

Automorphism groups of algebraic curves in positive characteristic

Maria Montanucci

Technical University of Denmark (DTU)

Finite Geometries Seventh Irsee Conference

31 August - 6 September, 2025



DTU Compute

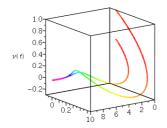
Department of Applied Mathematics and Computer Science

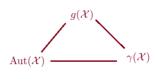
Outline

- Preliminaries
 - Notation and terminology
- ullet Open Problem 1: d-group of automorphisms, $d \neq p$ prime number
 - (Korchmáros-M., 2020)
- Open Problem 2: Automorphism groups of ordinary curves
 - (Korchmáros-M., 2019)
 - (Korchmáros-M.-Speziali, 2018)
 - (M.-Zini, 2018)
 - (M.-Speziali, 2019)
- ullet Open Problem 3: large automorphism groups imply p-rank zero
 - (M., 2023)
- Applications of automorphism groups and future work

Algebraic curves and birational invariants

- K: algebraically closed field of characteristic p
- $\mathcal{X} \subseteq \mathbb{P}^r = \mathbb{P}^r(K)$: projective, geometrically irreducible, non-singular algebraic curve
- Algebraic function field F/K: $F = K(\mathcal{X})$
- $g = g(\mathcal{X}) \geq 0$: genus of $\mathcal{X} \to \operatorname{Aut}(\mathcal{X})$ is infinite, if $g \leq 1$
- $\gamma = \gamma(\mathcal{X})$: p-rank (Hasse-Witt invariant) of $\mathcal{X} \to 0 \leq \gamma \leq g$
- $\operatorname{Aut}(\mathcal{X})$: (full) automorphism group of \mathcal{X} over K





Preliminaries

DTU

Automorphism groups and quotient curves

G:= finite automorphism group of $\mathcal X$

- ullet G acts faithfully on ${\mathcal X}$
- G has a finite number of short orbits $\theta_1, ..., \theta_k$
- ullet \exists curve ${\mathcal Y}$ whose points are the G-orbits of ${\mathcal X}$
- $\mathcal{Y} := \mathcal{X}/G$ is called quotient curve of \mathcal{X} by G
- $N_{\operatorname{Aut}(\mathcal{X})}(G)/G \leq \operatorname{Aut}(\mathcal{Y})$

Riemann-Hurwitz Formula:

$$2g(\mathcal{X}) - 2 = |G|(2g(\mathcal{Y}) - 2) + \text{Diff}(\mathcal{X}|\mathcal{Y})$$

Deuring-Shafarevic Formula: If $|G| = p^h$ then

$$\gamma(\mathcal{X}) - 1 = |G|(\gamma(\mathcal{Y}) - 1) + \sum_{i=1}^{k} (|G| - |\theta_i|)$$

How many automorphisms?

[Schmid (1938), Iwasawa-Tamagawa (1951), Roquette (1952), Rosenlicht (1954), Garcia (1993)]

If $g \geq 2$ then $Aut(\mathcal{X})$ is a finite group

Classical Hurwitz bound (1892)

If p = 0 and $g \ge 2$ then $|\operatorname{Aut}(\mathcal{X})| \le 84(g-1)$

Example: Klein quartic

$$\mathcal{K}: X^3 + Y + XY^3 = 0, \ g(\mathcal{K}) = 3, \ |Aut(\mathcal{K})| = |PSL(2,7)| = 84(3-1)$$

- If $gcd(p, |Aut(\mathcal{X})|) = 1$ then $|Aut(\mathcal{X})| \le 84(g-1)$
- If $gcd(p, |Aut(\mathcal{X})|) > 1$ interesting behaviours can occur

Preliminaries

What if p divides $|Aut(\mathcal{X})|$?

• Hermitian curve $\mathcal{H}: X^{q+1} = Y^q + Y$, $q = p^h$, $|\operatorname{Aut}(\mathcal{H})| = |PGU(3,q)| \ge 16g(\mathcal{H})^4$

Stichtenoth (1973)

If $g=g(\mathcal{X})\geq 2$ and $|\mathrm{Aut}(\mathcal{X})|\geq 16g^4$ then \mathcal{X} is the Hermitian curve \mathcal{H} (up to isomorphism). In particular $\gamma(\mathcal{X})=0$.

