations with $\pi(x) = x^{q-2} + 1$ and $\sigma(x) = x^{d_2}$.

Let $f_1 = (\Delta f) \circ \pi^{-1}$ and $f_2 = \sigma \circ f_1 \circ \sigma$ and $f_3 = f_2 \circ \pi$.

Let $f(x) = x^d$ be a power function over F where $d = d_1/d_2$ for positive integers d_1, d_2 with $gcd(d_2, q - 1) = 1$.

Let $\pi: F \to F$ and $\sigma: F \to F$ be the permutations with $\pi(x) = x^{q-2} + 1$ and $\sigma(x) = x^{d_2}$.

Let $f_1 = (\Delta f) \circ \pi^{-1}$ and $f_2 = \sigma \circ f_1 \circ \sigma$ and $f_3 = f_2 \circ \pi$.

Hertel and Pott (2008) inspire the transformation to f_1 and f_2 , and

Let $f(x) = x^d$ be a power function over F where $d = d_1/d_2$ for positive integers d_1, d_2 with $gcd(d_2, q - 1) = 1$.

Let $\pi: F \to F$ and $\sigma: F \to F$ be the permutations with $\pi(x) = x^{q-2} + 1$ and $\sigma(x) = x^{d_2}$.

Let $f_1 = (\Delta f) \circ \pi^{-1}$ and $f_2 = \sigma \circ f_1 \circ \sigma$ and $f_3 = f_2 \circ \pi$.

Hertel and Pott (2008) inspire the transformation to f_1 and f_2 , and

$$f_1(x) = \frac{x^d - 1}{(x - 1)^d}$$

$$f_2(x) = \frac{(x^{d_1} - 1)^{d_2}}{(x^{d_2} - 1)^{d_1}}$$

$$f_3(x) = \frac{((x + 1)^{d_1} - x^{d_1})^{d_2}}{((x + 1)^{d_2} - x^{d_2})^{d_1}}.$$

11

Let $f(x) = x^d$ be a power function over F where $d = d_1/d_2$ for positive integers d_1, d_2 with $gcd(d_2, q - 1) = 1$.

Let $\pi \colon F \to F$ and $\sigma \colon F \to F$ be the permutations with $\pi(x) = x^{q-2} + 1$ and $\sigma(x) = x^{d_2}$.

Let $f_1 = (\Delta f) \circ \pi^{-1}$ and $f_2 = \sigma \circ f_1 \circ \sigma$ and $f_3 = f_2 \circ \pi$.

Hertel and Pott (2008) inspire the transformation to f_1 and f_2 , and

$$f_1(x) = \frac{x^d - 1}{(x - 1)^d}$$

$$f_2(x) = \frac{(x^{d_1} - 1)^{d_2}}{(x^{d_2} - 1)^{d_1}}$$

$$f_3(x) = \frac{((x + 1)^{d_1} - x^{d_1})^{d_2}}{((x + 1)^{d_2} - x^{d_2})^{d_1}}.$$

The multiset of cardinalities of the fibers of f_1 , f_2 , or f_3 is the same as the multiset of cardinalities of the fibers of Δf .

$$f(x)=x^d$$
 with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$

$$f_3(x) = (\sigma \circ (\Delta f) \circ \pi^{-1} \circ \sigma \circ \pi)(x) = \frac{((x+1)^{d_1} - x^{d_1})^{d_2}}{((x+1)^{d_2} - x^{d_2})^{d_1}}$$

has the same multiset of cardinalities of fibers as Δf .

$$f(x)=x^d$$
 with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$

$$f_3(x) = (\sigma \circ (\Delta f) \circ \pi^{-1} \circ \sigma \circ \pi)(x) = \frac{((x+1)^{d_1} - x^{d_1})^{d_2}}{((x+1)^{d_2} - x^{d_2})^{d_1}}$$

has the same multiset of cardinalities of fibers as Δf .

Now suppose that char(F) is odd, and let $\tau \colon F \to F$ be the permutation with $\tau(x) = (x-2)/4$.

$$f(x)=x^d$$
 with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$

$$f_3(x) = (\sigma \circ (\Delta f) \circ \pi^{-1} \circ \sigma \circ \pi)(x) = \frac{((x+1)^{d_1} - x^{d_1})^{d_2}}{((x+1)^{d_2} - x^{d_2})^{d_1}}$$

has the same multiset of cardinalities of fibers as Δf .

Now suppose that char(F) is odd, and let $\tau \colon F \to F$ be the permutation with $\tau(x) = (x-2)/4$.

Then the function $f_4 = f_3 \circ \tau$ has

$$f(x)=x^d$$
 with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$

$$f_3(x) = (\sigma \circ (\Delta f) \circ \pi^{-1} \circ \sigma \circ \pi)(x) = \frac{((x+1)^{d_1} - x^{d_1})^{d_2}}{((x+1)^{d_2} - x^{d_2})^{d_1}}$$

has the same multiset of cardinalities of fibers as Δf .

Now suppose that char(F) is odd, and let $\tau \colon F \to F$ be the permutation with $\tau(x) = (x-2)/4$.

Then the function $f_4 = f_3 \circ \tau$ has

$$f_4(x) = \frac{((x+2)^{d_1} - (x-2)^{d_1})^{d_2}}{((x+2)^{d_2} - (x-2)^{d_2})^{d_1}}.$$

$$f(x) = x^d$$
 with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $\gcd(d_2, q - 1) = 1$

$$f_3(x) = (\sigma \circ (\Delta f) \circ \pi^{-1} \circ \sigma \circ \pi)(x) = \frac{((x+1)^{d_1} - x^{d_1})^{d_2}}{((x+1)^{d_2} - x^{d_2})^{d_1}}$$

has the same multiset of cardinalities of fibers as Δf .

