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Power functions

Throughout F = Fq = Fpn is a finite field of characteristic p and
order q = pn.

A power function on F is an f : F → F where there is a positive
integer d such that f (x) = xd for all x ∈ F .

Our power function f is bijective if and only if gcd(d , q − 1) = 1.
Then we say that d is invertible over F (or that f is a power
permutation) and we let e ∈ Z+ with e ≡ d−1 (mod q − 1) so
that x 7→ xe is the inverse function of x 7→ xd .

If r ∈ Q+, then we can think of r as an exponent over F if r in
reduced form is d1/d2 with gcd(d2, q − 1) = 1; then r = d1/d2 is
regarded as a positive integer d with d ≡ d1d

−1
2 (mod q − 1).

Cryptographic significance: x 7→ xd is arithmetically easy to
implement and can be used to scramble data in substitution-boxes
in a symmetric cipher.
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Earlier encounter with the unit circle

The Walsh spectrum of a power function measures its correlation
with linear functions (important for linear cryptanalysis).

For the power function f : F → F with f (x) = xd , this amounts to
looking at the character sums

WF ,d(a) =
∑
x∈F

ψ(xd − ax)

for all a ∈ F ∗, where ψ : (F ,+) → C∗ is the canonical additive
character ψ(x) = exp(2πi TrF/Fp

(x)/p).

Niho’s Last Conjecture (1972)

If F = F22m , m is even, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} contains at most 5 distinct values.
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Earlier encounter with the unit circle (continued)
Helleseth–K.–Li (2021) proved Niho’s Last Conjecture by showing
that for each a ∈ F , the polynomial

ga(x) = x7 − ax4 − a2
m
x3 + 1

has 0, 1, 2, 3, or 5 (not 4, 6, or 7) roots on the unit circle of F
(the unique subgroup of order 2m + 1 in F ∗ = F∗

22m).

Method: organize the roots of ga(x) in F into orbits under a
strange action, where a root lies on the unit circle if and only if it
is in a singleton orbit.

Prove that the total number of orbits is even by calculating a
strange quantity associated with the orbits—involves expressing a
degree 42 symmetric polynomial in seven variables as a sum of 218
products of elementary symmetric polynomials.

Having precisely 4, 6, or 7 singleton orbits is impossible because
the total number of orbits is even.
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Differential multiplicities
Let f : F → F be a function (e.g., the power function f (x) = xd).

For a, b ∈ F , the differential multiplicity of f with respect to a and
b is the number δf (a, b) of solutions (x , y) ∈ F 2 of the system

y − x = a

f (y)− f (x) = b,

or equivalently

δf (a, b) = |{x ∈ F : f (x + a)− f (x) = b}|
= |{x ∈ F : (∆af )(x) = b}|
= |(∆af )

−1({b})|,

where ∆a is the discrete derivative in direction a, i.e., ∆af : F → F
is the function with (∆af )(x) = f (x + a)− f (x).

We do not typically consider a = 0 because ∆0f is the zero
function.
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Differential spectrum

f : F → F and ∆af : F → F with (∆af )(x) = f (x + a)− f (x)

differential multiplicity: δf (a, b) = |(∆af )
−1({b})|

The differential spectrum of f is the multiset

[[δf (a, b) : (a, b) ∈ F ∗ × F ]].

The differential uniformity of f is the largest element of the
differential spectrum

δf = max
(a,b)∈F∗×F

δf (a, b).

Want δf as as small as possible to counter differential cryptanalysis.
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Functions with low differential uniformity
f : F → F and ∆af : F → F with (∆af )(x) = f (x + a)− f (x)

differential multiplicity: δf (a, b) = |(∆af )
−1({b})|

differential uniformity: δf = max(a,b)∈F∗×F δf (a, b)

Perfect nonlinear (PN) or planar function: ∆af is a permutation
for every a ∈ F ∗, so δf = 1.

A planar function f : F → F yields an affine plane with set of
points F × F and lines La,b = {(x , f (x − a) + b) : x ∈ F} and
La = {(a, y) : y ∈ F} for all a, b ∈ F .

PN functions exist only if char(F ) is odd; are never permutations.

