Differential analysis through a double cover
using the unit circle in a finite field

Daniel J. Katz!, Kathleen R. O'Connor?,
Kyle Pacheco!, and Yakov Sapozhnikov!+?

IDepartment of Mathematics
California State University, Northridge

2Department of Mathematics and Statistical Science
University of Idaho

Supported by National Science Foundation
Awards 1500856, 1815487 and 2206454

Finite Geometries 2025
Seventh Irsee Conference
Kloster Irsee

02 September 2025



Power functions

Throughout F = Fq = [Fn is a finite field of characteristic p and
order g = p".



Power functions

Throughout F = Fq = [Fn is a finite field of characteristic p and
order g = p".

A power function on F is an f: F — F where there is a positive
integer d such that f(x) = x? for all x € F.



Power functions

Throughout F = Fq = [Fn is a finite field of characteristic p and
order g = p".

A power function on F is an f: F — F where there is a positive
integer d such that f(x) = x? for all x € F.

Our power function f is bijective if and only if gcd(d,q — 1) = 1.
Then we say that d is invertible over F (or that f is a power
permutation) and we let e € Z, with e = d~! (mod g — 1) so
that x — x€ is the inverse function of x — x¢.



Power functions

Throughout F = Fq = [Fn is a finite field of characteristic p and
order g = p".

A power function on F is an f: F — F where there is a positive
integer d such that f(x) = x? for all x € F.

Our power function f is bijective if and only if gcd(d,q — 1) = 1.
Then we say that d is invertible over F (or that f is a power
permutation) and we let e € Z, with e = d~! (mod g — 1) so

that x — x© is the inverse function of x — x¢.

If r € Q4, then we can think of r as an exponent over F if r in
reduced form is di/d> with gcd(dz, g — 1) = 1; then r = di/dz is
regarded as a positive integer d with d = did, * (mod g — 1).



Power functions

Throughout F = Fq = [Fn is a finite field of characteristic p and
order g = p".

A power function on F is an f: F — F where there is a positive
integer d such that f(x) = x? for all x € F.

Our power function f is bijective if and only if gcd(d,q — 1) = 1.
Then we say that d is invertible over F (or that f is a power
permutation) and we let e € Z, with e = d~! (mod g — 1) so

that x — x© is the inverse function of x — x¢.

If r € Q4, then we can think of r as an exponent over F if r in
reduced form is di/d> with gcd(dz, g — 1) = 1; then r = di/dz is
regarded as a positive integer d with d = did, * (mod g — 1).

Cryptographic significance: x — x? is arithmetically easy to
implement and can be used to scramble data in substitution-boxes
in a symmetric cipher.
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Earlier encounter with the unit circle

The Walsh spectrum of a power function measures its correlation
with linear functions (important for linear cryptanalysis).

For the power function f: F — F with f(x) = x9, this amounts to
looking at the character sums

WE 4(a 21/1 — ax)

xeF

for all a € F*, where ¢: (F,+) — C* is the canonical additive
character ¥(x) = exp(27riTr,_-/Fp(x)/p).

Niho's Last Conjecture (1972)

If F =Fym, miseven, and d =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.
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Earlier encounter with the unit circle (continued)

Helleseth—K.—Li (2021) proved Niho's Last Conjecture by showing
that for each a € F, the polynomial

ga(x)=x" —ax* —a®"x3 + 1

has 0, 1, 2, 3, or 5 (not 4, 6, or 7) roots on the unit circle of F

(the unique subgroup of order 2™ 4 1 in F* =T7,,).

Method: organize the roots of ga(x) in F into orbits under a
strange action, where a root lies on the unit circle if and only if it
is in a singleton orbit.

Prove that the total number of orbits is even by calculating a
strange quantity associated with the orbits—involves expressing a
degree 42 symmetric polynomial in seven variables as a sum of 218
products of elementary symmetric polynomials.

