Bent functions - five decades later

Enes Pasalic

University of Primorska, Koper, Slovenia Joint work with S. Kudin, A. Polujan and F. Zhang

IRSEE 2025, September 2025

Summary of the talk

• Bent functions and their applications

• Primary classes of bent functions

ullet Modifying the ${\mathcal M}$ -class

ullet ${\cal M}$ -subspaces in the design of bent functions, 4-concatenation

ullet Bent functions in the \mathcal{GMM} class

Concluding remarks

Boolean functions

• Boolean mapping $f: \mathbb{F}_2^n \to \mathbb{F}_2$, $\mathbb{F}_2 = \{0,1\}$. All such f in \mathfrak{B}_n .

Definition

The *truth table* of f - evaluation of f for all possible inputs.

<i>X</i> ₃	<i>x</i> ₂	<i>x</i> ₁	f(x)	$f(x) \oplus x_1$	$W_f(a)$
0	0	0	0	0	0
0	0	1	0	1	4
0	1	0	0	0	0
0	1	1	1	0	-4
1	0	0	1	1	4
1	0	1	1	0	0
1	1	0	0	0	4
1	1	1	1	0	0

The truth table gives $f(x_1, x_2, x_3) = x_1x_2 \oplus x_2x_3 \oplus x_3$, $\deg(f) = 2$.

Walsh transform and research complexity

• Walsh (Fourier) transform for $f: \mathbb{F}_2^n \to \mathbb{F}_2$ defined by

$$W_f(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus a \cdot x}; \quad a \in \mathbb{F}_2^n; \quad a \cdot x = a_1 x_1 \oplus \cdots \oplus a_n x_n.$$

- Parseval's equality: $\sum_{a \in \mathbb{F}_2^n} W_f(a)^2 = 2^{2n}$, for any $f \in \mathfrak{B}_n$!
- Measures the Hamming distance between f and linear functions $a \cdot x$ (linear cryptanalysis); covering radius of 1st order Reed-Muller code
- COMPLEXITY: The space too large 2²ⁿ to search for suitable ones to be used in (symmetric-key) cryptography
- The research complexity comes from different cryptographic requests: nonlinearity, alg. degree, resiliency, higher order nonl. ...

Walsh transform and research complexity

• Walsh (Fourier) transform for $f: \mathbb{F}_2^n \to \mathbb{F}_2$ defined by

$$W_f(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus a \cdot x}; \quad a \in \mathbb{F}_2^n; \quad a \cdot x = a_1 x_1 \oplus \cdots \oplus a_n x_n.$$

- Parseval's equality: $\sum_{a \in \mathbb{F}_2^n} W_f(a)^2 = 2^{2n}$, for any $f \in \mathfrak{B}_n$!
- Measures the Hamming distance between f and linear functions $a \cdot x$ (linear cryptanalysis); covering radius of 1st order Reed-Muller code
- COMPLEXITY: The space too large 2²ⁿ to search for suitable ones to be used in (symmetric-key) cryptography
- The research complexity comes from different cryptographic requests: nonlinearity, alg. degree, resiliency, higher order nonl. ...

Walsh transform and research complexity

• Walsh (Fourier) transform for $f: \mathbb{F}_2^n \to \mathbb{F}_2$ defined by

$$W_f(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus a \cdot x}; \quad a \in \mathbb{F}_2^n; \quad a \cdot x = a_1 x_1 \oplus \cdots \oplus a_n x_n.$$

- Parseval's equality: $\sum_{a \in \mathbb{F}_2^n} W_f(a)^2 = 2^{2n}$, for any $f \in \mathfrak{B}_n$!
- Measures the Hamming distance between f and linear functions $a \cdot x$ (linear cryptanalysis); covering radius of 1st order Reed-Muller code
- **COMPLEXITY:** The space too large 2^{2^n} to search for suitable ones to be used in (symmetric-key) cryptography
- The research complexity comes from different cryptographic requests: nonlinearity, alg. degree, resiliency, higher order nonl. ...

Bent functions - perfect combinatorial objects

Why perfect ??

- Walsh **spectra** is **uniform** $W_f \in \{\pm 2^{\frac{n}{2}}\}$ for bent $f \in \mathfrak{B}_n$, for even n only, thus **highest nonlinearity** (distance to affine functions) !!
- Take a **derivative** $D_a f(x) := f(x \oplus a) \oplus f(x)$ for any nonzero a, then $D_a f(x)$ is a **balanced** function (#0 = #1 in the truth table)!
- Given f, its Cayley graph $((u, v) \in E_f | FF | f(u \oplus v) = 1)$ is strongly regular (SRG) !! ...

Applications ??

- cryptography
- spread spectrum communications, sequences
- coding theory
- correspondence to (relative) difference sets, design theory

Bent functions - perfect combinatorial objects

Why perfect ??

- Walsh **spectra** is **uniform** $W_f \in \{\pm 2^{\frac{n}{2}}\}$ for bent $f \in \mathfrak{B}_n$, for even n only, thus **highest nonlinearity** (distance to affine functions)!!
- Take a **derivative** $D_a f(x) := f(x \oplus a) \oplus f(x)$ for any nonzero a, then $D_a f(x)$ is a **balanced** function (#0 = #1 in the truth table)!
- Given f, its Cayley graph $((u, v) \in E_f | FF | f(u \oplus v) = 1)$ is strongly regular (SRG) !! ...

Applications ??

- cryptography
- spread spectrum communications, sequences
- coding theory
- correspondence to (relative) difference sets, design theory

Difference sets of 2-abelian group $G = \mathbb{Z}_2^{2m}$

Combinatorial structure of additive 2-abelian group $G = \mathbb{Z}_2^{2m}$, with n = 2m.