Henn (1976)

If $g=g(\mathcal{X})\geq 2$ and $|\mathrm{Aut}(\mathcal{X})|>8g^3$ then $\gamma(\mathcal{X})=0$ and \mathcal{X} is one of the following curves (up to isomorphism):

- $\mathcal{Y}: Y^2 + Y + X^{2^k+1} = 0$, p = 2, $g = 2^{k-1}$ and $|\operatorname{Aut}(\mathcal{Y})| = 2^{2k+1}(2^k + 1)$.
- The Roquette curve $\mathcal{R}: Y^2-(X^q-X)=0$ with p>2, g=(q-1)/2. Also $\operatorname{Aut}(\mathcal{R})/M\cong PSL(2,q), PGL(2,q),$ where $q=p^r$ and |M|=2;
- ullet The Hermitian curve $\mathcal{H}: X^{q+1} = Y^q + Y$, $q = p^h$, p prime.
- The Suzuki curve $S: X^{q_0}(X^q+X)+Y^q+Y=0$, with p=2, $q_0=2^r\geq 2$, $q=2q_0^2$, $g(S)=q_0(q-1)$, and $\operatorname{Aut}(S)=Sz(q)$ (Suzuki group).

The link between $Aut(\mathcal{X})$ and $\gamma(\mathcal{X})$

Theorem (Nakajima, 1987)

- **1** If \mathcal{X} is ordinary, then $|\operatorname{Aut}(\mathcal{X})| \leq 84(g^2 g) \rightarrow$ no extremal examples provided!
- **2** Let S be a p-subgroup of $\operatorname{Aut}(\mathcal{X})$. Then

$$|S| \le \begin{cases} g(\mathcal{X}) - 1, & \text{if } \gamma(\mathcal{X}) = 1, \\ 4(\gamma(\mathcal{X}) - 1), & \text{if } \gamma(\mathcal{X}) \ge 2, \\ \max\{g(\mathcal{X}), 4p/(p-1)^2 g(\mathcal{X})^2\}, & \text{if } \gamma(\mathcal{X}) = 0. \end{cases}$$

- 3 If $|S| > \frac{2p}{p-1}g(\mathcal{X})$ then $\gamma(\mathcal{X}) = 0$.
- Open Problem 1: What if S is a d-group where $d \neq p$ is a prime?
- Open Problem 2: Can Nakajima's bound 1 be improved?
- Open Problem 3: Find an optimal f(g) such that if $|\operatorname{Aut}(\mathcal{X})| > f(g)$ then $\gamma(\mathcal{X}) = 0$ (clearly $f(g) \leq 8g^3$), e.g. can $f(g) \sim g^2$?

What if the classical Hurwitz bound does not hold? Classification results

Let G automorphism group of a curve $\mathcal X$ of genus $g\geq 2$. A consequence of the Riemann-Hurwitz Formula:

- ullet If G has more than 4 short orbits, then $|G| \leq 4(g-1)$
- If $G=G_P$ and p does not divide |G|, then $|G|\leq 4g+2$

Exceptions to the classical Hurwitz bound, for a group |G|>84(g-1), occur only in the following cases:

- \bigcirc \bigcirc has two short orbits and both are non-tame; here $|G| \leq 16g^2$
- **Q** G has three short orbits with precisely one non-tame orbit; here $|G| \leq 24g^2$
- **3** G has a unique short orbit which is non-tame; here $|G| \leq 8g^3$
- $oldsymbol{4}$ G has two short orbits and one short orbit is tame, one non-tame
- \rightarrow IDEA: What about bounds for |G| in Case 3? All the curves in Henn's result satisfy case 4

Open Problem 1: d-group of automorphisms, $d \neq p$ prime number

Our contributions to Open Problem 1

Let G be a d-group of automorphisms of a curve $\mathcal X$ of genus $g\geq 2.$

- **1** How large is |G| with respect to g?
- ${f Q}$ Structure in terms of generators and relations of extremal groups G
- $oldsymbol{3}$ Is the bound sharp? Explicit construction of extremal examples (\mathcal{X},G)

Zomorrodian (1985-1987): the case Char(K) = 0

 $|G| \leq 9(g-1)$ and the bound is sharp if and only if $g-1 = 3^k$ and $g \geq 10$

• (Giulietti-Korchmáros 2010-2017, Stichtenoth 1973) Nakajima extremal curves

Our results:

 \bullet Zomorrodian's result holds also when $\mathrm{Char}(K)=p\neq 0$ and $d\neq 2, p$

For the interesting case d=3:

- ullet the group structure of G is uniquely determined
- two general methods to construct extremal examples (\mathcal{X},G) .