Having precisely 4, 6, or 7 singleton orbits is impossible because
the total number of orbits is even.
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Differential multiplicities
Let f: F — F be a function (e.g., the power function f(x) = x9).

For a, b € F, the differential multiplicity of £ with respect to a and
b is the number d¢(a, b) of solutions (x, y) € F? of the system

y—x =a
f(y) — f(x) = b,
or equivalently
df(a, b) = |{x € F: f(x+ a) — f(x) = b}|

= [{x € F: (Aaf)(x) = b}|

= |(2.6) " ({b})],
where A\, is the discrete derivative in direction a, i.e., A;f: F — F
is the function with (A,f)(x) = f(x + a) — f(x).

We do not typically consider a = 0 because Agf is the zero
function.
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Differential spectrum

f: F— Fand A f: F— F with (A f)(x) = f(x + a) — f(x)
differential multiplicity: &¢(a, b) = [(A.f)~1({b})|
The differential spectrum of f is the multiset

[o¢(a,b) : (a,b) € F* x F].

The differential uniformity of f is the largest element of the
differential spectrum

of = of(a, b).
f T (ab)eFexF r(a.b)

Want d¢ as as small as possible to counter differential cryptanalysis.
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f: F— Fand A,f: F— F with (A f)(x) = f(x+ a) — f(x)

differential multiplicity: &¢(a, b) = [(Aaf)~1({b})|
differential uniformity: 6r = max, p)er+xr 9r(a, b)

Perfect nonlinear (PN) or planar function: A,f is a permutation
for every a € F*, so 67 = 1.

A planar function f: F — F yields an affine plane with set of
points F x F and lines L, , = {(x,f(x —a)+ b) : x € F} and
L,={(a,y):y€F}foralla,be F.

PN functions exist only if char(F) is odd; are never permutations.

The next best possible is an almost perfect nonlinear (APN)
function: &f = 2.

There are APN functions in both even and odd characteristics, and
some are permutations.
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For f a power function f(x) =x% on Fand a€ F*and b€ F,
5¢(a,b) = |{x € F: (x + a)? — x9 = b}|
=[{y e F:(y +1)? —y? = b/a%}|
= 6¢(1, b/a%).
So we define the discrete derivative A = Ay with
(Af)(x) = f(x+ 1) — f(x)

and for each ¢ € F, we define the differential multiplicity for
f(x) = x9 over F at c to be

0r(c) = dr(L, ) = (A1) T ({eDl = (AN H({e),
and we define the the reduced differential spectrum of f(x) = x
over F to be the multiset

[5s(c) : c € FI=T(AF) " ({ch)l  c € F,

and if you scale up all the frequencies by |F*|, then you obtain the
differential spectrum of f ([0¢(a, b) : (a,b) € F* x F]).

d
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Reduced differential spectra of APN power functions

The reduced differential spectrum of f(x) = x9 over F is
[(AF)Y({c})|: c € F], so it has |F| = q elements.

Since the fibers (Af)~1({c}) disjointly cover the domain F of Af,
summing the reduced differential spectrum also yields |F| = q.

If we write a reduced differential spectrum as nq[ai1] + - - - + n¢[a¢]
(meaning that it has n; instances of a; for each j), then

t t

an:q and anaj:q,

j=1 j=1
so the average differential multiplicity is 1.
So an APN power function f over F has reduced spectrum
- N - N
qT [0] + N [1] + qT 2],

where V = 0 when if char(F) = 2. When char(F) is odd, /V is odd,
with NV =1 when d is odd, but NV can be larger when d is even.
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Given any c € F, there is a algorithm for determining which
elements lie in (Af)~({c}) using O(n) = O(log q) operations
(where an operation is either one the four field operations of F or
an exponentiation of an element of F to some power).



Permuting fibers

Lemma
Let g: A— B, let o be a permutation of A, and let f = goo.
Then for each b € B we have

F({b}) = o ({b})),

so that the multiset of cardinalities of fibers of f is the same as the
multiset of cardinalities of fibers of g.
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Permuting fibers of power functions with fractional powers

Let f(x) = x? be a power function over F where d — dy/d> for
positive integers di, dy with ged(da, g — 1) = 1.