Now suppose that char(F) is odd, and let $\tau \colon F \to F$ be the permutation with $\tau(x) = (x-2)/4$.

Then the function $f_4 = f_3 \circ \tau$ has

$$f_4(x) = \frac{((x+2)^{d_1} - (x-2)^{d_1})^{d_2}}{((x+2)^{d_2} - (x-2)^{d_2})^{d_1}}.$$

The multiset of cardinalities of the fibers of f_4 is the same as the multiset of cardinalities of the fibers of Δf .

Substituting $x + x^{-1}$

 ${\sf char}({\sf F})$ odd, $f(x)=x^d$ with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$

$$f_4(x) = \frac{((x+2)^{d_1} - (x-2)^{d_1})^{d_2}}{((x+2)^{d_2} - (x-2)^{d_2})^{d_1}}.$$

has the same multiset of cardinalities of fibers as Δf .

Substituting $x + x^{-1}$

 $\operatorname{char}(F)$ odd, $f(x)=x^d$ with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$

$$f_4(x) = \frac{((x+2)^{d_1} - (x-2)^{d_1})^{d_2}}{((x+2)^{d_2} - (x-2)^{d_2})^{d_1}}.$$

has the same multiset of cardinalities of fibers as Δf .

Coulter-Matthews (1997) (and ultimately Dickson) inspire us to consider an $x \in \overline{F}$ with $x + x^{-1} \in F$ and obtain

$$f_4(x+x^{-1}) = \frac{((x+2+x^{-1})^{d_1} - (x-2+x^{-1})^{d_1})^{d_2}}{((x+2+x^{-1})^{d_2} - (x-2+x^{-1})^{d_2})^{d_1}}$$

$$= \frac{((x^2+2x+1)^{d_1} - (x^2-2x+1)^{d_1})^{d_2}}{((x^2+2x+1)^{d_2} - (x^2-2x+1)^{d_2})^{d_1}}$$

$$= \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Substituting $x + x^{-1}$ (continued) char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$ $f_4(x + x^{-1}) = \frac{((x + 1)^{2d_1} - (x - 1)^{2d_1})^{d_2}}{((x + 1)^{2d_2} - (x - 1)^{2d_2})^{d_1}}.$

Substituting $x + x^{-1}$ (continued) char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$ $f_4(x + x^{-1}) = \frac{((x + 1)^{2d_1} - (x - 1)^{2d_1})^{d_2}}{((x + 1)^{2d_2} - (x - 1)^{2d_2})^{d_1}}.$

Useful when d_1 and d_2 are complicated but $2d_1$ and $2d_2$ are simple

char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$

$$f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Useful when d_1 and d_2 are complicated but $2d_1$ and $2d_2$ are simple

For example, consider our theorem, where the field F is of order 3^n with n > 1 odd, and $d = (3^n + 1)/(3^k + 1)$ with k nonnegative and even, and gcd(n, k) = 1.

char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$

$$f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Useful when d_1 and d_2 are complicated but $2d_1$ and $2d_2$ are simple

For example, consider our theorem, where the field F is of order 3^n with n > 1 odd, and $d = (3^n + 1)/(3^k + 1)$ with k nonnegative and even, and gcd(n, k) = 1.

Then $d = d_1/d_2$ with $d_1 = (3^n + 1)/2$ and $d_2 = (3^k + 1)/2$.

 $\begin{aligned} \text{char}(F) \text{ odd, } f(x) &= x^d \text{ with } d = d_1/d_2 \text{ for } d_1, d_2 \in \mathbb{Z}_+ \text{ with } \\ \gcd(d_2, q-1) &= 1, \text{ and } x \text{ is such that } x+x^{-1} \in F \\ f_4(x+x^{-1}) &= \frac{((x+1)^{2d_1}-(x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2}-(x-1)^{2d_2})^{d_1}}. \end{aligned}$

Useful when d_1 and d_2 are complicated but $2d_1$ and $2d_2$ are simple

For example, consider our theorem, where the field F is of order 3^n with n > 1 odd, and $d = (3^n + 1)/(3^k + 1)$ with k nonnegative and even, and gcd(n, k) = 1.

Then $d = d_1/d_2$ with $d_1 = (3^n + 1)/2$ and $d_2 = (3^k + 1)/2$.

Taking an element like x + 1 to the d_2 th power is complicated while taking x + 1 to the $(2d_2)$ th power is relatively simple because

$$(x+1)^{2d_2} = (x+1)^{3^k+1} = (x+1)^{3^k}(x+1)$$
$$= (x^{3^k}+1)(x+1) = x^{3^k+1} + x^{3^k} + x + 1.$$

Substituting $x + x^{-1}$ (continued) $char(F) \text{ odd, } f(x) = x^d \text{ with } d = d_1/d_2 \text{ for } d_1, d_2 \in \mathbb{Z}_+ \text{ with }$ $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$ $f_4(x + x^{-1}) = \frac{((x + 1)^{2d_1} - (x - 1)^{2d_1})^{d_2}}{((x + 1)^{2d_2} - (x - 1)^{2d_2})^{d_1}}.$

Substituting $x + x^{-1}$ (continued) char(F) odd, $f(x) = x^d$ with $d = d_1/d$

char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $\gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$ $f_4(x + x^{-1}) = \frac{((x + 1)^{2d_1} - (x - 1)^{2d_1})^{d_2}}{((x + 1)^{2d_2} - (x - 1)^{2d_2})^{d_1}}.$

Question: where should x come from to make $x + x^{-1}$ reside in F?

char(F) odd, $f(x)=x^d$ with $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$, and x is such that $x+x^{-1}\in F$

$$f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Question: where should x come from to make $x + x^{-1}$ reside in F?