Theorem (Korchmáros-M., 2020)

Let $g(\mathcal{X}) \geq 2$. If G is a d-subgroup of $\operatorname{Aut}(\mathcal{X})$ with $d \neq p$ and d odd then

$$|G| \le \begin{cases} 9(g-1), & \text{if } d = 3, \\ \frac{2d}{d-3}(g-1), & \text{if } d > 3. \end{cases}$$

For d=3 if equality holds then G is not abelian and $g\neq 2$.

Remark: the bound is sharp for $d \ge 5$ (abelian groups)

Fermat curve $\mathcal{F}_d: x^d+y^d+1=0$ has genus (d-1)(d-2)/2, $C_d \times C_d \cong G < \operatorname{Aut}(\mathcal{F}_d)$ of order $d^2=2d(g-1)/(d-3)$:

$$G = \{(x, y) \mapsto (\lambda x, \mu y) \mid \lambda^d = \mu^d = 1\}$$

• known: G abelian then $|G| \le 4g + 4 \implies$ if G is extremal and d = 3 then G is non-abelian (interesting case)

Improvements of the bound for non-abelian groups

Theorem (Korchmáros-M., 2020)

Let G be a non-abelian d-subgroup of $\operatorname{Aut}(\mathcal{X})$. If Z is an order d subgroup of Z(G) such that the quotient curve $\bar{\mathcal{X}}=\mathcal{X}/Z$ has genus at most 1 then $\bar{\mathcal{X}}$ is elliptic and

$$|G| \le \frac{2d}{d-1}(g-1)$$

apart from the case where d=3 and |G|=9(g-1).

- $g(\mathcal{X}/Z) \geq 2 \implies \mathcal{X}/Z$ is still extremal as $G/Z \leq \operatorname{Aut}(\mathcal{X}/Z)$
- "Minimal" extremal examples are those for which $g(\mathcal{X}/Z) \leq 1$
- Interesting case: d = 3 ($d \ge 5$ G is abelian)
- An Extremal 3-Zomorrodian curve is a curve $\mathcal X$ of genus $g \geq 2$ admitting $G \leq \operatorname{Aut}(\mathcal X)$ with |G| = 9(g-1)

Minimal Extremal 3-Zomorrodian curves: structure of G

Proposition (Korchmáros-M., 2020)

Let G be a Sylow 3-subgroup of a curve of an Extremal 3-Zomorrodian curve of elliptic type and genus $g=3^h+1,\ h\geq 3.$ Then

- ullet either $Z(G)\cong C_3$ or $Z(G)\cong C_3 imes C_3$,
- G has 3 short orbits θ, σ, Ω of sizes |G|/3, |G|/3 and |G|/9
- G can be generated by 2 elements $\Longrightarrow [G:\Phi(G)]=9$;
- ullet maximal subgroups of G are normal of index 3. Exactly one of them is either abelian or minimal non-abelian.
- Minimal non-abelian case: Qu Haipeng, Yang Sushan, Xu Mingyao, and An Lijian, Finite p-groups with a minimal non-abelian subgroup of index p (I), J. Algebra 358 (2012), 178-188.
- Abelian case: N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.

Elliptic type: structure of G

Theorem (Korchmáros-M., 2020)

If $\left|Z(G)\right|=3$ then G has no abelian maximal subgroups of index 3 and

- $|G|=3^{2e}$ and $G=\langle s_1,s_2,s|s_1^{3^e}=s_2^{3^{e-1}}=1,s^3=s_1^{\delta 3^{e-1}},[s_1,s]=s_2,[s_2,s]=s_2^{-3}s_1^{-3},[s_2,s_1]=s_1^{3^{e-1}}\rangle$ where $\delta=0,1,2$;
- $|G|=3^{2e+1}$ and $G=\langle s_1,s_2,s|s_1^{3^e}=s_2^{3^e}=1,s^3=s_2^{\delta 3^{e-1}},[s_1,s]=s_2,[s_2,s]=s_2^{-3}s_1^{-3},[s_2,s_1]=s_2^{3^{e-1}}\rangle$ where $\delta=0,1,2$.