Let 7: F — F and o: F — F be the permutations with
m(x) = x972 + 1 and o(x) = x%,

Let f = (Af)ortand h=cofhocand B =Fhor.

Hertel and Pott (2008) inspire the transformation to f; and f;, and

x4 —1
A = =1y

xh — 1)
f2(x) Ede _ 13(11

x + 1) — xd)
R e

The multiset of cardinalities of the fibers of f{, f, or f3 is the same
as the multiset of cardinalities of the fibers of Af.
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Permuting fibers of power functions with fractional powers
(continued)

f(x) = x4 with d = di/d> for di,d» € Z with gcd(da, g — 1) =1
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has the same multiset of cardinalities of fibers as Af.
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f(x) = x4 with d = di/d> for di,d» € Z with gcd(da, g — 1) =1

((x+ 1% = xhye
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f3(x) = (0o (Af)o 7 logo )(x) =

has the same multiset of cardinalities of fibers as Af.

Now suppose that char(F) is odd, and let 7: F — F be the
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Substituting x + x~!
char(F) odd, f(x) = x9 with d = dy/d» for d,d> € Z, with
ged(da,g—1)=1

((x+2)% = (x = 2)%)*
(x+2)% = (x—2)%)%

fi(x) =

has the same multiset of cardinalities of fibers as Af.
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Substituting x + x~!
char(F) odd, f(x) = x¢ with d = dy/d> for dy, d> € Z with
ged(da,g—1)=1

((x+2)% = (x = 2)%)*
(x+2)% = (x—2)%)%

fi(x) =

has the same multiset of cardinalities of fibers as Af.

Coulter-Matthews (1997) (and ultimately Dickson) inspire us to
consider an x € F with x + x~! € F and obtain

Xx+24+x D — (x =24 x 1)h)%
fa(x + X_l) - EEX i 2 i X_1;d2 - EX -2 i X_lidzidl
B ((X2 +2x + 1)d1 o (X2 —2x 4+ 1)d1)d2
T (P 2x + 1)% — (x2 — 2x + 1))
(G2 (o 1y
" (e 1 (1)
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Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

f4(X + Xil) = ((X + 1)2d2 N (X )2d2)
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Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

f4(X + Xil) - ((X + 1)2d2 — (X )2d2)

Useful when d; and d» are complicated but 2d; and 2d> are simple

14



Substituting x + x~! (continued)

char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F
((x+12% — (x —1)>H)®

AT = (G 1 (1)

Useful when d; and d» are complicated but 2d; and 2d> are simple

For example, consider our theorem, where the field F is of order 3"
with n > 1 odd, and d = (3" + 1)/(3" + 1) with k nonnegative
and even, and gcd(n, k) = 1.
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Substituting x + x~! (continued)

char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F
((x+12% — (x —1)>H)®

AT = (G 1 (1)

Useful when d; and d» are complicated but 2d; and 2d> are simple

For example, consider our theorem, where the field F is of order 3"
with n > 1 odd, and d = (3" + 1)/(3" + 1) with k nonnegative
and even, and gcd(n, k) = 1.

Then d = di/d> with d; = (3" +1)/2 and db» = (3% +1)/2.
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Substituting x 4+ x~* (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

O+ 1P% = (x— 1)

fa(x +x71) =

Useful when d; and d» are complicated but 2d; and 2d> are simple

For example, consider our theorem, where the field F is of order 3"
with n > 1 odd, and d = (3" + 1)/(3" + 1) with k nonnegative
and even, and gcd(n, k) = 1.

Then d = dy/d» with d; = (3" +1)/2 and dr = (3% +1)/2.