- In general, a k-subset D of a group G is a (v, k, λ) difference set, if the following holds:
 - |G| = v; |D| = k
 - g = d d' has exactly λ solutions $d, d' \in D$ if $g \neq 0$.
- **FACT:** Only difference sets in $\mathbb{Z}_2^{2m} = \mathbb{F}_2^{2m} = G$ have parameters

$$(2^{2m}, |D| = 2^{2m-1} \pm 2^{m-1}, \lambda = 2^{2m-2} \pm 2^{m-1}).$$

EXAMPLE: For n = 2m = 4 difference sets of the form (16, 6, 2) exist.

HOW: Take $D = \{x : f(x) = 1\}$ of a (necessarily) **bent function** as in the next example ! E.g. 0001 = 1010 + 1011 (and vice versa)

Difference sets of 2-abelian group $G = \mathbb{Z}_2^{2m}$

Combinatorial structure of additive 2-abelian group $G = \mathbb{Z}_2^{2m}$, with n = 2m.

- In general, a k-subset D of a group G is a (v, k, λ) difference set, if the following holds:
 - |G| = v; |D| = k
 - g = d d' has exactly λ solutions $d, d' \in D$ if $g \neq 0$.
- **FACT:** Only difference sets in $\mathbb{Z}_2^{2m} = \mathbb{F}_2^{2m} = G$ have parameters

$$(2^{2m}, |D| = 2^{2m-1} \pm 2^{m-1}, \lambda = 2^{2m-2} \pm 2^{m-1}).$$

EXAMPLE: For n = 2m = 4 difference sets of the form (16, 6, 2) exist

HOW: Take $D = \{x : f(x) = 1\}$ of a (necessarily) **bent function** as in the next example ! E.g. 0001 = 1010 + 1011 (and vice versa)

Difference sets of 2-abelian group $G = \mathbb{Z}_2^{2m}$

Combinatorial structure of additive 2-abelian group $G = \mathbb{Z}_2^{2m}$, with n = 2m.

- In general, a k-subset D of a group G is a (v, k, λ) difference set, if the following holds:
 - |G| = v; |D| = k
 - g = d d' has exactly λ solutions $d, d' \in D$ if $g \neq 0$.
- **FACT:** Only difference sets in $\mathbb{Z}_2^{2m} = \mathbb{F}_2^{2m} = G$ have parameters

$$(2^{2m}, |D| = 2^{2m-1} \pm 2^{m-1}, \lambda = 2^{2m-2} \pm 2^{m-1}).$$

EXAMPLE: For n = 2m = 4 difference sets of the form (16, 6, 2) exist.

HOW: Take $D = \{x : f(x) = 1\}$ of a (necessarily) **bent function** as in the next example ! E.g. 0001 = 1010 + 1011 (and vice versa)

Difference set - an example

• Example $f(x, y) = x \cdot y = x_1y_1 \oplus x_2y_2$, for $x = (x_1, x_2)$, $y = (y_1, y_2)$.

<i>y</i> ₂	<i>y</i> ₁	<i>x</i> ₂	<i>x</i> ₁	f(x,y)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Primary classes of bent functions - ${\cal M}$ class

• It turns out that for $n \le 6$, n is even, all bent functions are in the (completed) Maiorana-McFarland (\mathcal{M}) class given by

$$f(x,y) = x \cdot \pi(y) + g(y) \quad x, y \in \mathbb{F}_2^{n/2},$$

where π is a **permutation** on $\mathbb{F}_2^{n/2}$ and $g \in \mathfrak{B}_{n/2}$ arbitrary Boolean.

- For any fixed y = a, $f(x, a) = x \cdot \pi(a) + g(a)$ is affine in x.
- Introduced in 1973, and Dillon showed in 1976 that $f \in \mathcal{M}^{\#}$ IFF \exists lin. subspace V with dim(V) = n/2 s. t. for all $a, b \in V$:

$$D_a D_b f(x) = f(x) + f(x+a) + f(x+b) + f(x+a+b) = 0, \ \forall x \in \mathbb{F}_2^r$$

EA-equivalence provides completed class M#:

$$\mathcal{M}^{\#} = \{ f(Ax+b) + c \cdot x + d : f \in \mathcal{M}, A \in GL(n, \mathbb{F}_2), b, c \in \mathbb{F}_2^n, d \in \mathbb{F}_2 \}.$$

Primary classes of bent functions - ${\cal M}$ class

• It turns out that for $n \le 6$, n is even, all bent functions are in the (completed) Maiorana-McFarland (\mathcal{M}) class given by

$$f(x,y) = x \cdot \pi(y) + g(y)$$
 $x, y \in \mathbb{F}_2^{n/2}$,

where π is a **permutation** on $\mathbb{F}_2^{n/2}$ and $g \in \mathfrak{B}_{n/2}$ arbitrary Boolean.