If |Z(G)| = 9 then G has no abelian subgroups of index 3 and

- $G = \langle s_1, s_2, \beta, x | s_1^{3^n} = s_2^{3^{n-1}} = x^3 = 1, \beta^3 = x^2, [s_1, \beta] = s_2, [s_2, \beta] = s_2^{-3} s_1^{-3}, [s_1, s_2] = x, [x, s_1] = [x, s_2] = 1 \rangle$, for $|G| = 3^{2n+1}$, $e \ge 3$;
- $G = \langle s_1, s_2, \beta, x | s_1^{3^n} = s_2^{3^n} = x^3 = 1, \beta^3 = x^2, [s_1, \beta] = s_2, [s_2, \beta] = s_2^{-3} s_1^{-3}, [s_1, s_2] = x, [x, s_1] = [x, s_2] = 1 \rangle$, for $|G| = 3^{2n+2}, n \ge 2$.

Can we construct infinite families of Extremal 3-Zomorrodian curves?

Open Problem 1: d-group of automorphisms, $d \neq p$ prime number

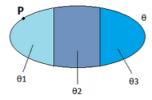
Construction of Elliptic type Extremal 3-Zomorrodian curves for every $(g, |G|) = (3^h + 1, 3^{h+2})$

- Elliptic curve $\mathcal{E}: X^3 + Y^3 + Z^3 = 0$ ($J(\mathcal{E}) =$ Jacobian group)
- P=(-1,0,1) is an inflection point of \mathcal{E} , and $\bar{\alpha}:(X,Y,Z)\mapsto (X,\epsilon Y,Z)$ with $\epsilon^3=1$ primitive, is an order 3 automorphism of \mathcal{E} fixing P
- $\bar{\alpha}$ has two more fixed points on \mathcal{E} , namely $P_1=(-\epsilon,0,1)$ and $P_2=(-\epsilon^2,0,1)$ $\implies \bar{\alpha} \not\in J(\mathcal{E})$

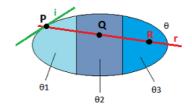
Theorem (Korchmáros-M. 2020)

A 3-group \bar{G} of automorphisms of $\mathcal E$ can be written up to conjugation as $\bar{G}=\bar{H}\rtimes\langle\bar{\alpha}\rangle=\bar{H}\rtimes\bar{G}_P$ where $\bar{H}=\bar{G}\cap J(\mathcal E)$ and \bar{G} can be generated by 2 elements

- let $\bar{G}=\bar{H} \rtimes \langle \bar{\alpha} \rangle \leq {\rm Aut}(\mathcal{E})$ with $|\bar{G}|=3^{h+1}$, $h\geq 2$
- • Since \bar{G} can be generated by 2 elements, $\bar{G}/\Phi(\bar{G})$ is elementary abelian of order 9
- \bullet since \bar{H} is maximal, $\Phi(\bar{G}) \leq \bar{H}$
- $\theta_1 = \Phi(\bar{G})$ —orbit containing $P \implies |\theta_1| = 3^{h-1}$
- $\Phi(\bar{G})$ is a normal subgroup of \bar{H} , the \bar{H} -orbit θ containing P is partitioned into three $\Phi(\bar{G})$ -orbits which may be parameterized by $\Phi(\bar{G})$ together with its two cosets in \bar{H}

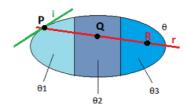


• (Korchmáros-Nagy-Pace, 2014) If $Q \in \theta_2$ then the line through P and Q meets $\mathcal E$ in a point $R \in \theta_3$



- r has homogenous equation mX Y + mZ = 0 for some $m \in K$
- (inflectional) tangent to $\mathcal E$ at P is i:X+Z=0

• in $K(\mathcal{E})=K(x,y)$ with $x^3+y^3+1=0$ define $t=\frac{mx-y+m}{x+1}$ then (t)=Q+R-2P