Taking an element like x + 1 to the d>th power is complicated
while taking x 4+ 1 to the (2d>)th power is relatively simple because

(x +1)%% = (x + 1)+ = (x + )¥ (x + 1)
:(X3 +1)(x+1)=x° 3 x L



Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

(Oc+ 1% = (x— 1)

fa(x +x71) =
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Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

fa(x +x71) = ((x + 1)2% — (x — 1)2R)dr

Question: where should x come from to make x + x ! reside in F?
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Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

fa(x +x71) = ((x + 1)2% — (x — 1)2R)dr

Question: where should x come from to make x + x ! reside in F?

But first...if x and y are nonzero elements of some field K then

x—i—x_lzy—i—y_1

15



Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

fa(x +x71) = ((x + 1)2% — (x — 1)2R)dr

Question: where should x come from to make x + x ! reside in F?

But first...if x and y are nonzero elements of some field K then

x—i—x_lzy—i—y_1

(x—v) (1—X1y) =0,

if and only if
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Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

fa(x +x71) = ((x + 1)2% — (x — 1)2R)dr

Question: where should x come from to make x + x ! reside in F?

But first...if x and y are nonzero elements of some field K then

x—i—x_lzy—i—y_1

(x—v) (1—X1y) =0,

which is true if and only if

xe{y,y '}

if and only if
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Substituting x + x~! (continued)
char(F) odd, f(x) = x? with d = dy/d> for di, d» € Z with
ged(da, g — 1) =1, and x is such that x + x~t € F

((x +1)° — (x = 1)2%)%

(Oc+ 1% = (x— 1)

fa(x +x71) =

Question: where should x come from to make x + x ! reside in F?

But first...if x and y are nonzero elements of some field K then

x—i—x_lzy—i—y_1

(x—v) (1—X1y) =0,

which is true if and only if

if and only if

xe{y,y '}
So all nonempty fibers of the map x — x + x~! have two points in
them, except for {1} and {—1}.
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Inspiration from C
Consider how x — x + x~! maps C* into C.
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this map, except for 2 and —2, which have preimages {1} and
{—1}, respectively.



Inspiration from C
Consider how x — x + x~! maps C* into C.

The map is surjective because C is algebraically closed.

So by the previous slide, every element has two preimages under
this map, except for 2 and —2, which have preimages {1} and
{—1}, respectively.

The preimage of the real axis is the union of the punctured real
axis, R*, and the complex unit circle T:

X+ x4+ x71
_1m+1 ™ ) 42

e O
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Inspiration from C
Consider how x — x + x~! maps C* into C.

The map is surjective because C is algebraically closed.

So by the previous slide, every element has two preimages under
this map, except for 2 and —2, which have preimages {1} and
{—1}, respectively.

The preimage of the real axis is the union of the punctured real
axis, R*, and the complex unit circle T:

X+ x4+ x71
_1m+1 ™ ) 42

The disjoint union
RUT={(r,R*):re R }U{(t,T): t €T}

e O

is mapped by (x,S) — x + x~! to give a double cover of R. 16



A double cover of F

E =T is the quadratic extension of F = IF,. The unit circle of
E, denoted Ug, is the unique subgroup of E* of order g + 1:

Up ={x € E*: x9T1 =1}
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A double cover of F

E =Ty is the quadratic extension of F = F,. The unit circle of
E, denoted Ug, is the unique subgroup of E* of order g + 1:

Up ={x € E*: x9T1 =1}

characteristic p

characteristic 0

F R
E C
x — x9 X=X
Use={xeE* xx9=1} | T={xeC*: xx =1}
U Ug R*UT



A double cover of F

E =T is the quadratic extension of F = IF,. The unit circle of
E, denoted Ug, is the unique subgroup of E* of order g + 1:

Up ={x € E*: x9T1 =1}

characteristic p

characteristic 0

F R
E C
x — x9 X=X
Use={xeE* xx9=1} | T={xeC*: xx =1}
U Ug R*UT

Our disjoint union has (¢ — 1) + (g + 1) = 2q elements
FruUeg=A{(a,F"):ae F*}U{(b,Ug): be Ue}.