But first...if x and y are nonzero elements of some field K then

$$x + x^{-1} = y + y^{-1}$$

char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$

$$f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Question: where should x come from to make $x + x^{-1}$ reside in F?

But first...if x and y are nonzero elements of some field K then

$$x + x^{-1} = y + y^{-1}$$

if and only if

$$(x-y)\left(1-\frac{1}{xy}\right)=0,$$

char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$

$$f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Question: where should x come from to make $x + x^{-1}$ reside in F?

But first...if x and y are nonzero elements of some field K then

$$x + x^{-1} = y + y^{-1}$$

if and only if

$$(x-y)\left(1-\frac{1}{xy}\right)=0,$$

which is true if and only if

$$x \in \{y, y^{-1}\}.$$

char(F) odd, $f(x) = x^d$ with $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $gcd(d_2, q - 1) = 1$, and x is such that $x + x^{-1} \in F$

$$f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Question: where should x come from to make $x + x^{-1}$ reside in F?

But first...if x and y are nonzero elements of some field K then

$$x + x^{-1} = y + y^{-1}$$

if and only if

$$(x-y)\left(1-\frac{1}{xy}\right)=0,$$

which is true if and only if

$$x \in \{y, y^{-1}\}.$$

So all nonempty fibers of the map $x \mapsto x + x^{-1}$ have two points in them, except for $\{1\}$ and $\{-1\}$.

Inspiration from $\mathbb C$

Consider how $x \mapsto x + x^{-1}$ maps \mathbb{C}^* into \mathbb{C} .

Inspiration from \mathbb{C}

Consider how $x \mapsto x + x^{-1}$ maps \mathbb{C}^* into \mathbb{C} .

The map is surjective because $\ensuremath{\mathbb{C}}$ is algebraically closed.

Inspiration from $\mathbb C$

Consider how $x \mapsto x + x^{-1}$ maps \mathbb{C}^* into \mathbb{C} .

The map is surjective because $\mathbb C$ is algebraically closed.

So by the previous slide, every element has two preimages under this map, except for 2 and -2, which have preimages $\{1\}$ and $\{-1\}$, respectively.

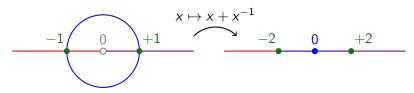
Inspiration from $\mathbb C$

Consider how $x \mapsto x + x^{-1}$ maps \mathbb{C}^* into \mathbb{C} .

The map is surjective because $\mathbb C$ is algebraically closed.

So by the previous slide, every element has two preimages under this map, except for 2 and -2, which have preimages $\{1\}$ and $\{-1\}$, respectively.

The preimage of the real axis is the union of the punctured real axis, \mathbb{R}^* , and the complex unit circle \mathbb{T} :



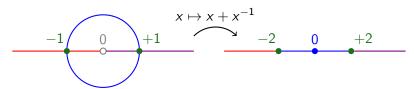
Inspiration from \mathbb{C}

Consider how $x \mapsto x + x^{-1}$ maps \mathbb{C}^* into \mathbb{C} .

The map is surjective because $\mathbb C$ is algebraically closed.

So by the previous slide, every element has two preimages under this map, except for 2 and -2, which have preimages $\{1\}$ and $\{-1\}$, respectively.

The preimage of the real axis is the union of the punctured real axis, \mathbb{R}^* , and the complex unit circle \mathbb{T} :



The disjoint union

$$\mathbb{R}^* \sqcup \mathbb{T} = \{(r, \mathbb{R}^*) : r \in \mathbb{R}^*\} \cup \{(t, \mathbb{T}) : t \in \mathbb{T}\}$$

is mapped by $(x, S) \mapsto x + x^{-1}$ to give a double cover of \mathbb{R} .

 $E = \mathbb{F}_{q^2}$ is the quadratic extension of $F = \mathbb{F}_q$. The unit circle of E, denoted U_E , is the unique subgroup of E^* of order q+1:

$$U_E = \{ x \in E^* : x^{q+1} = 1 \}.$$

 $E = \mathbb{F}_{q^2}$ is the quadratic extension of $F = \mathbb{F}_q$. The unit circle of E, denoted U_E , is the unique subgroup of E^* of order q+1:

$$U_E = \{ x \in E^* : x^{q+1} = 1 \}.$$

characteristic <i>p</i>	characteristic 0
F	\mathbb{R}
E	\mathbb{C}
$x \mapsto x^q$	$x \mapsto \overline{x}$
$U_E = \{x \in E^* : xx^q = 1\}$	$T = \{x \in \mathbb{C}^* : x\overline{x} = 1\}$
$F^* \sqcup U_E$	$\mathbb{R}^* \sqcup \mathbb{T}$

 $E = \mathbb{F}_{q^2}$ is the quadratic extension of $F = \mathbb{F}_q$. The unit circle of E, denoted U_E , is the unique subgroup of E^* of order q+1:

$$U_E = \{ x \in E^* : x^{q+1} = 1 \}.$$

characteristic <i>p</i>	characteristic 0
F	\mathbb{R}
E	\mathbb{C}
$x \mapsto x^q$	$x \mapsto \overline{x}$
$U_E = \{x \in E^* : xx^q = 1\}$	$\mathbb{T} = \{ x \in \mathbb{C}^* : x\overline{x} = 1 \}$
$F^* \sqcup U_E$	$\mathbb{R}^* \sqcup \mathbb{T}$