- For any fixed y = a, $f(x, a) = x \cdot \pi(a) + g(a)$ is affine in x.
- Introduced in 1973, and Dillon showed in 1976 that $f \in \mathcal{M}^{\#}$ IFF \exists lin. subspace V with dim(V) = n/2 s. t. for all $a, b \in V$:

$$D_a D_b f(x) = f(x) + f(x+a) + f(x+b) + f(x+a+b) = 0, \ \forall x \in \mathbb{F}_2^n.$$

EA-equivalence provides completed class M[#]

$$\mathcal{M}^{\#} = \{ f(Ax+b) + c \cdot x + d : f \in \mathcal{M}, A \in GL(n, \mathbb{F}_2), b, c \in \mathbb{F}_2^n, d \in \mathbb{F}_2 \}$$

Primary classes of bent functions - ${\cal M}$ class

• It turns out that for $n \le 6$, n is even, all bent functions are in the (completed) Maiorana-McFarland (\mathcal{M}) class given by

$$f(x,y) = x \cdot \pi(y) + g(y) \quad x, y \in \mathbb{F}_2^{n/2},$$

where π is a **permutation** on $\mathbb{F}_2^{n/2}$ and $g \in \mathfrak{B}_{n/2}$ arbitrary Boolean.

- For any fixed y = a, $f(x, a) = x \cdot \pi(a) + g(a)$ is affine in x.
- Introduced in 1973, and Dillon showed in 1976 that $f \in \mathcal{M}^{\#}$ IFF \exists lin. subspace V with dim(V) = n/2 s. t. for all $a, b \in V$:

$$D_a D_b f(x) = f(x) + f(x+a) + f(x+b) + f(x+a+b) = 0, \ \forall x \in \mathbb{F}_2^n.$$

• EA-equivalence provides **completed class** $\mathcal{M}^{\#}$:

$$\mathcal{M}^{\#} = \{ f(Ax+b) + c \cdot x + d : f \in \mathcal{M}, A \in GL(n, \mathbb{F}_2), b, c \in \mathbb{F}_2^n, d \in \mathbb{F}_2 \}.$$

Showing that $V=\overline{\mathbb{F}_2^{n/2} imes\{0_{n/2}\}}$ is an \mathcal{M} -subspace

- Any V s.t. $D_aD_bf=0$ for all $a,b\in V$ is called an \mathcal{M} -subspace.
- For $f \in \mathcal{M}$ the **canonical** \mathcal{M} -subspace is $V = \mathbb{F}_2^{n/2} \times \{0_{n/2}\}$ (might be many more but for any V we have $\dim(V) \leq n/2$)
- **Proof:** Consider $f(x, y) = x \cdot \pi(y)$ (since g(y) does not matter) and

• Let
$$a=(a_1,0_{n/2}), b=(b_1,0_{n/2}) \in \mathbb{F}_2^{n/2} \times \{0_{n/2}\}$$
. Then
$$f(x+a_1,y) = (x+a_1) \cdot \pi(y)$$

$$f(x+b_1,y) = (x+b_1) \cdot \pi(y)$$

$$f(x+a_1+b_1,y) = (x+a_1+b_1) \cdot \pi(y)$$

• We get $f(x, y) + f(x + a_1, y) + f(x + b_1, y) + f(x + a_1 + b_1, y) = 0$, for all $x, y \in \mathbb{F}_2^{n/2}$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Showing that $V=\mathbb{F}_2^{n/2} imes\{0_{n/2}\}$ is an \mathcal{M} -subspace

- Any V s.t. $D_aD_bf=0$ for all $a,b\in V$ is called an \mathcal{M} -subspace.
- For $f \in \mathcal{M}$ the **canonical** \mathcal{M} -subspace is $V = \mathbb{F}_2^{n/2} \times \{0_{n/2}\}$ (might be many more but for any V we have $\dim(V) \leq n/2$)
- **Proof:** Consider $f(x,y) = x \cdot \pi(y)$ (since g(y) does not matter) and
- Let $a = (a_1, 0_{n/2}), b = (b_1, 0_{n/2}) \in \mathbb{F}_2^{n/2} \times \{0_{n/2}\}$. Then,

$$f(x + a_1, y) = (x + a_1) \cdot \pi(y)$$

$$f(x + b_1, y) = (x + b_1) \cdot \pi(y)$$

$$f(x + a_1 + b_1, y) = (x + a_1 + b_1) \cdot \pi(y)$$

• We get $f(x,y) + f(x + a_1, y) + f(x + b_1, y) + f(x + a_1 + b_1, y) = 0$, for all $x, y \in \mathbb{F}_2^{n/2}$.

Showing that $V=\mathbb{F}_2^{n/2} imes\{0_{n/2}\}$ is an \mathcal{M} -subspace

- Any V s.t. $D_aD_bf=0$ for all $a,b\in V$ is called an \mathcal{M} -subspace.
- For $f \in \mathcal{M}$ the **canonical** \mathcal{M} -subspace is $V = \mathbb{F}_2^{n/2} \times \{0_{n/2}\}$ (might be many more but for any V we have $\dim(V) \leq n/2$)
- **Proof:** Consider $f(x,y) = x \cdot \pi(y)$ (since g(y) does not matter) and
- Let $a = (a_1, 0_{n/2}), b = (b_1, 0_{n/2}) \in \mathbb{F}_2^{n/2} \times \{0_{n/2}\}$. Then,

$$f(x + a_1, y) = (x + a_1) \cdot \pi(y)$$

$$f(x + b_1, y) = (x + b_1) \cdot \pi(y)$$

$$f(x + a_1 + b_1, y) = (x + a_1 + b_1) \cdot \pi(y)$$

• We get $f(x,y) + f(x + a_1, y) + f(x + b_1, y) + f(x + a_1 + b_1, y) = 0$, for all $x, y \in \mathbb{F}_2^{n/2}$.

Primary classes of bent functions - \mathcal{PS} class

• Also, Partial Spread (\mathcal{PS}) class of Dillon 1976 (indicator of a union of $2^{n/2-1}$ (or $2^{n/2-1}+1$) of **disjoint lin. subspaces of dim.** n/2).