The next best possible is an almost perfect nonlinear (APN)
function: δf = 2.

There are APN functions in both even and odd characteristics, and
some are permutations.
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Reduced differential spectrum of a power function
For f a power function f (x) = xd on F and a ∈ F ∗ and b ∈ F ,

δf (a, b) = |{x ∈ F : (x + a)d − xd = b}|
= |{y ∈ F : (y + 1)d − yd = b/ad}|
= δf (1, b/a

d).

So we define the discrete derivative ∆ = ∆1 with

(∆f )(x) = f (x + 1)− f (x)

and for each c ∈ F , we define the differential multiplicity for
f (x) = xd over F at c to be

δf (c) = δf (1, c) = |(∆1f )
−1({c})| = |(∆f )−1({c})|,

and we define the the reduced differential spectrum of f (x) = xd

over F to be the multiset

[[δf (c) : c ∈ F ]] = [[|(∆f )−1({c})| : c ∈ F ]],

and if you scale up all the frequencies by |F ∗|, then you obtain the
differential spectrum of f ([[δf (a, b) : (a, b) ∈ F ∗ × F ]]).
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Reduced differential spectra of APN power functions
The reduced differential spectrum of f (x) = xd over F is
[[|(∆f )−1({c})| : c ∈ F ]], so it has |F | = q elements.

Since the fibers (∆f )−1({c}) disjointly cover the domain F of ∆f ,
summing the reduced differential spectrum also yields |F | = q.

If we write a reduced differential spectrum as n1[a1] + · · ·+ nt [at ]
(meaning that it has nj instances of aj for each j), then

t∑
j=1

nj = q and
t∑

j=1

njaj = q,

so the average differential multiplicity is 1.

So an APN power function f over F has reduced spectrum

q − N

2
[0] + N [1] +

q − N

2
[2],

where N = 0 when if char(F ) = 2. When char(F ) is odd, N is odd,
with N = 1 when d is odd, but N can be larger when d is even.
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Our main result

Theorem (K.–O’Connor–Pacheco–Sapozhnikov, 2024)

Let F = F3n and let f : F → F with f (x) = x (3
n+1)/(3k+1), where

n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.

Then
for every c ∈ F , we have∣∣(∆f )−1({c})

∣∣ = {1 if c ∈ F3,

1 + η(1− c3
k+1) otherwise,

where η is the quadratic character for F : so η(1− c3
k+1) modulo

3 is (1− c3
k+1)(q−1)/2.

So f is an APN function with reduced differential spectrum

3n − 3

2
[0] + 3 [1] +

3n − 3

2
[2].

Given any c ∈ F , there is a algorithm for determining which
elements lie in (∆f )−1({c}) using O(n) = O(log q) operations
(where an operation is either one the four field operations of F or
an exponentiation of an element of F to some power).
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Permuting fibers

Lemma
Let g : A → B, let σ be a permutation of A, and let f = g ◦ σ.
Then for each b ∈ B we have

f −1({b}) = σ−1(g−1({b})),

so that the multiset of cardinalities of fibers of f is the same as the
multiset of cardinalities of fibers of g .

Lemma
Let g : A → B, let π be a permutation of B, and let f = π ◦ g.
Then for each b ∈ B we have

f −1({b}) = g−1({π−1(b)}),

so that the multiset of cardinalities of fibers of f is the same as the
multiset of cardinalities of fibers of g .
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Permuting fibers of power functions with fractional powers
Let f (x) = xd be a power function over F where d = d1/d2 for
positive integers d1, d2 with gcd(d2, q − 1) = 1.

Let π : F → F and σ : F → F be the permutations with
π(x) = xq−2 + 1 and σ(x) = xd2 .

Let f1 = (∆f ) ◦ π−1 and f2 = σ ◦ f1 ◦ σ and f3 = f2 ◦ π.

Hertel and Pott (2008) inspire the transformation to f1 and f2, and

f1(x) =
xd − 1

(x − 1)d

f2(x) =
(xd1 − 1)d2

(xd2 − 1)d1

f3(x) =
((x + 1)d1 − xd1)d2

((x + 1)d2 − xd2)d1
.