A double cover of F

E =T is the quadratic extension of F = IF,. The unit circle of
E, denoted Ug, is the unique subgroup of E* of order g + 1:

Up ={x € E*: x9T1 =1}

characteristic p

characteristic 0

F R
E C
x — x9 X=X
Use={xeE* xx9=1} | T={xeC*: xx =1}
U Ug R*UT

Our disjoint union has (¢ — 1) + (g + 1) = 2q elements
FruUeg=A{(a,F"):ae F*}U{(b,Ug): be Ue}.

Then the map A\: A7 L1 Ug — F with A\(x,S) =x+xlisa
double cover of F (i.e., Ais 2-to-1 from F* LI Ur to F).
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A double cover of F

E =T is the quadratic extension of F = IF,. The unit circle of
E, denoted Ug, is the unique subgroup of E* of order g + 1:

Up ={x € E*: x9T1 =1}

characteristic p characteristic 0
F R
E C
x — x9 X=X
Use={xeE* xx9=1} | T={xeC*: xx =1}
F* U Ug R*UT

Our disjoint union has (¢ — 1) + (g + 1) = 2q elements

FruUeg=A{(a,F"):ae F*}U{(b,Ug): be Ue}.
Then the map A\: A7 L1 Ug — F with A\(x,S) =x+xlisa
double cover of F (i.e., Ais 2-to-1 from F* LI Ur to F).
Lemma (fiber doubling)

Ifg: F— F, then |g71({c})| = M for every c € F.



Applying the double cover
If char(F) is odd and f(x) = x9 over F where d = dy/d, for
di,dr € Z4 with gcd(da, g — 1) = 1, then the fibers of Af are half
the size of those of

X + 1)2d1 _ (X _ 1)2d1)d2

(r 17— (x— 1)

(a0 N)(x,5) = fa(x +x1) =

—~|—~
—

18



Applying the double cover
If char(F) is odd and f(x) = x9 over F where d = dy/d, for
di,dr € Z4 with gcd(da, g — 1) = 1, then the fibers of Af are half
the size of those of

C((x + 1)2d1 _ (X _ 1)2d1)d2

) - (X + 1)2d2 _ (X _ 1)2d2)d1'

(oo \)(x,S) = fa(x +x!

—~|—~
—

When o = (37 +1)/(3% + 1) over F =F3s (n> 1 odd, k > 0 even,
ged(k, n) = 1), we have d; = (3" +1)/2 and d» = (3K +1)/2, and
then you get a function that is “simple” enough to analyze:

((x F1)% — (x 1)2"1)"2

(et 27% — (- 1)
(45 4 x+1) = (3 =3 _X+1))d2 B _(x3"+x)d2

(44 x3 4 x4+ 1) — (X3 —x3 —x + 1))d1 ()

18

(fa o A)(x, ) =




Our main result

Theorem (K.—O'Connor—Pacheco-Sapozhnikov, 2024)
Let F =TF3n and let f: F — F with f(x) = x*""/G"1) where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.
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Theorem (K.—O'Connor—Pacheco-Sapozhnikov, 2024)
Let F =TF3n and let f: F — F with f(x) = x*""/G"1) where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Then
for every c € F, we have

1 if c € F3,

-1 _
(AN ({eh)] = {1 + (1 = 3 otherwise,

where 1 is the quadratic character for F: so n(1 — c3k+1) modulo
3 s (1 — c3H1)a-1)/2,
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Let F =TF3n and let f: F — F with f(x) = x*""/G"1) where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Then
for every c € F, we have

’( {C} ‘ if c € F3,
141 = B3 otherwise,

where 1 is the quadratic character for F: so n(1 — c3k+1) modulo
3 s (1 — c3H1)a-1)/2,

So f is an APN function with reduced differential spectrum

3!7

“[o




Our main result

Theorem (K.—O'Connor—Pacheco-Sapozhnikov, 2024)