• PROBLEM (Classification/Enumeration): Both \mathcal{M} and \mathcal{PS} class only a tiny portion of all bent functions - find other classes !!

• For n=8, both $\mathcal{M}^{\#}$ and $\mathcal{PS}^{\#}$ give only 2^{11} out of 2^{106} bent functions

Primary classes of bent functions - \mathcal{PS} class

• Also, Partial Spread (\mathcal{PS}) class of Dillon 1976 (indicator of a union of $2^{n/2-1}$ (or $2^{n/2-1}+1$) of **disjoint lin. subspaces of dim.** n/2).

• PROBLEM (Classification/Enumeration): Both \mathcal{M} and \mathcal{PS} class only a tiny portion of all bent functions - find other classes!!

• For n=8, both $\mathcal{M}^{\#}$ and $\mathcal{PS}^{\#}$ give only 2^{77} out of 2^{106} bent functions

Modifying the ${\mathcal M}$ class - the ${\mathcal C}$ class

- Originally suggested by Dillon in his PhD thesis, developed by C.
 Carlet in 1993
- ullet The class ${\cal C}$ is the set of all (bent) Boolean functions of the form

$$f(x,y) = x \cdot \pi(y) + \mathbb{1}_{L^{\perp}}(x), \quad x, y \in \mathbb{F}_2^m$$

where L is any linear subspace of \mathbb{F}_2^m , $\mathbb{1}_{L^{\perp}}$ is the indicator function of the space L^{\perp} , and π is any permutation of \mathbb{F}_2^m such that:

- (C) $\phi(a+L)$ is an affine subspace, for all $a \in \mathbb{F}_2^m$, with $\phi := \pi^{-1}$.
- Modification performed for any $(x,y) \in L^{\perp} \times \mathbb{F}_2^m$!

1 ト 4 個 ト 4 差 ト 4 差 ト - 差 - からで

Some sufficient conditions for C class

Theorem (F. Zhang, EP, N. Cepak, Y. Wei 2016)

Let $n = 2m \ge 8$ and

$$f(x,y) = x \cdot \pi(y) \oplus 1_{L^{\perp}}(x), \ x, y \in \mathbb{F}_2^m$$

so that (π, L) has property (C). If (π, L) satisfies:

- ② $u \cdot \pi$ has no nonzero linear structure for all $u \in \mathbb{F}_2^m \setminus \{0_n\}$, then f does not belong to $\mathcal{M}^\#$.
 - **NOTE**: Linear structure means that $u \cdot \pi(y) + u \cdot \pi(y + a) = 0/1$
 - Using $\pi(y) = (\pi_1(y), \dots, \pi_m(y))$ we want to avoid $u_1\pi_1(y) + \dots + u_m\pi_m(y) + u_1\pi_1(y+a) + \dots + u_m\pi_m(y+a) = 0/1$

Some sufficient conditions for C class

Theorem (F. Zhang, EP, N. Cepak, Y. Wei 2016)

Let $n = 2m \ge 8$ and

$$f(x,y) = x \cdot \pi(y) \oplus 1_{L^{\perp}}(x), \ x, y \in \mathbb{F}_2^m$$

so that (π, L) has property (C). If (π, L) satisfies:

- \bullet dim(L) ≥ 2 ;
- ② $u \cdot \pi$ has no nonzero linear structure for all $u \in \mathbb{F}_2^m \setminus \{0_n\}$, then f does not belong to $\mathcal{M}^\#$.
 - **NOTE**: Linear structure means that $u \cdot \pi(y) + u \cdot \pi(y+a) = 0/1$!
 - Using $\pi(y) = (\pi_1(y), \dots, \pi_m(y))$ we want to avoid $u_1\pi_1(y) + \dots + u_m\pi_m(y) + u_1\pi_1(y+a) + \dots + u_m\pi_m(y+a) = 0/1$.

An explicit family in $\mathcal C$ outside $\mathcal M$

A few articles on this topic "bent functions in \mathcal{C}/\mathcal{D} outside $\mathcal{M}^{\#}$ ", for instance one result (for large n=2m) is:

Theorem ([3]- S. Kudin, EP)

- Let m, k and t be three integers such that and $m \ge k \ge t + 3 \ge 4$.
- Let S be an arbitrary subset of $E_t = \langle \mathbb{e}_1, \mathbb{e}_2, \dots, \mathbb{e}_t \rangle \subset \mathbb{F}_2^m$.
- Let $\sigma_S(y)$ be an arbitrary non-identity permutation of \mathbb{F}_2^m which fixes elements in $\mathbb{F}_2^m \setminus S$, (hence $|S| \geq 2$).
- Define $f(x,y) = x \cdot \sigma_S(y) + \mathbb{1}_{E_k^{\perp}}(x)$, with $x,y \in \mathbb{F}_2^m$, where $E_k = \langle \mathbb{e}_1, \mathbb{e}_2, \dots, \mathbb{e}_k \rangle \subseteq \mathbb{F}_2^m$.
- Then, f is a bent function in C outside $\mathcal{M}^{\#}$.