The multiset of cardinalities of the fibers of f1, f2, or f3 is the same
as the multiset of cardinalities of the fibers of ∆f .
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Permuting fibers of power functions with fractional powers
(continued)

f (x) = xd with d = d1/d2 for d1, d2 ∈ Z+ with gcd(d2, q − 1) = 1

f3(x) = (σ ◦ (∆f ) ◦ π−1 ◦ σ ◦ π)(x) = ((x + 1)d1 − xd1)d2

((x + 1)d2 − xd2)d1

has the same multiset of cardinalities of fibers as ∆f .

Now suppose that char(F ) is odd, and let τ : F → F be the
permutation with τ(x) = (x − 2)/4.

Then the function f4 = f3 ◦ τ has

f4(x) =
((x + 2)d1 − (x − 2)d1)d2

((x + 2)d2 − (x − 2)d2)d1
.

The multiset of cardinalities of the fibers of f4 is the same as the
multiset of cardinalities of the fibers of ∆f .
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Permuting fibers of power functions with fractional powers
(continued)
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Substituting x + x−1

char(F ) odd, f (x) = xd with d = d1/d2 for d1, d2 ∈ Z+ with
gcd(d2, q − 1) = 1

f4(x) =
((x + 2)d1 − (x − 2)d1)d2

((x + 2)d2 − (x − 2)d2)d1
.

has the same multiset of cardinalities of fibers as ∆f .

Coulter-Matthews (1997) (and ultimately Dickson) inspire us to
consider an x ∈ F with x + x−1 ∈ F and obtain

f4(x + x−1) =
((x + 2 + x−1)d1 − (x − 2 + x−1)d1)d2

((x + 2 + x−1)d2 − (x − 2 + x−1)d2)d1

=
((x2 + 2x + 1)d1 − (x2 − 2x + 1)d1)d2

((x2 + 2x + 1)d2 − (x2 − 2x + 1)d2)d1

=
((x + 1)2d1 − (x − 1)2d1)d2

((x + 1)2d2 − (x − 1)2d2)d1
.

13
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Substituting x + x−1 (continued)
char(F ) odd, f (x) = xd with d = d1/d2 for d1, d2 ∈ Z+ with
gcd(d2, q − 1) = 1, and x is such that x + x−1 ∈ F

f4(x + x−1) =
((x + 1)2d1 − (x − 1)2d1)d2

((x + 1)2d2 − (x − 1)2d2)d1
.

Useful when d1 and d2 are complicated but 2d1 and 2d2 are simple

For example, consider our theorem, where the field F is of order 3n

with n > 1 odd, and d = (3n + 1)/(3k + 1) with k nonnegative
and even, and gcd(n, k) = 1.

Then d = d1/d2 with d1 = (3n + 1)/2 and d2 = (3k + 1)/2.

Taking an element like x + 1 to the d2th power is complicated
while taking x + 1 to the (2d2)th power is relatively simple because

(x + 1)2d2 = (x + 1)3
k+1 = (x + 1)3

k
(x + 1)

= (x3
k
+ 1)(x + 1) = x3

k+1 + x3
k
+ x + 1.
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Substituting x + x−1 (continued)
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Substituting x + x−1 (continued)
char(F ) odd, f (x) = xd with d = d1/d2 for d1, d2 ∈ Z+ with
gcd(d2, q − 1) = 1, and x is such that x + x−1 ∈ F

f4(x + x−1) =
((x + 1)2d1 − (x − 1)2d1)d2

((x + 1)2d2 − (x − 1)2d2)d1
.

Question: where should x come from to make x + x−1 reside in F?

But first...if x and y are nonzero elements of some field K then

x + x−1 = y + y−1

if and only if

(x − y)

(
1− 1

xy

)
= 0,

which is true if and only if

x ∈ {y , y−1}.
So all nonempty fibers of the map x 7→ x + x−1 have two points in
them, except for {1} and {−1}.
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Inspiration from C
Consider how x 7→ x + x−1 maps C∗ into C.

The map is surjective because C is algebraically closed.

So by the previous slide, every element has two preimages under
this map, except for 2 and −2, which have preimages {1} and
{−1}, respectively.