• let $w=\prod_{f\in\Phi(\bar{G})}f(t)$. Then $(w)=-2\theta_1+\theta_2+\theta_3$ and $\bar{g}\in\bar{G}$ acts on $\{\theta_1,\theta_2,\theta_3\}.$

$$\begin{cases} (1) \ \bar{g}(w)/w = \lambda, \ for \ some \ \lambda \in K \\ (2) \ (\bar{g}(w)/w) = -2\theta_1 + \theta_2 + \theta_3 - (-2\theta_3 + \theta_1 + \theta_2) = -3\theta_1 + 3\theta_3 \end{cases}$$

In any case

(key property) $\bar{g}(w)/w = v^3$, for some $v \in K(x,y)$

We define

$$\mathcal{X}: \begin{cases} x^3 + y^3 + 1 = 0, \\ z^3 = w \end{cases} \implies g(\mathcal{X}) = 3^h + 1$$

- Also every $\bar{g}\in \bar{G}$ can be lifted in three ways creating a group $G\leq {\rm Aut}(\mathcal{X})$ of order $3|\bar{G}|=3^{h+2}=9(g-1)$
- Indeed for $\bar{g} \in \bar{G}$ we define,

$$g:(x,y,z)\mapsto (\bar{g}(x),\bar{g}(y),vz),$$

where $v^3 = \bar{g}(w)/w$. Then

$$g(z^3) = v^3 z^3 = \frac{\bar{g}(w)}{w} w = \bar{g}(w) = g(w) \implies \mathcal{X} \text{ is preserved!}$$

Open Problem 1: d-group of automorphisms, $d \neq p$ prime number

DTU

Explicit examples using MAGMA

• g = 10, |G| = 81

$$\begin{cases} x^3 + y^3 + 1 = 0; \\ z^3 = \frac{x}{y^2}. \end{cases}$$

• g = 28, |G| = 729

$$\begin{cases} x^3 + y^3 + 1 = 0; \\ z^3 = (y^{18} + 3y^{15} + 52y^{12} + 26y^9 + 52y^6 + 3y^3 + 1)/(y^{17} + 3y^{14} + 5y^{11} + 5y^8 + 3y^5 + y^2)x. \end{cases}$$

• g = 82, |G| = 2187

$$\begin{cases} x^3 + y^3 + 1 = 0; \\ z^3 = (y^{54} + 9y^{51} + 151y^{48} + 191y^{45} + 243y^{42} + 21y^{39} + 86y^{36} \\ +184y^{33} + y^{30} + 153y^{27} + y^{24} + 184y^{21} + 86y^{18} + 21y^{15} \\ +243y^{12} + 191y^9 + 151y^6 + 9y^3 + 1)/(y^{53} + 9y^{50} + 261y^{47} \\ +258y^{44} + 138y^{41} + 146y^{38} + 206y^{35} + 24y^{32} + 12y^{29} + 12y^{26} \\ +24y^{23} + 206y^{20} + 146y^{17} + 138y^{14} + 258y^{11} \\ +261y^8 + 9y^5 + y^2)x. \end{cases}$$

Open Problem 2: Automorphism groups of ordinary curves

Ordinary algebraic curves with many automorphisms

$$\mathcal{X}$$
 is ordinary if $g(\mathcal{X}) = \gamma(\mathcal{X})$

• Nakajima (1987): $|Aut(\mathcal{X})| \le 84(g(\mathcal{X})-1)g(\mathcal{X}) \to \text{can this bound be improved?}$

Theorem (Korchmáros-M., 2019)

Let \mathcal{X} be an ordinary curve of genus $g(\mathcal{X}) \geq 2$ defined over an algebraically closed field of **odd characteristic** p. If $G \leq Aut(\mathcal{X})$ is **solvable** then

$$|G| \le 34(g(\mathcal{X}) + 1)^{3/2} < 68\sqrt{2}g(\mathcal{X})^{3/2}$$

- This is the best bound known for automorphism groups of ordinary curves
- (Korchmáros-M.-Speziali, 2018) Extremal example up to the constant term: a generalized Artin-Schreier extension of the Artin-Mumford curve
- (M.-Zini, 2018) An infinite family of extrermal examples: Generalized Artin-Mumford curves
- Solution of the second of the s

Open Problem 2: Automorphism groups of ordinary curves

DTU

Why is the hypothesis G solvable relevant/useful?