An explicit family in ${\mathcal C}$ outside ${\mathcal M}$

A few articles on this topic "bent functions in \mathcal{C}/\mathcal{D} outside $\mathcal{M}^{\#}$ ", for instance one result (for large n=2m) is:

Theorem ([3]- S. Kudin, EP)

- Let m, k and t be three integers such that and $m \ge k \ge t + 3 \ge 4$.
- Let S be an arbitrary subset of $E_t = \langle \mathbb{e}_1, \mathbb{e}_2, \dots, \mathbb{e}_t \rangle \subset \mathbb{F}_2^m$.
- Let $\sigma_S(y)$ be an arbitrary non-identity permutation of \mathbb{F}_2^m which fixes elements in $\mathbb{F}_2^m \setminus S$, (hence $|S| \geq 2$).
- Define $f(x, y) = x \cdot \sigma_S(y) + \mathbb{1}_{E_k^{\perp}}(x)$, with $x, y \in \mathbb{F}_2^m$, where $E_k = \langle \mathbb{e}_1, \mathbb{e}_2, \dots, \mathbb{e}_k \rangle \subseteq \mathbb{F}_2^m$.
- Then, f is a bent function in C outside $\mathcal{M}^{\#}$.

◆ロト 4個 ト 4 重 ト 4 重 ト 章 のQの

Modifying the ${\mathcal M}$ class - the ${\mathcal D}$ class

• The class $\mathcal D$, defined similarly as $\mathcal C$ by C. Carlet in 1993, is the set of all Boolean (bent) functions of the form

$$f(x,y) = x \cdot \pi(y) + \mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y), \ x, y \in \mathbb{F}_2^m,$$

(D) E_1, E_2 two linear subspaces of \mathbb{F}_2^m such that $\pi(E_2) = E_1^{\perp}$, and $\dim(E_1) + \dim(E_2) = m$ (min. distance between bent functions 2^m).

ullet Special case when $E_1=0_m$ and $E_2=\mathbb{F}_2^m$ (called \mathcal{D}_0 class), then

$$\mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y) = \delta_0(x) = \prod_{i=1}^m (x_i \oplus 1).$$

• Carlet proved that $\mathcal{D}_0 \not\subset \mathcal{M}^\#$ and $\mathcal{D}_0 \not\subset \mathcal{PS}^\#$; in the former case enough that a restriction of π to any hyperplane is not affine

Modifying the ${\mathcal M}$ class - the ${\mathcal D}$ class

ullet The class ${\cal D}$, defined similarly as ${\cal C}$ by C. Carlet in 1993, is the set of all Boolean (bent) functions of the form

$$f(x,y) = x \cdot \pi(y) + \mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y), \ x, y \in \mathbb{F}_2^m,$$

(D) E_1, E_2 two linear subspaces of \mathbb{F}_2^m such that $\pi(E_2) = E_1^{\perp}$, and $\dim(E_1) + \dim(E_2) = m$ (min. distance between bent functions 2^m).

ullet Special case when $E_1=0_m$ and $E_2=\mathbb{F}_2^m$ (called \mathcal{D}_0 class), then

$$\mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y) = \delta_0(x) = \prod_{i=1}^m (x_i \oplus 1).$$

• Carlet proved that $\mathcal{D}_0 \not\subset \mathcal{M}^\#$ and $\mathcal{D}_0 \not\subset \mathcal{PS}^\#$; in the former case enough that a restriction of π to any hyperplane is not affine

Modifying the ${\mathcal M}$ class - the ${\mathcal D}$ class

• The class $\mathcal D$, defined similarly as $\mathcal C$ by C. Carlet in 1993, is the set of all Boolean (bent) functions of the form

$$f(x,y) = x \cdot \pi(y) + \mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y), \ x, y \in \mathbb{F}_2^m,$$

(D) E_1 , E_2 two linear subspaces of \mathbb{F}_2^m such that $\pi(E_2) = E_1^{\perp}$, and $\dim(E_1) + \dim(E_2) = m$ (min. distance between bent functions 2^m).

ullet Special case when $E_1=0_m$ and $E_2=\mathbb{F}_2^m$ (called \mathcal{D}_0 class), then

$$\mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y) = \delta_0(x) = \prod_{i=1}^m (x_i \oplus 1).$$

• Carlet proved that $\mathcal{D}_0 \not\subset \mathcal{M}^\#$ and $\mathcal{D}_0 \not\subset \mathcal{PS}^\#$; in the former case enough that a restriction of π to any hyperplane is not affine!

\mathcal{D}_0 outside $\mathcal{M}^\#$ - large degree

Lemma ([3])

Let $g \in \mathfrak{B}_n$. If there exists an (n-k)-dimensional \mathcal{M} -subspace H of \mathbb{F}_2^n , such that $D_aD_bg=0$ for all $a,b\in H$, then $\deg(g)\leq k+1$.

Theorem ([3])

Let m be an integer, $m \geq 4$. Let π be a permutation of \mathbb{F}_2^m with $\deg(\pi) \geq 3$. Then,

$$f(x,y) = x \cdot \pi(y) + \delta_0(x) \in \mathcal{D}_0, \ x, y \in \mathbb{F}_2^m,$$

is a bent function outside $\mathcal{M}^{\#}$.

• The algebraic degree of π over \mathbb{F}_2^m is $\deg(\pi) = \max_{1 \leq i \leq m} \deg(\pi_i)$.

\mathcal{D}_0 outside $\mathcal{M}^\#$ - large degree

Lemma ([3])

Let $g \in \mathfrak{B}_n$. If there exists an (n-k)-dimensional \mathcal{M} -subspace H of \mathbb{F}_2^n , such that $D_aD_bg=0$ for all $a,b\in H$, then $\deg(g)\leq k+1$.

Theorem ([3])

Let m be an integer, $m \ge 4$. Let π be a permutation of \mathbb{F}_2^m with $\deg(\pi) \ge 3$. Then,

$$f(x,y) = x \cdot \pi(y) + \delta_0(x) \in \mathcal{D}_0, \ x, y \in \mathbb{F}_2^m,$$

is a bent function outside $\mathcal{M}^{\#}$.