The preimage of the real axis is the union of the punctured real
axis, R∗, and the complex unit circle T:

+10−1

x 7→ x + x−1

0−2 +2

The disjoint union

R∗ ⊔ T = {(r ,R∗) : r ∈ R∗} ∪ {(t,T) : t ∈ T}
is mapped by (x ,S) 7→ x + x−1 to give a double cover of R.
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A double cover of F
E = Fq2 is the quadratic extension of F = Fq. The unit circle of
E , denoted UE , is the unique subgroup of E ∗ of order q + 1:

UE = {x ∈ E ∗ : xq+1 = 1}.

characteristic p characteristic 0

F R
E C

x 7→ xq x 7→ x

UE = {x ∈ E ∗ : xxq = 1} T = {x ∈ C∗ : xx = 1}
F ∗ ⊔ UE R∗ ⊔ T

Our disjoint union has (q − 1) + (q + 1) = 2q elements

F ∗ ⊔ UE = {(a,F ∗) : a ∈ F ∗} ∪ {(b,UE ) : b ∈ UE}.
Then the map λ : F ∗ ⊔ UE → F with λ(x ,S) = x + x−1 is a
double cover of F (i.e., λ is 2-to-1 from F ∗ ⊔ UE to F ).

Lemma (fiber doubling)

If g : F → F , then |g−1({c})| = |(g◦λ)−1({c})|
2 for every c ∈ F .
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Applying the double cover
If char(F ) is odd and f (x) = xd over F where d = d1/d2 for
d1, d2 ∈ Z+ with gcd(d2, q − 1) = 1, then the fibers of ∆f are half
the size of those of

(f4 ◦ λ)(x , S) = f4(x + x−1) =
((x + 1)2d1 − (x − 1)2d1)d2

((x + 1)2d2 − (x − 1)2d2)d1
.

When d = (3n +1)/(3k +1) over F = F3n (n > 1 odd, k ≥ 0 even,
gcd(k , n) = 1), we have d1 = (3n + 1)/2 and d2 = (3k + 1)/2, and
then you get a function that is “simple” enough to analyze:

(f4 ◦ λ)(x ,S) =

(
(x + 1)2d1 − (x − 1)2d1

)d2
(
(x + 1)2d2 − (x − 1)2d2

)d1
=

((
x3

n+1 + x3
n
+ x + 1

)
−
(
x3

n+1 − x3
n − x + 1

))d2((
x3k+1 + x3k + x + 1

)
−
(
x3k+1 − x3k − x + 1

))d1 = − (x3
n
+ x)d2

(x3k + x)d1
.

18



Applying the double cover
If char(F ) is odd and f (x) = xd over F where d = d1/d2 for
d1, d2 ∈ Z+ with gcd(d2, q − 1) = 1, then the fibers of ∆f are half
the size of those of

(f4 ◦ λ)(x , S) = f4(x + x−1) =
((x + 1)2d1 − (x − 1)2d1)d2

((x + 1)2d2 − (x − 1)2d2)d1
.

When d = (3n +1)/(3k +1) over F = F3n (n > 1 odd, k ≥ 0 even,
gcd(k , n) = 1), we have d1 = (3n + 1)/2 and d2 = (3k + 1)/2, and
then you get a function that is “simple” enough to analyze:

(f4 ◦ λ)(x ,S) =

(
(x + 1)2d1 − (x − 1)2d1

)d2
(
(x + 1)2d2 − (x − 1)2d2

)d1
=

((
x3

n+1 + x3
n
+ x + 1

)
−
(
x3

n+1 − x3
n − x + 1

))d2((
x3k+1 + x3k + x + 1

)
−
(
x3k+1 − x3k − x + 1

))d1 = − (x3
n
+ x)d2

(x3k + x)d1
.

18



Our main result

Theorem (K.–O’Connor–Pacheco–Sapozhnikov, 2024)

Let F = F3n and let f : F → F with f (x) = x (3
n+1)/(3k+1), where

n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.