Our disjoint union has
$$(q-1)+(q+1)=2q$$
 elements $F^*\sqcup U_E=\{(a,F^*):a\in F^*\}\cup\{(b,U_E):b\in U_E\}.$

 $E = \mathbb{F}_{q^2}$ is the quadratic extension of $F = \mathbb{F}_q$. The unit circle of E, denoted U_E , is the unique subgroup of E^* of order q+1:

$$U_E = \{ x \in E^* : x^{q+1} = 1 \}.$$

characteristic <i>p</i>	characteristic 0
F	\mathbb{R}
E	\mathbb{C}
$x \mapsto x^q$	$x \mapsto \overline{x}$
$U_E = \{x \in E^* : xx^q = 1\}$	$T = \{x \in \mathbb{C}^* : x\overline{x} = 1\}$
$F^* \sqcup U_E$	$\mathbb{R}^* \sqcup \mathbb{T}$

Our disjoint union has (q-1)+(q+1)=2q elements

$$F^* \sqcup U_E = \{(a, F^*) : a \in F^*\} \cup \{(b, U_E) : b \in U_E\}.$$

Then the map $\lambda \colon F^* \sqcup U_E \to F$ with $\lambda(x, S) = x + x^{-1}$ is a double cover of F (i.e., λ is 2-to-1 from $F^* \sqcup U_E$ to F).

 $E = \mathbb{F}_{q^2}$ is the quadratic extension of $F = \mathbb{F}_q$. The unit circle of E, denoted U_E , is the unique subgroup of E^* of order q+1:

$$U_E = \{x \in E^* : x^{q+1} = 1\}.$$

characteristic <i>p</i>	characteristic 0
F	\mathbb{R}
E	\mathbb{C}
$x \mapsto x^q$	$x \mapsto \overline{x}$
$U_E = \{x \in E^* : xx^q = 1\}$	$T = \{x \in \mathbb{C}^* : x\overline{x} = 1\}$
$F^* \sqcup U_E$	$\mathbb{R}^* \sqcup \mathbb{T}$

Our disjoint union has (q-1)+(q+1)=2q elements

$$F^* \sqcup U_E = \{(a, F^*) : a \in F^*\} \cup \{(b, U_E) : b \in U_E\}.$$

Then the map $\lambda \colon F^* \sqcup U_E \to F$ with $\lambda(x, S) = x + x^{-1}$ is a double cover of F (i.e., λ is 2-to-1 from $F^* \sqcup U_E$ to F).

Lemma (fiber doubling)

If
$$g: F \to F$$
, then $|g^{-1}(\{c\})| = \frac{|(g \circ \lambda)^{-1}(\{c\})|}{2}$ for every $c \in F$.

Applying the double cover

If char(F) is odd and $f(x)=x^d$ over F where $d=d_1/d_2$ for $d_1,d_2\in\mathbb{Z}_+$ with $\gcd(d_2,q-1)=1$, then the fibers of Δf are half the size of those of

$$(f_4 \circ \lambda)(x,S) = f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

Applying the double cover

If char(F) is odd and $f(x) = x^d$ over F where $d = d_1/d_2$ for $d_1, d_2 \in \mathbb{Z}_+$ with $\gcd(d_2, q - 1) = 1$, then the fibers of Δf are half the size of those of

$$(f_4 \circ \lambda)(x,S) = f_4(x+x^{-1}) = \frac{((x+1)^{2d_1} - (x-1)^{2d_1})^{d_2}}{((x+1)^{2d_2} - (x-1)^{2d_2})^{d_1}}.$$

When $d=(3^n+1)/(3^k+1)$ over $F=\mathbb{F}_{3^n}$ (n>1 odd, $k\geq 0$ even, $\gcd(k,n)=1)$, we have $d_1=(3^n+1)/2$ and $d_2=(3^k+1)/2$, and then you get a function that is "simple" enough to analyze:

$$\begin{split} &(f_4 \circ \lambda)(x,S) = \frac{\left((x+1)^{2d_1} - (x-1)^{2d_1}\right)^{d_2}}{\left((x+1)^{2d_2} - (x-1)^{2d_2}\right)^{d_1}} \\ &= \frac{\left((x^{3^n+1} + x^{3^n} + x + 1) - (x^{3^n+1} - x^{3^n} - x + 1)\right)^{d_2}}{\left((x^{3^k+1} + x^{3^k} + x + 1) - (x^{3^k+1} - x^{3^k} - x + 1)\right)^{d_1}} = -\frac{(x^{3^n} + x)^{d_2}}{(x^{3^k} + x)^{d_1}} \end{split}$$

Theorem (K.–O'Connor–Pacheco–Sapozhnikov, 2024) Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Then for every $c \in F$, we have

$$\left|(\Delta f)^{-1}(\{c\})\right| = \begin{cases} 1 & \text{if } c \in \mathbb{F}_3, \\ 1 + \eta(1 - c^{3^k + 1}) & \text{otherwise,} \end{cases}$$

where η is the quadratic character for F: so $\eta(1-c^{3^k+1})$ modulo 3 is $(1-c^{3^k+1})^{(q-1)/2}$.

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Then for every $c \in F$, we have

$$\left|(\Delta f)^{-1}(\{c\})\right| = \begin{cases} 1 & \text{if } c \in \mathbb{F}_3, \\ 1 + \eta(1 - c^{3^k + 1}) & \text{otherwise,} \end{cases}$$

where η is the quadratic character for F: so $\eta(1-c^{3^k+1})$ modulo 3 is $(1-c^{3^k+1})^{(q-1)/2}$.