Let F =TF3n and let f: F — F with f(x) = x*""/G"1) where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Then
for every c € F, we have

‘( {C} ‘ if c € F3,
141 = B3 otherwise,

where 1 is the quadratic character for F: so n(1 — c3k+1) modulo
3 s (1 — c3H1)a-1)/2,

So f is an APN function with reduced differential spectrum

3!7

“[o

Given any c € F, there is a algorithm for determining which
elements lie in (Af)~({c}) using O(n) = O(log q) operations
(where an operation is either one the four field operations of F or
an exponentiation of an element of F to some power).



Theorem (K.—O'Connor—Pacheco—-Sapozhnikov, 2024)

Let F = T30 and let f: F — F with f(x) = x50/ where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.
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Theorem (K.—O'Connor—Pacheco—-Sapozhnikov, 2024)

Let F = T30 and let f: F — F with f(x) = x50/ where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€€ Zy withe(3k —1)/4=1 (mod (q — 1)/2).
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Theorem (K.—O'Connor—Pacheco—Sapozhnikov, 2024)

Let F =F3n and let f: F — F with f(x) = x®" /G0 where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€ € Zy with e(3k —1)/4=1 (mod (q — 1)/2). Let

q+1 3ki1

po(x) = (1 — 3(“3)) ot Px) = (x+1)772+1)" 2 —1)72
q q—1)e

pa(x) = X772 (Po(x)+1) @ Pa() = 2200 £ pals )92 "

pa(x) = pr(p3(x) pa) = 175" (¢ 1)’P0(X +1)

q—3

po(x) = (ps() — ps()72) (ps(x) + ps(x)772) "7 (1= pol0) )

ELESY K
pe(x) = ((x—l)%—(Xle)qTH) 2 ((x71)%7(x+1)%> :

2¢9—3k—3
po(x) =x" 2 pg(pr(x))p7(x) p1o(x) = p1(po(x))
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Theorem (K.—O'Connor—Pacheco—Sapozhnikov, 2024)

Let F =F3n and let f: F — F with f(x) = x®" /G0 where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€ € Zy with e(3k —1)/4=1 (mod (q — 1)/2). Let

q+1 3ki1

pox) = (1 =34 % pr() = (x+ 19724172 —1)972
g2+ 9= 3) (Bg—1)e 5

p2(x) = x (Po(x)+1) 4 p3(x) = pa(x) + p2(x)7~ i

pa(x) = pr(p3(x)) pa) = 175" (¢ 1)’P0(X +1)

po(x) = (ps() — ps()72) (ps(x) + ps(x)772) "7 = (1= s )

q—3

ELESY K
pe(x) = ((x—l)%—(Xle)qTH) 2 ((x71)%7(x+1)%> :

2¢9—3k—3
po(x) =x" 2 pg(pr(x))p7(x) p1o(x) = p1(po(x))

For c € F, consider the fiber (Af)~1({c}) of the derivative of f.
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Theorem (K.—O'Connor—Pacheco—Sapozhnikov, 2024)

Let F =F3n and let f: F — F with f(x) = x®" /G0 where
n> 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€ € Zy with e(3k —1)/4=1 (mod (q — 1)/2). Let

k

po() = (1 — ) pr() = (G + )92+ 1) 27 1972

g2 {a=3)e (Bg—1)e 5
p2(x) = x 4 (p(x)+1) 4 p3(x) = pa(x) + p2(x)7~ i
pa(x) = p1(p3(x)) pa) = 175" (¢ 1)’P0(X +1)
po(x) = (ps() — ps()72) (ps(x) + ps(x)772) "7 = (1= s )

3K41 93
a1 arl\ “ 7 @ k41 2

ps(x) = ((xfl) 2 —(x+1) 2 ) ((xfl) 2 —(x+1) 2 )

2¢9—3k—3
po(x) =x 2 pg(pr(x))p7(x) p10(x) = p1(po(x))