- First observation: if $g(\mathcal{X})=2$ then $|G|\leq 48$ (known), so the statement is true. We assume $g(\mathcal{X})\geq 3$.
- By contradiction: $(G,g(\mathcal{X}))$ is a **minimal counterexample**, that is, $|G|>34(g(\mathcal{X})+1)^{3/2}$ and if $g(\mathcal{Y})< g(\mathcal{X})$, \mathcal{Y} is ordinary and $H\leq Aut(\mathcal{Y})$ is solvable then $|H|\leq 34(g(\mathcal{Y})+1)^{3/2}$
- ullet Since G is solvable, it admits a minimal normal subgroup S which is elementary abelian
- Two cases are treated separately: either S is a p-group, or it has order prime to p.
- In both cases we try to construct a quotient curve which is still ordinary and gives a contradiction to the minimality of $(G,g(\mathcal{X}))$.

Open Problem 2: Automorphism groups of ordinary curves

DTU

Large automorphism groups of ordinary curves

Natural questions:

- What if p=2 and G is solvable?
- What if p is odd but G is not solvable?

Theorem (M.-Speziali, 2019)

Let $\mathcal X$ be an ordinary curve of even genus $g(\mathcal X) \geq 2$ defined over an algebraically closed field of odd characteristic 2. If $G \leq Aut(\mathcal X)$ is solvable then

$$|G| \le 35(g(\mathcal{X}) + 1)^{3/2}$$

Theorem (M.-Speziali, 2019)

Let \mathcal{X} be an ordinary curve of genus $g(\mathcal{X}) \geq 2$ defined over an algebraically closed field of characteristic p. If $G \leq Aut(\mathcal{X})$ is not solvable then

$$|G| \le 822g(\mathcal{X})^{7/4}$$

• A general and sharp refinement of Nakajima's bound is still an open problem!

Open Problem 3: large automorphism groups imply *p*-rank zero

DTU

The third open problem: improving Henn's result

If $G \leq \operatorname{Aut}(\mathcal{X})$ is such that $|G| > 84(g(\mathcal{X}) - 1)$ then one of the following occurs:

- $oldsymbol{0}$ G has two short orbits and both are non-tame; here $|G| \leq 16g^2$
- **Q** G has three short orbits with precisely one non-tame orbit; here $|G| \leq 24g^2$
- **3** G has a unique short orbit which is non-tame; here $|G| \leq 8g^3$
- **4** G has two short orbits and one short orbit is tame, one non-tame (if $|G| \ge 8g^3$ then G is known and $\gamma(\mathcal{X}) = 0$).

Open Problem 3

Is it possible to find a (optimal) function f(g) such that the existence of an automorphism group G of $\mathcal X$ with |G|>f(g) implies that $\mathcal X$ has p-rank zero?

- we already see that if $|Aut(\mathcal{X})| > 24g^2$ then either Case 3 or 4 occurs.
- \longrightarrow Natural idea: improve the bounds in 3 and/or 4 to obtain (up to finite exceptions) a function $f(g)=cg^2$ for some constant c

The result: An improvement of the Henn's result, Case 3

Theorem (M., 2023)

Let $G \leq Aut(\mathcal{X})$, where $g = g(\mathcal{X}) \geq 2$ and \mathcal{X} is defined over an algebraically closed field of characteristic p > 0.

- **1** If G satisfies Case 3 then $|G| \leq 336g(\mathcal{X})^2$.
- 2 If $|G| \geq 60g^2$ and Case 3 is satisfied than $\gamma(\mathcal{X})$ is positive and congruent to zero modulo p.
- § If $|G| \geq 900g^2$ then Case 4 is satisfied. If $\gamma(\mathcal{X}) \neq 0$ then $g(\mathcal{X})$ is odd. Furthermore, if for $P, R \in O_1$ (non-tame short orbit) one has $g(\mathcal{X}/G_P^{(1)}) = 0$ and $G_{P,R}$ is either a p-group or a prime to p group then $\gamma(\mathcal{X}) = 0$.

Work in progress: Is it true that if $|G| \ge 900g^2$ then $\gamma(\mathcal{X}) = 0$?