So f is an APN function with reduced differential spectrum

$$\frac{3^n-3}{2}[0]+3[1]+\frac{3^n-3}{2}[2].$$

Theorem (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

Let $F = \mathbb{F}_{3^n}$ and let $f : F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Then for every $c \in F$, we have

$$\left|(\Delta f)^{-1}(\{c\})\right| = egin{cases} 1 & ext{if } c \in \mathbb{F}_3, \ 1 + \eta(1-c^{3^k+1}) & ext{otherwise,} \end{cases}$$

where η is the quadratic character for F: so $\eta(1-c^{3^k+1})$ modulo 3 is $(1-c^{3^k+1})^{(q-1)/2}$.

So f is an APN function with reduced differential spectrum

$$\frac{3^n-3}{2}[0]+3[1]+\frac{3^n-3}{2}[2].$$

Given any $c \in F$, there is a algorithm for determining which elements lie in $(\Delta f)^{-1}(\{c\})$ using $O(n) = O(\log q)$ operations (where an operation is either one the four field operations of F or an exponentiation of an element of F to some power).

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$.

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$.

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} \rho_0(x) &= (1-x^{3^k+1})^{\frac{q+1}{4}} \\ \rho_2(x) &= x^{q-2+\frac{(q-3)e}{4}} \left(\rho_0(x) + 1 \right)^{\frac{(3q-1)e}{4}} \\ \rho_2(x) &= x^{q-2+\frac{(q-3)e}{4}} \left(\rho_0(x) + 1 \right)^{\frac{(3q-1)e}{4}} \\ \rho_3(x) &= \rho_2(x) + \rho_2(x)^{q-2} \\ \rho_4(x) &= \rho_1(\rho_3(x)) \\ \rho_5(x) &= \left(\rho_5(x) - \rho_5(x)^{q-2} \right) \left(\rho_5(x) + \rho_5(x)^{q-2} \right)^{q-2} \\ \rho_6(x) &= \left(\left(x - 1 \right)^{\frac{q+1}{2}} - (x+1)^{\frac{q+1}{2}} \right)^{\frac{3^k+1}{2}} \left(\left(x - 1 \right)^{\frac{3^k+1}{2}} - (x+1)^{\frac{3^k+1}{2}} \right)^{\frac{q-3}{2}} \\ \rho_9(x) &= x^{\frac{2q-3^k-3}{2}} \rho_8(\rho_7(x)) \rho_7(x) \\ \rho_{10}(x) &= \rho_1(\rho_9(x)) \end{split}$$

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} & \rho_{0}(x) = (1-x^{3^{k}+1})^{\frac{q+1}{4}} & \rho_{1}(x) = (((x+1)^{q-2}+1)^{\frac{3^{k}+1}{2}}-1)^{q-2} \\ & \rho_{2}(x) = x^{q-2+\frac{(q-3)\epsilon}{4}} \left(\rho_{0}(x)+1\right)^{\frac{(3q-1)\epsilon}{4}} & \rho_{1}(x) = (((x+1)^{q-2}+1)^{\frac{3^{k}+1}{2}}-1)^{q-2} \\ & \rho_{3}(x) = \rho_{2}(x)+\rho_{2}(x)^{q-2} \\ & \rho_{4}(x) = \rho_{1}(\rho_{3}(x)) & \rho_{5}(x) = \prod_{j=0}^{n-1} \left((-1)^{j}\rho_{0}(x)^{3^{jk}}+1\right) \\ & \rho_{6}(x) = \left(\rho_{5}(x)-\rho_{5}(x)^{q-2}\right)\left(\rho_{5}(x)+\rho_{5}(x)^{q-2}\right)^{q-2} & \rho_{7}(x) = \left(1-\rho_{6}(x)^{2}\right)^{\frac{q+1}{4}} \\ & \rho_{8}(x) = \left((x-1)^{\frac{q+1}{2}}-(x+1)^{\frac{q+1}{2}}\right)^{\frac{3^{k}+1}{2}} \left((x-1)^{\frac{3^{k}+1}{2}}-(x+1)^{\frac{3^{k}+1}{2}}\right)^{\frac{q-3}{2}} \\ & \rho_{9}(x) = x^{\frac{2q-3^{k}-3}{2}} \rho_{3}(\rho_{7}(x))\rho_{7}(x) & \rho_{10}(x) = \rho_{1}(\rho_{3}(x)) \end{split}$$

For $c \in F$, consider the fiber $(\Delta f)^{-1}(\{c\})$ of the derivative of f.

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} & \rho_{0}(x) = (1-x^{3^{k}+1})^{\frac{q+1}{4}} & \rho_{1}(x) = (((x+1)^{q-2}+1)^{\frac{3^{k}+1}{2}}-1)^{q-2} \\ & \rho_{2}(x) = x^{q-2+\frac{(q-3)\epsilon}{4}} \left(\rho_{0}(x)+1\right)^{\frac{(3q-1)\epsilon}{4}} & \rho_{1}(x) = (((x+1)^{q-2}+1)^{\frac{3^{k}+1}{2}}-1)^{q-2} \\ & \rho_{3}(x) = \rho_{2}(x)+\rho_{2}(x)^{q-2} \\ & \rho_{4}(x) = \rho_{1}(\rho_{3}(x)) & \rho_{5}(x) = \prod_{j=0}^{n-1} \left((-1)^{j}\rho_{0}(x)^{3^{jk}}+1\right) \\ & \rho_{6}(x) = \left(\rho_{5}(x)-\rho_{5}(x)^{q-2}\right) \left(\rho_{5}(x)+\rho_{5}(x)^{q-2}\right)^{q-2} & \rho_{7}(x) = \left(1-\rho_{6}(x)^{2}\right)^{\frac{q+1}{4}} \\ & \rho_{8}(x) = \left((x-1)^{\frac{q+1}{2}}-(x+1)^{\frac{q+1}{2}}\right)^{\frac{3^{k}+1}{2}} \left((x-1)^{\frac{3^{k}+1}{2}}-(x+1)^{\frac{3^{k}+1}{2}}\right)^{\frac{q-3}{2}} \\ & \rho_{9}(x) = x^{\frac{2q-3^{k}-3}{2}} \rho_{8}(\rho_{7}(x))\rho_{7}(x) & \rho_{10}(x) = \rho_{1}(\rho_{9}(x)) \end{split}$$