For c € F, consider the fiber (Af)~1({c}) of the derivative of f.
(i) If (1 — 3@ D/2 = 1 then (AF)"({c}) =0
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Theorem (K.—O'Connor—Pacheco—-Sapozhnikov, 2024)

Let F = T30 and let f: F — F with f(x) = x50/ where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€€ Zy withe(3K —1)/4=1 (mod (g —1)/2). Let

k.4 G+l

po(x) = (1— x>t
(a—3)e

q—2+—

p2a(x) = x
pa(x) = p1(p3(x))

)= ()~ %) ot o)
q+1

po(x) = ((x— DT~ (1)

2g—3kK—3
2

po(x) = x pa(p7(x))p7(x)

For ¢ € F, consider the fiber (Af)~1

(i) If (1 — 3 +)a-1)/2 =

2 ELESY i1\ 2
((X—l) 2 —(x+1) 2 )

k
pLi) = ((x+ 172 4+ 1)° 2 — )32
P3(x) = pa(x) + p2(x)7 2 .
() =I5 ((~1po(0¥ +1)

q+1

pr(x) = (1= po(x)?)

p1o(x) = p1(po(x))

({c}) of the derivative of f.
—1, then (Af)71({c}) =0

(i) Otherwise, (Af)~({c}) = {pa(c), pro(c)}.



Theorem (K.—O'Connor—Pacheco—-Sapozhnikov, 2024)

Let F = T30 and let f: F — F with f(x) = x50/ where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€€ Zy withe(3K —1)/4=1 (mod (g —1)/2). Let

k
po(x) = (1 - x3(k“3))qT“ - pr) = ((x+ 1772 4 1) 7T 1)a2
g—3)e g—1)e
pa(x) = X7 (o £ 1) T p3(x) = pa(x) + pa(x)7 2

pi0) = Pl )] () =I5 ((~1po(0¥ +1)
Po(x) = (p5 x) = ps()77 ) (p5 + ps( X)qiz)q72 pr(x) = (1 — Ps(x)2) qTH
g+

341 K K =
ps(x) = <(X—I)T—(x+1)q71) 2 ((X—l)%—(x#—l)%) :

2g—3kK—3
po(x) =x 2 pg(pr(x))pr(x) p1o(x) = p1(po(x))

For c € F, consider the fiber (Af)~1({c}) of the derivative of f.
(i) If (1 — Y @D/2 = _1 then (AF)"1({c}) =0
(i) Otherwise, (Af)~*({c}) = {pa(c), p1o(c)}. If c € F3, then

pa(c) = pio(c) =1 —c, but if c ¢ F3, then ps(c) and pio(c)
are distinct elements of F \ F3.



Theorem (K.—O'Connor—Pacheco—-Sapozhnikov, 2024)

Let F = T30 and let f: F — F with f(x) = x50/ where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€€ Zy withe(3K —1)/4=1 (mod (g —1)/2). Let

k
() = (1 — 3 pr) = ((x+ 1772 4 1) 7T 1)a2

(9—3)e 3) (3g—1)e
= X972 p2(x) + p2(x)972

(o) +1) 7 Pa(x) )
pa(x) = pr(p3(x) () =I5 ((~1po(0¥ +1)
a1

pex) = (ps() = ps(072) (psx) + 507 2) " () = (1 po(x)?)
i

K K =
ps(x) = <(x—1)%—(x+1)q7+1) 2 ((X—l)%—(x#—l)%) :
2g—3kK—3

po(x) =x 2 pg(pr(x))pr(x) p1o(x) = p1(pg(x))

For c € F, consider the fiber (Af)~1({c}) of the derivative of f.
(i) If (1 — Y @D/2 = _1 then (AF)"1({c}) =0
(i) Otherwise, (Af)~*({c}) = {pa(c), p1o(c)}. If c € F3, then
pa(c) = pio(c) =1 —c, but if c ¢ 3, then ps(c) and pio(c)

are distinct elements of F \ F3.
The ps(c) element originates from the F* part of our double cover

and the pip(c) element from the Ug part.