Then
for every c ∈ F , we have∣∣(∆f )−1({c})

∣∣ = {1 if c ∈ F3,

1 + η(1− c3
k+1) otherwise,

where η is the quadratic character for F : so η(1− c3
k+1) modulo

3 is (1− c3
k+1)(q−1)/2.

So f is an APN function with reduced differential spectrum

3n − 3

2
[0] + 3 [1] +

3n − 3

2
[2].

Given any c ∈ F , there is a algorithm for determining which
elements lie in (∆f )−1({c}) using O(n) = O(log q) operations
(where an operation is either one the four field operations of F or
an exponentiation of an element of F to some power).
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Theorem (K.–O’Connor–Pacheco–Sapozhnikov, 2024)
Let F = F3n and let f : F → F with f (x) = x (3

n+1)/(3k+1), where
n > 1 is odd, k is nonnegative and even, and gcd(n, k) = 1.

Let
ϵ ∈ Z+ with ϵ(3k − 1)/4 ≡ 1 (mod (q − 1)/2). Let

p0(x) = (1 − x3
k+1)

q+1
4 p1(x) = (((x + 1)q−2 + 1)

3k+1
2 − 1)q−2

p2(x) = x
q−2+

(q−3)ϵ
4 (p0(x) + 1)

(3q−1)ϵ
4 p3(x) = p2(x) + p2(x)

q−2

p6(x) =
(
p5(x) − p5(x)

q−2
) (

p5(x) + p5(x)
q−2

)q−2
p7(x) =

(
1 − p6(x)

2
) q+1

4

p8(x) =

(
(x − 1)

q+1
2 − (x + 1)

q+1
2

) 3k+1
2
(
(x − 1)

3k+1
2 − (x + 1)

3k+1
2

) q−3
2

p9(x) = x
2q−3k−3

2 p8(p7(x))p7(x)

For c ∈ F , consider the fiber (∆f )−1({c}) of the derivative of f.

(i) If (1− c3
k+1)(q−1)/2 = −1, then (∆f )−1({c}) =∅.

(ii) Otherwise, (∆f )−1({c}) = {, }. If c ∈ F3, then == 1− c, but
if c ̸∈ F3, then and are distinct elements of F ∖ F3.

The p4(c) element originates from the F ∗ part of our double cover
and the p10(c) element from the UE part.
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About p5
Consider p5(x) =

∏n−1
j=0

(
(−1)jp0(x)

3jk + 1
)
in our algorithm.

When investigating the fibers of f4 ◦ λ, if (f4 ◦ λ)(y ,UE ) = b for
some b ∈ F , then (with some easily handled exceptions)

y3
k
=

sy + 1

y − s

where s is a square root of b2 − 1, and the right-hand side has a

Möbius transformation with matrix

(
s 1
1 −s

)
.

One then iterates this n times to get y3
nk
= y (recall that

y ∈ UE ⊆ E = F32n and k is even) on the left-hand side and a
composition of n Möbius transformations with matrices(
s3

(n−1)k
1

1 −s3
(n−1)k

)
, . . . ,

(
s 1
1 −s

)
on the right-hand side.

Further algebra with these matrices gives a solution for y that

involves the product
∏n−1

j=0

(
(−1)js3

jk
+ 1
)
.
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Reflection on analysis of differential properties
Arrange differential analyses of a power function f (x) = xd over F
into increasing levels of specificity. For various levels, we indicate
where the result was achieved for the family of exponents of our
main result.

(1) A bound on the differential uniformity: finding a B such that
|(∆f )−1({c})| ≤ B for all c ∈ F

(2) Differential uniformity: maxc∈F |(∆f )−1({c})|
(3) Set of differential multiplicities: {|(∆f )−1({c})| : c ∈ F}

(Zha–Wang, 2010)
(4) Differential spectrum: [[|(∆f )−1({c})| : c ∈ F ]]

(Tian–Chen, 2017)
(5) Individual fiber sizes: an algorithm for finding |(∆f )−1({c})|

for arbitrary c
(K.–O’Connor–Pacheco–Sapozhnikov, 2024)

(6) Individual fibers: an algorithm for finding (∆f )−1({c}) for
arbitrary c
(K.–O’Connor–Pacheco–Sapozhnikov, 2024)
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