• The algebraic degree of π over \mathbb{F}_2^m is $\deg(\pi) = \max_{1 \leq i \leq m} \deg(\pi_i)$.

\mathcal{D}_0 outside $\mathcal{M}^\#$ - quadratic case

Theorem ([3]- complete characterization)

Let π be a quadratic permutation of \mathbb{F}_2^m , $m \geq 4$. Then,

$$f(x,y) = x \cdot \pi(y) + \delta_0(x) \in \mathcal{M}^\#$$

IFF there is a linear hyperplane of \mathbb{F}_2^m on which π is affine.

- The presented results give some explicit families of bent functions outside $\mathcal{M}^{\#}$ but we are far away from 2^{106} (e.g. $\#\mathcal{D}_0^{\#} < \#\mathcal{M}^{\#}$).
- To handle this, we have taken two different approaches:
 - ullet concatenation/decomposition method (in terms of ${\mathcal M}$ -subspaces)
 - ullet and the generalized M-M class (\mathcal{GMM})

\mathcal{D}_0 outside $\mathcal{M}^\#$ - quadratic case

Theorem ([3]- complete characterization)

Let π be a quadratic permutation of \mathbb{F}_2^m , $m \geq 4$. Then,

$$f(x,y) = x \cdot \pi(y) + \delta_0(x) \in \mathcal{M}^\#$$

IFF there is a linear hyperplane of \mathbb{F}_2^m on which π is affine.

- The presented results give some explicit families of bent functions outside $\mathcal{M}^{\#}$ but we are **far away from** 2^{106} (e.g. $\#\mathcal{D}_0^{\#} < \#\mathcal{M}^{\#}$).
- To handle this, we have taken **two different approaches**:
 - ullet concatenation/decomposition method (in terms of ${\mathcal M}$ -subspaces)
 - ullet and the generalized M-M class (\mathcal{GMM})

\mathcal{M} -subspaces of Boolean (bent) functions

- Recall, for $f \in \mathfrak{B}_n$ a vector subspace V of \mathbb{F}_2^n is called an \mathcal{M} -subspace of f, if $D_a D_b f = 0$, for all $a, b \in V$.
- The maximum dimension of any \mathcal{M} -subspace V is n/2, for any bent function f ($\dim(V) = n/2 \Leftrightarrow f \in \mathcal{M}^{\#}$).
- Useful to distinguish bent functions $\{f\}$ w.r.t. the **maximal** dimension of \mathcal{M} -subspaces, called linearity index of f, ind(f).
- Important, M-subspaces are invariant under EA-equivalence meaning that the number of M-subspaces of any fixed dimension is
 the same! (A. Polujan, PhD thesis)
- **IDEA:** Much easier to construct $f = f_1||f_2||f_3||f_4 \notin \mathcal{M}^\#$ when $f_i \in \mathcal{M}^\#$ has a **unique** \mathcal{M} -subspace of dimension n/2.

\mathcal{M} -subspaces of Boolean (bent) functions

- Recall, for $f \in \mathfrak{B}_n$ a vector subspace V of \mathbb{F}_2^n is called an \mathcal{M} -subspace of f, if $D_a D_b f = 0$, for all $a, b \in V$.
- The maximum dimension of any \mathcal{M} -subspace V is n/2, for any bent function f ($\dim(V) = n/2 \Leftrightarrow f \in \mathcal{M}^{\#}$).
- Useful to distinguish bent functions $\{f\}$ w.r.t. the **maximal** dimension of \mathcal{M} -subspaces, called linearity index of f, ind(f).
- Important, M-subspaces are invariant under EA-equivalence meaning that the number of M-subspaces of any fixed dimension is
 the same! (A. Polujan, PhD thesis)
- **IDEA:** Much easier to construct $f = f_1||f_2||f_3||f_4 \notin \mathcal{M}^\#$ when $f_i \in \mathcal{M}^\#$ has a **unique** \mathcal{M} -subspace of dimension n/2.

Non-unique \mathcal{M} -subspace of maximal dimension

Proposition ([5])

Let π be a permutation of \mathbb{F}_2^m having a non-zero linear structure $s \in \mathbb{F}_2^m$, i.e., for some $v \in \mathbb{F}_2^m$, i.e.

$$D_s\pi(y)=\pi(y)+\pi(y+s)=v, \text{ for all } y\in\mathbb{F}_2^m.$$

Then, the bent function $f \in \mathcal{M}$

$$f(x,y) = x \cdot \pi(y) + h(y), \quad x, y \in \mathbb{F}_2^m,$$

has at least two m-dimensional \mathcal{M} -subspaces.

P_1 induces uniqueness

Theorem ([5])

Let π be a permutation of \mathbb{F}_2^m which has the following (P_1) property:

$$D_v D_w \pi \neq 0_m$$
 for all linearly independent $v, w \in \mathbb{F}_2^m$. (P₁)

(thus
$$\pi(y) + \pi(y+v) + \pi(y+w) + \pi(y+v+w) \neq 0_m$$
)

Letting $f(x,y) = x \cdot \pi(y) + h(y)$, for all $x, y \in \mathbb{F}_2^m$, then:

- 1) Permutation π has no linear structures.
- 2) The vector space $V = \mathbb{F}_2^m \times \{0_m\}$ is the unique m-dimensional \mathcal{M} -subspace of f.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

P_1 induces uniqueness

Theorem ([5])