Sketch of the proof of the first item

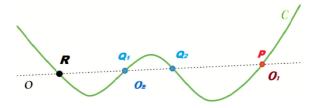
- By contradiction $|G| > 336g^2$
- Let $O := P^G$ be the unique short orbit of G
- [Case 1: $O = \{P\}$] Thus, $G = G_P$. Let $\mathcal{X}_1 := \mathcal{X}/G_P^{(1)}$
- If \mathcal{X}_1 is not rational $\longrightarrow |G| = |G_P| = |G_P^{(1)} \rtimes H| \le g(4g+2) < 5g^2$, a contradiction
- Let \mathcal{X}_1 be rational. Thus, $G_P=G_P^{(1)}\rtimes H.$ If $\alpha\in H$ then α induces an automorphism α' on \mathcal{X}_1
- Since every automorphism of a rational function field whose order is prime to p has exactly 2 fixed places $\to \alpha'$ fixes a place $Q \neq P$
- This implies that Q^G is short and $Q^G \neq O$, a contradiction
- ullet This shows that if $G=G_P$ and Case 3 is satisfied then $|G|<5g^2$

Open Problem 3: large automorphism groups imply *p*-rank zero

DTU

Sketch of the proof of the first item

- [Case 2: $O \supset \{P\}$]
- $g(\mathcal{X}/G_P)=0$ and either $\gamma(\mathcal{X})=0$ or $\gamma(\mathcal{X})>0$ and G_P , $G_P^{(1)}$ have the same two (non-tame) short orbits
- First aim: To prove that the case $\gamma = \gamma(\mathcal{X}) > 0$ is impossible
- ullet If $\gamma>0$ then G_P has 2 short orbits $O_1=\{P\}$ and O_2
- $\bullet O = \{P\} \cup O_2$
- ullet Since G_P acts transitively on $O_2=O\setminus\{P\}\longrightarrow G$ acts 2-transitively on O
- \bullet Idea: Use the complete list of finite 2-transitive groups to exclude the case $\gamma>0$
- ullet Second aim: the case $\gamma=0$ is not possible from the Deuring-Shafarevic formula



Examples: Curves satisfying case 4

Example 1: GK Curve:

$$C_n: Y^{n^3+1} + (X^n + X)(\sum_{i=0}^n (-1)^{i+1} X^{i(n-1)})^{n+1}) = 0$$

$$|Aut(\mathcal{C}_n)| = (n^3 + 1)n^3(n - 1) \sim 4g^2$$

• Example 2: Skabelund curves

$$\tilde{S}: \begin{cases} y^q + y = x^{q_0}(x^q + x), \\ t^m = x^q + x \end{cases}$$

where
$$q = 2q_0^2 = 2^{2s+1}$$
 and $m = q - 2q_0 + 1$

1 (Giulietti-M.-Quoos-Zini, 2017)
$$|Aut(\tilde{S})| = m(q^2 + 1)q^2(q - 1) \sim 4g^2$$

Applications of automorphism groups and future work

Automorphism groups as a tool: classifications and constructions

- Coding theory:
 - (Bartoli-M.-Quoos, 2021) Locally recoverable codes (LRC) from curves of genus $g \geq 1$
 - (Bartoli-M.-Zini, 2021) Construction of self-orthogonal AG codes (quantum codes)
- Classification of maximal curves
 - (Bartoli-M.-Torres, 2021) Classification of \mathbb{F}_{p^2} -maximal curves with many automorphisms
- Construction of maximal curves
 - (Giulietti-Kawakita-Lia-M., 2021) Construction of maximal curves of low genus (Kani-Rosen)
 - (Beelen-M.-Niemann-Quoos, 2025) A family of non-isomorphic maximal curves
 - (Beelen-Drue-M.-Zini, 2025) New maximal function fields (as subcovers of the BM maximal curves)

Applications of automorphism groups and future work

What's next? Some possible interesting questions

- Find a sharp bound for non-solvable automorphism groups of ordinary curves
- Link between automorphism groups and *a*-number
- \bullet For p-rank zero complete the proof $f(g)\sim g^2$
- Classification results for extremal ordinary curves
- Classify maximal curves based on their automorphisms

Thank you

Maria Montanucci

Department of Applied Mathematics and Computer Science Technical University of Denmark (DTU)

Building 303B, Room 150 2800 Kgs. Lyngby, Denmark marimo@dtu.dk