For $c \in F$, consider the fiber $(\Delta f)^{-1}(\{c\})$ of the derivative of f. (i) If $(1-c^{3^k+1})^{(q-1)/2}=-1$, then $(\Delta f)^{-1}(\{c\})=\emptyset$.

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} & \rho_{0}(x) = (1-x^{3^{k}+1})^{\frac{q+1}{4}} \\ & \rho_{2}(x) = x^{q-2+\frac{(q-3)e}{4}} \left(\rho_{0}(x)+1\right)^{\frac{(3q-1)e}{4}} \\ & \rho_{1}(x) = (((x+1)^{q-2}+1)^{\frac{3^{k}+1}{2}}-1)^{q-2} \\ & \rho_{2}(x) = p_{1}(\rho_{3}(x)) \\ & \rho_{3}(x) = \rho_{2}(x)+\rho_{2}(x)^{q-2} \\ & \rho_{5}(x) = \prod_{j=0}^{n-1} \left((-1)^{j}\rho_{0}(x)^{3^{jk}}+1\right) \\ & \rho_{6}(x) = \left(\rho_{5}(x)-\rho_{5}(x)^{q-2}\right) \left(\rho_{5}(x)+\rho_{5}(x)^{q-2}\right)^{q-2} \\ & \rho_{8}(x) = \left((x-1)^{\frac{q+1}{2}}-(x+1)^{\frac{q+1}{2}}\right)^{\frac{3^{k}+1}{4}} \\ & \rho_{8}(x) = \left((x-1)^{\frac{q+1}{2}}-(x+1)^{\frac{q+1}{2}}\right)^{\frac{3^{k}+1}{2}} \left((x-1)^{\frac{3^{k}+1}{2}}-(x+1)^{\frac{3^{k}+1}{2}}\right)^{\frac{q-3}{2}} \\ & \rho_{9}(x) = x^{\frac{2q-3^{k}-3}{2}} \rho_{8}(\rho_{7}(x))\rho_{7}(x) \\ & \rho_{10}(x) = \rho_{1}(\rho_{9}(x)) \end{split}$$

For $c \in F$, consider the fiber $(\Delta f)^{-1}(\{c\})$ of the derivative of f.

(i) If
$$(1-c^{3^k+1})^{(q-1)/2} = -1$$
, then $(\Delta f)^{-1}(\{c\}) = \emptyset$.

(ii) Otherwise,
$$(\Delta f)^{-1}(\{c\}) = \{p_4(c), p_{10}(c)\}.$$

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} \rho_0(x) &= (1-x^{3^k+1})^{\frac{q+1}{4}}_{-\frac{q+1}{4}} & \rho_1(x) = (((x+1)^{q-2}+1)^{\frac{3^k+1}{2}} - 1)^{q-2} \\ \rho_2(x) &= x^{q-2+\frac{(q-3)\epsilon}{4}} \left(\rho_0(x)+1\right)^{\frac{(3q-1)\epsilon}{4}} & \rho_1(x) = (((x+1)^{q-2}+1)^{\frac{3^k+1}{2}} - 1)^{q-2} \\ \rho_4(x) &= \rho_1(\rho_3(x)) & \rho_5(x) = \prod_{j=0}^{n-1} \left((-1)^j \rho_0(x)^{3^{jk}} + 1\right) \\ \rho_6(x) &= \left(\rho_5(x) - \rho_5(x)^{q-2}\right) \left(\rho_5(x) + \rho_5(x)^{q-2}\right)^{q-2} & \rho_7(x) = \left(1 - \rho_6(x)^2\right)^{\frac{q+1}{4}} \\ \rho_8(x) &= \left((x-1)^{\frac{q+1}{2}} - (x+1)^{\frac{q+1}{2}}\right)^{\frac{3^k+1}{2}} \left((x-1)^{\frac{3^k+1}{2}} - (x+1)^{\frac{3^k+1}{2}}\right)^{\frac{q-3}{2}} \\ \rho_9(x) &= x^{\frac{2q-3^k-3}{2}} \rho_8(\rho_7(x)) \rho_7(x) & \rho_{10}(x) = \rho_1(\rho_9(x)) \end{split}$$

For $c \in F$, consider the fiber $(\Delta f)^{-1}(\{c\})$ of the derivative of f.

- (i) If $(1-c^{3^k+1})^{(q-1)/2} = -1$, then $(\Delta f)^{-1}(\{c\}) = \emptyset$.
- (ii) Otherwise, $(\Delta f)^{-1}(\{c\}) = \{p_4(c), p_{10}(c)\}$. If $c \in \mathbb{F}_3$, then $p_4(c) = p_{10}(c) = 1 c$, but if $c \notin \mathbb{F}_3$, then $p_4(c)$ and $p_{10}(c)$ are distinct elements of $F \setminus \mathbb{F}_3$.