Theorem (K.—O'Connor—Pacheco—-Sapozhnikov, 2024)

Let F = T30 and let f: F — F with f(x) = x50/ where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1. Let
€ € Zy withe(3k —1)/4=1 (mod (q — 1)/2). Let

k
Pol) = S:HJ)W - pr) = (x4 D92 4 1)° 3 192
q g—1)e
pa(x) = X972 (po(x) +1)° 4 () = pa(x) £ palo)"” ’ P
pa(x) = p1(p3(x)) ps() = 10 ( ~1m(” +1)
_ q+1
pe(x) = (Ps (x) — ps(x)972 (Ps )+ ps X)q72)q : ( ) 4
at1 a1y B2 @ #a\
ps(x) = <(x—1) 2 —(x+1) 2) ((X—l) 2 —(x+1) 2 )
2g—3kK—3
po(x) =x 2 pg(pr(x))pr(x) p1o(x) = p1(pg(x))

For c € F, consider the fiber (Af)~1({c}) of the derivative of f.
(i) If (1 — Y @D/2 = _1 then (AF)"1({c}) =0
(i) Otherwise, (Af)~*({c}) = {pa(c), p1o(c)}. If c € F3, then
pa(c) = po(c) =1 —c, but if c ¢ F3, then ps(c) and pio(c)
are distinct elements of F \ F3.
The ps(c) element originates from the F* part of our double cover
and the pip(c) element from the Ug part.



About ps '
Consider ps(x) = HJ’-’:_OI <(—1)fp0(x)3Jk + 1) in our algorithm.
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Consider ps(x) = Hf:_ol <(—1)jp0(x)3jk + 1> in our algorithm.

When investigating the fibers of f 0 \, if (f4 0 A\)(y, Ug) = b for
some b € F, then (with some easily handled exceptions)
y =
y—s
where s is a square root of b> — 1, and the right-hand side has a

. . ) . s 1
Mobius transformation with matrix (1 s>'



About ps

Consider ps(x) = Hf:_ol <(—1)jp0(x)3jk + 1> in our algorithm.

When investigating the fibers of f 0 \, if (f4 0 A\)(y, Ug) = b for
some b € F, then (with some easily handled exceptions)

3« sy+1
y =
y—s
where s is a square root of b> — 1, and the right-hand side has a

. . ) . s 1
Mobius transformation with matrix (1 s>'

One then iterates this n times to get y3"k =y (recall that
y € Ug € E =TF32 and k is even) on the left-hand side and a
composition of n Mobius transformations with matrices

53(/771)1( 1 s 1 . -
1 TN EERE (1 —s> on the right-hand side.
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About ps

Consider ps(x) = Hf:_ol <(—1)jp0(x)3jk + 1> in our algorithm.

When investigating the fibers of f 0 \, if (f4 0 A\)(y, Ug) = b for
some b € F, then (with some easily handled exceptions)

3« sy+1
y =
y—s
where s is a square root of b> — 1, and the right-hand side has a

. . ) . s 1
Mobius transformation with matrix (1 s>'

One then iterates this n times to get y3"k =y (recall that
y € Ug € E =TF32 and k is even) on the left-hand side and a
composition of n Mobius transformations with matrices

53(/771)1( 1 s 1 . -
1 TN EERE (1 —s> on the right-hand side.

Further algebra with these matrices gives a solution for y that
. 1 i ajk
involves the product [/, ((—1)1531 + 1).
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Reflection on analysis of differential properties

Arrange differential analyses of a power function f(x) = x9 over F
into increasing levels of specificity. For various levels, we indicate
where the result was achieved for the family of exponents of our
main result.
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(6) Individual fibers: an algorithm for finding (Af)~1({c}) for
arbitrary ¢
(K.—O'Connor—Pacheco-Sapozhnikov, 2024)
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