Let π be a permutation of \mathbb{F}_2^m which has the following (P_1) property:

$$D_v D_w \pi \neq 0_m$$
 for all linearly independent $v, w \in \mathbb{F}_2^m$. (P₁)

$$(thus \ \pi(y) + \pi(y+v) + \pi(y+w) + \pi(y+v+w) \neq 0_m)$$

Letting $f(x,y) = x \cdot \pi(y) + h(y)$, for all $x, y \in \mathbb{F}_2^m$, then:

- 1) Permutation π has no linear structures.
- 2) The vector space $V = \mathbb{F}_2^m \times \{0_m\}$ is the unique m-dimensional \mathcal{M} -subspace of f.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

P₂ characterizes uniqueness

Definition

Let π be a permutation of \mathbb{F}_2^m . Let $S \subset \mathbb{F}_2^m$ with $\dim(S) = m - k$, with $1 \leq k \leq m-1$, such that $D_a D_b \pi = 0_m$ for all $a,b \in S$. Then, π satisfies the property (P_2) w.r.t. S if $\not\exists V \subset \mathbb{F}_2^m$, with $\dim(V) = k$, such that

$$v \cdot D_a \pi(y) = 0$$
; for all $a \in S$, all $y \in \mathbb{F}_2^m$, and for all $v \in V$. (P_2)

If π satisfies this property w.r.t. any linear subspace S of \mathbb{F}_2^m of arbitrary dimension $1 \leq \dim(S) \leq m-1$, then we simply say that π satisfies (P_2) .

Proposition ([5])

Let π be a non-affine permutation of \mathbb{F}_2^m and $f(x,y) = x \cdot \pi(y)$ be bent Then, π has (P_2) IFF the only m-dim. \mathcal{M} -subspace of f is $\mathbb{F}_2^m \times \{0_m\}$.

P₂ characterizes uniqueness

Definition

Let π be a permutation of \mathbb{F}_2^m . Let $S \subset \mathbb{F}_2^m$ with $\dim(S) = m - k$, with $1 \leq k \leq m-1$, such that $D_aD_b\pi = 0_m$ for all $a,b \in S$. Then, π satisfies the property (P_2) w.r.t. S if $\not\exists V \subset \mathbb{F}_2^m$, with $\dim(V) = k$, such that

$$v \cdot D_a \pi(y) = 0$$
; for all $a \in S$, all $y \in \mathbb{F}_2^m$, and for all $v \in V$. (P_2)

If π satisfies this property w.r.t. any linear subspace S of \mathbb{F}_2^m of arbitrary dimension $1 \leq \dim(S) \leq m-1$, then we simply say that π satisfies (P_2) .

Proposition ([5])

Let π be a non-affine permutation of \mathbb{F}_2^m and $f(x,y) = x \cdot \pi(y)$ be bent Then, π has (P_2) IFF the only m-dim. \mathcal{M} -subspace of f is $\mathbb{F}_2^m \times \{0_m\}$.

P_1 and P_2 properties - constructions on larger spaces

Proposition ([5])

Let σ_1 and σ_2 be two permutations of \mathbb{F}_2^m such that $D_u D_v \sigma_1 \neq D_u D_v \sigma_2$ for any distinct elements $u, v \in \mathbb{F}_2^{m*}$. Define $\pi : \mathbb{F}_2^{m+1} \to \mathbb{F}_2^{m+1}$ by

$$\pi(y, y_{m+1}) = (\sigma_1(y) + y_{m+1}(\sigma_1(y) + \sigma_2(y)), y_{m+1}), \forall y \in \mathbb{F}_2^m, y_{m+1} \in \mathbb{F}_2.$$

Then, π is a permutation of \mathbb{F}_2^{m+1} satisfying (P_1) .

Theorem ([8])

Let σ_1 and σ_2 be two permutations of \mathbb{F}_2^m and assume that $\sigma_1 + \sigma_2$ satisfies (P_2) . Then, π above satisfies (P_2) .

Proposition ([8])

Let π be a permutation of \mathbb{F}_2^m . If π satisfies (P_1) , then it satisfies (P_2) .

P_1 and P_2 properties - constructions on larger spaces

Proposition ([5])

Let σ_1 and σ_2 be two permutations of \mathbb{F}_2^m such that $D_u D_v \sigma_1 \neq D_u D_v \sigma_2$ for any distinct elements $u, v \in \mathbb{F}_2^{m*}$. Define $\pi : \mathbb{F}_2^{m+1} \to \mathbb{F}_2^{m+1}$ by

$$\pi(y, y_{m+1}) = (\sigma_1(y) + y_{m+1}(\sigma_1(y) + \sigma_2(y)), y_{m+1}), \forall y \in \mathbb{F}_2^m, y_{m+1} \in \mathbb{F}_2.$$

Then, π is a permutation of \mathbb{F}_2^{m+1} satisfying (P_1) .

Theorem ([8])

Let σ_1 and σ_2 be two permutations of \mathbb{F}_2^m and assume that $\sigma_1 + \sigma_2$ satisfies (P_2) . Then, π above satisfies (P_2) .

Proposition ([8])

Let π be a permutation of \mathbb{F}_2^m . If π satisfies (P_1) , then it satisfies (P_2) .

P_1 and P_2 properties - constructions on larger spaces

Proposition ([5])

Let σ_1 and σ_2 be two permutations of \mathbb{F}_2^m such that $D_u D_v \sigma_1 \neq D_u D_v \sigma_2$ for any distinct elements $u, v \in \mathbb{F}_2^{m*}$. Define $\pi : \mathbb{F}_2^{m+1} \to \mathbb{F}_2^{m+1}$ by

$$\pi(y, y_{m+1}) = (\sigma_1(y) + y_{m+1}(\sigma_1(y) + \sigma_2(y)), y_{m+1}), \forall y \in \mathbb{F}_2^m, y_{m+1} \in \mathbb{F}_2.$$

Then, π is a permutation of \mathbb{F}_2^{m+1} satisfying (P_1) .