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k - 1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} \rho_0(x) &= (1-x^{3^k+1})^{\frac{q+1}{4}} \\ \rho_2(x) &= x^{q-2+\frac{(q-3)\epsilon}{4}} \left(\rho_0(x)+1\right)^{\frac{(3q-1)\epsilon}{4}} \\ \rho_2(x) &= p_1(\rho_3(x)) \\ \rho_6(x) &= \left(\rho_5(x)-\rho_5(x)^{q-2}\right) \left(\rho_5(x)+\rho_5(x)^{q-2}\right)^{q-2} \\ \rho_8(x) &= \left((x-1)^{\frac{q+1}{2}} - (x+1)^{\frac{q+1}{2}}\right)^{\frac{3^k+1}{2}} \left((x-1)^{\frac{3^k+1}{2}} - (x+1)^{\frac{3^k+1}{2}}\right)^{\frac{q-3}{2}} \\ \rho_9(x) &= x^{\frac{2q-3^k-3}{2}} \rho_8(\rho_7(x))\rho_7(x) \\ \end{split}$$

For $c \in F$, consider the fiber $(\Delta f)^{-1}(\{c\})$ of the derivative of f.

(i) If
$$(1-c^{3^k+1})^{(q-1)/2}=-1$$
, then $(\Delta f)^{-1}(\{c\})=\emptyset$.

(ii) Otherwise,
$$(\Delta f)^{-1}(\{c\}) = \{p_4(c), p_{10}(c)\}$$
. If $c \in \mathbb{F}_3$, then $p_4(c) = p_{10}(c) = 1 - c$, but if $c \notin \mathbb{F}_3$, then $p_4(c)$ and $p_{10}(c)$ are distinct elements of $F \setminus \mathbb{F}_3$.

The $p_4(c)$ element originates from the F^* part of our double cover and the $p_{10}(c)$ element from the U_F part.

Let $F = \mathbb{F}_{3^n}$ and let $f: F \to F$ with $f(x) = x^{(3^n+1)/(3^k+1)}$, where n > 1 is odd, k is nonnegative and even, and $\gcd(n, k) = 1$. Let $\epsilon \in \mathbb{Z}_+$ with $\epsilon(3^k-1)/4 \equiv 1 \pmod{(q-1)/2}$. Let

$$\begin{split} \rho_0(x) &= (1-x^{3^k+1})^{\frac{q+1}{4}} \\ \rho_2(x) &= x^{q-2+\frac{(q-3)_4}{4}} \left(\rho_0(x)+1\right)^{\frac{(3q-1)_4}{4}} \\ \rho_2(x) &= p_1(\rho_3(x)) \\ \rho_3(x) &= \rho_2(x)+\rho_2(x)^{q-2} \\ \rho_4(x) &= \rho_1(\rho_3(x)) \\ \rho_6(x) &= \left(\rho_5(x)-\rho_5(x)^{q-2}\right) \left(\rho_5(x)+\rho_5(x)^{q-2}\right)^{q-2} \\ \rho_8(x) &= \left((x-1)^{\frac{q+1}{2}}-(x+1)^{\frac{q+1}{2}}\right)^{\frac{3^k+1}{2}} \left((x-1)^{\frac{3^k+1}{2}}-(x+1)^{\frac{3^k+1}{2}}\right)^{\frac{q-3}{2}} \\ \rho_9(x) &= x^{\frac{2q-3^k-3}{2}} \rho_8(\rho_7(x))\rho_7(x) \\ \rho_{10}(x) &= \rho_1(x) = (((x+1)^{q-2}+1)^{\frac{3^k+1}{2}}-1)^{q-2} \\ \rho_{10}(x) &= \rho_1(x) = ((x+1)^{q-2}+1)^{\frac{3^k+1}{2}}-1)^{q-2} \\ \rho_{10}(x) &= \rho_1(x) = ((x+1)^{q-2}+1)^{\frac{3^k+1}{2}}-1 \\ \rho_{10}(x) &= \rho_1(x) = (($$

For $c \in F$, consider the fiber $(\Delta f)^{-1}(\{c\})$ of the derivative of f.

(i) If
$$(1-c^{3^k+1})^{(q-1)/2}=-1$$
, then $(\Delta f)^{-1}(\{c\})=\emptyset$.

(ii) Otherwise,
$$(\Delta f)^{-1}(\{c\}) = \{p_4(c), p_{10}(c)\}$$
. If $c \in \mathbb{F}_3$, then $p_4(c) = p_{10}(c) = 1 - c$, but if $c \notin \mathbb{F}_3$, then $p_4(c)$ and $p_{10}(c)$ are distinct elements of $F \setminus \mathbb{F}_3$.

The $p_4(c)$ element originates from the F^* part of our double cover and the $p_{10}(c)$ element from the U_F part.

About *p*₅

Consider
$$p_5(x) = \prod_{j=0}^{n-1} \left((-1)^j p_0(x)^{3^{jk}} + 1 \right)$$
 in our algorithm.

About p_5

Consider
$$p_5(x) = \prod_{j=0}^{n-1} \left((-1)^j p_0(x)^{3^{jk}} + 1 \right)$$
 in our algorithm.

When investigating the fibers of $f_4 \circ \lambda$, if $(f_4 \circ \lambda)(y, U_E) = b$ for some $b \in F$, then (with some easily handled exceptions)

$$y^{3^k} = \frac{sy+1}{y-s}$$

where s is a square root of b^2-1 , and the right-hand side has a Möbius transformation with matrix $\begin{pmatrix} s & 1 \\ 1 & -s \end{pmatrix}$.

About p_5

Consider
$$p_5(x) = \prod_{j=0}^{n-1} \left((-1)^j p_0(x)^{3^{jk}} + 1 \right)$$
 in our algorithm.

When investigating the fibers of $f_4 \circ \lambda$, if $(f_4 \circ \lambda)(y, U_E) = b$ for some $b \in F$, then (with some easily handled exceptions)

$$y^{3^k} = \frac{sy+1}{y-s}$$

where s is a square root of $b^2 - 1$, and the right-hand side has a Möbius transformation with matrix $\begin{pmatrix} s & 1 \\ 1 & -s \end{pmatrix}$.

One then iterates this n times to get $y^{3^{nk}} = y$ (recall that $y \in U_E \subseteq E = \mathbb{F}_{3^{2n}}$ and k is even) on the left-hand side and a composition of n Möbius transformations with matrices

$$\begin{pmatrix} s^{3^{(n-1)k}} & 1 \\ 1 & -s^{3^{(n-1)k}} \end{pmatrix}, \dots, \begin{pmatrix} s & 1 \\ 1 & -s \end{pmatrix}$$
 on the right-hand side.

About p_5

Consider
$$p_5(x) = \prod_{j=0}^{n-1} \left((-1)^j p_0(x)^{3^{jk}} + 1 \right)$$
 in our algorithm.

When investigating the fibers of $f_4 \circ \lambda$, if $(f_4 \circ \lambda)(y, U_E) = b$ for some $b \in F$, then (with some easily handled exceptions)

$$y^{3^k} = \frac{sy+1}{y-s}$$

where s is a square root of b^2-1 , and the right-hand side has a Möbius transformation with matrix $\begin{pmatrix} s & 1 \\ 1 & -s \end{pmatrix}$.

One then iterates this n times to get $y^{3^{nk}} = y$ (recall that $y \in U_E \subseteq E = \mathbb{F}_{3^{2n}}$ and k is even) on the left-hand side and a composition of n Möbius transformations with matrices

$$\begin{pmatrix} s^{3^{(n-1)k}} & 1 \\ 1 & -s^{3^{(n-1)k}} \end{pmatrix}, \dots, \begin{pmatrix} s & 1 \\ 1 & -s \end{pmatrix}$$
 on the right-hand side.

Further algebra with these matrices gives a solution for y that involves the product $\prod_{j=0}^{n-1} \left((-1)^j s^{3^{jk}} + 1 \right)$.

Arrange differential analyses of a power function $f(x) = x^d$ over F into increasing levels of specificity. For various levels, we indicate where the result was achieved for the family of exponents of our main result.

(1) A bound on the differential uniformity: finding a B such that $|(\Delta f)^{-1}(\{c\})| \leq B$ for all $c \in F$

- (1) A bound on the differential uniformity: finding a B such that $|(\Delta f)^{-1}(\{c\})| \leq B$ for all $c \in F$
- (2) Differential uniformity: $\max_{c \in F} |(\Delta f)^{-1}(\{c\})|$

- (1) A bound on the differential uniformity: finding a B such that $|(\Delta f)^{-1}(\{c\})| \leq B$ for all $c \in F$
- (2) Differential uniformity: $\max_{c \in F} |(\Delta f)^{-1}(\{c\})|$
- (3) Set of differential multiplicities: $\{|(\Delta f)^{-1}(\{c\})| : c \in F\}$ (Zha–Wang, 2010)

- (1) A bound on the differential uniformity: finding a B such that $|(\Delta f)^{-1}(\{c\})| \leq B$ for all $c \in F$
- (2) Differential uniformity: $\max_{c \in F} |(\Delta f)^{-1}(\{c\})|$
- (3) Set of differential multiplicities: $\{|(\Delta f)^{-1}(\{c\})| : c \in F\}$ (Zha-Wang, 2010)
- (4) Differential spectrum: $[(\Delta f)^{-1}(\{c\})| : c \in F]$ (Tian-Chen, 2017)

- (1) A bound on the differential uniformity: finding a B such that $|(\Delta f)^{-1}(\{c\})| \leq B$ for all $c \in F$
- (2) Differential uniformity: $\max_{c \in F} |(\Delta f)^{-1}(\{c\})|$
- (3) Set of differential multiplicities: $\{|(\Delta f)^{-1}(\{c\})| : c \in F\}$ (Zha-Wang, 2010)
- (4) Differential spectrum: $[|(\Delta f)^{-1}(\{c\})| : c \in F]]$ (Tian-Chen, 2017)
- (5) Individual fiber sizes: an algorithm for finding $|(\Delta f)^{-1}(\{c\})|$ for arbitrary c (K.-O'Connor-Pacheco-Sapozhnikov, 2024)

- (1) A bound on the differential uniformity: finding a B such that $|(\Delta f)^{-1}(\{c\})| \leq B$ for all $c \in F$
- (2) Differential uniformity: $\max_{c \in F} |(\Delta f)^{-1}(\{c\})|$
- (3) Set of differential multiplicities: $\{|(\Delta f)^{-1}(\{c\})| : c \in F\}$ (Zha–Wang, 2010)
- (4) Differential spectrum: $[|(\Delta f)^{-1}(\{c\})| : c \in F]]$ (Tian-Chen, 2017)
- (5) Individual fiber sizes: an algorithm for finding $|(\Delta f)^{-1}(\{c\})|$ for arbitrary c (K.-O'Connor-Pacheco-Sapozhnikov, 2024)
- (6) Individual fibers: an algorithm for finding $(\Delta f)^{-1}(\{c\})$ for arbitrary c (K.-O'Connor-Pacheco-Sapozhnikov, 2024)