Theorem ([8])

Let σ_1 and σ_2 be two permutations of \mathbb{F}_2^m and assume that $\sigma_1 + \sigma_2$ satisfies (P_2) . Then, π above satisfies (P_2) .

Proposition ([8])

Let π be a permutation of \mathbb{F}_2^m . If π satisfies (P_1) , then it satisfies (P_2) .

ℓ -optimality - minimal dimension of ${\mathcal M}$ -subspaces

Definition

Let $f \in \mathcal{B}_n$ be bent. If $\operatorname{ind}(f) = 1$, we say that f is ℓ -optimal, i.e., $D_a D_b f \neq 0$, for any lin. indep. $a, b \in \mathbb{F}_2^n$.

Theorem ([8])

Let π be a permutation of \mathbb{F}_2^m , $m \geq 4$, satisfying (P_1) . Define

$$f(x,y) = x \cdot \pi(y) + \delta_0(x), \quad x, y \in \mathbb{F}_2^m.$$

Then, $\operatorname{ind}(f) \leq 2$ (thus $f \notin \mathcal{M}^{\#}$). Furthermore, $\operatorname{ind}(f) = 1$, if and only if π has no components with linear structures (i.e. $u \cdot D_a \pi \neq 0/1$).

Bent revelation - simple reasoning works

- Kept myself asking, how to get closer to 2^{106} ?!, for n = 8.
- One lovely morning (or evening) the revelation came:
 - **FACT**: All bent functions in n = 6 variables are in the \mathcal{M} class
 - **FACT**: A bent function f in n + 2 = 8 variables can be viewed as a concatenation of 4 functions f_i in 6 variables, so that $f = f_1||f_2||f_3||f_4|$
 - FACT -Canteaut-Charpin 2000: These f_i can be bent, semi-bent $(W_{f_i} \in \{0, \pm 2^{n/2+1}) \text{ or 5-valued spectra } (W_{f_i} \in \{0, \pm 2^{n/2}, \pm 2^{n/2+1})$
 - Does it mean that we can concatenate $f_i \in \mathcal{M}$ and get f outside \mathcal{M} ?
 - YES !!

Bent revelation - simple reasoning works

- Kept myself asking, how to get closer to 2^{106} ?!, for n = 8.
- One lovely morning (or evening) the revelation came:
 - **FACT**: All bent functions in n = 6 variables are in the \mathcal{M} class
 - **FACT**: A bent function f in n+2=8 variables can be viewed as a concatenation of 4 functions f_i in 6 variables, so that $f=f_1||f_2||f_3||f_4$
 - FACT -Canteaut-Charpin 2000: These f_i can be bent, semi-bent $(W_{f_i} \in \{0, \pm 2^{n/2+1})$ or 5-valued spectra $(W_{f_i} \in \{0, \pm 2^{n/2}, \pm 2^{n/2+1})$
 - Does it mean that we can concatenate $f_i \in \mathcal{M}$ and get f outside \mathcal{M} ?
 - YES !!

Bent revelation - simple reasoning works

- Kept myself asking, how to get closer to 2^{106} ?!, for n = 8.
- One lovely morning (or evening) the revelation came:
 - **FACT**: All bent functions in n = 6 variables are in the \mathcal{M} class
 - **FACT**: A bent function f in n+2=8 variables can be viewed as a concatenation of 4 functions f_i in 6 variables, so that $f=f_1||f_2||f_3||f_4$
 - FACT -Canteaut-Charpin 2000: These f_i can be bent, semi-bent $(W_{f_i} \in \{0, \pm 2^{n/2+1}) \text{ or 5-valued spectra } (W_{f_i} \in \{0, \pm 2^{n/2}, \pm 2^{n/2+1})$
 - Does it mean that we can concatenate $f_i \in \mathcal{M}$ and get f outside \mathcal{M} ?
 - YES !!

4-concatenation

• Let $f = f_1||f_2||f_3||f_4 \in \mathfrak{B}_{n+2}$, whose ANF is given by

$$f(x, y_1, y_2) = f_1(x) + y_1(f_1 + f_3)(x) + y_2(f_1 + f_2)(x) + y_1y_2(f_1 + f_2 + f_3 + f_4)(x),$$

where $x \in \mathbb{F}_2^n$ and $y_1, y_2 \in \mathbb{F}_2$.

- Subfunctions: $f_1(x) = f(x,0,0), f_2(x) = f(x,0,1), f_3(x) = f(x,1,0)$ and $f_4(x) = f(x,1,1).$
- (IMPORTANT) If f_i are bent then $f = f_1||f_2||f_3||f_4$ is bent IFF $f_1^* \oplus f_2^* \oplus f_3^* \oplus f_4^* = 1$ [1], with the dual bent functions f_i^* given as:

$$f_i^*(a) = \left\{ egin{array}{ll} 0 & ext{if } W_{f_i}(a) = +2^{n/2} \\ 1 & ext{if } W_{f_i}(a) = -2^{n/2} \end{array}
ight.$$

• Notation f^a means f(x+a) (used on next 2 slides) !!

4-concatenation

• Let $f = f_1||f_2||f_3||f_4 \in \mathfrak{B}_{n+2}$, whose ANF is given by

$$f(x, y_1, y_2) = f_1(x) + y_1(f_1 + f_3)(x) + y_2(f_1 + f_2)(x) + y_1y_2(f_1 + f_2 + f_3 + f_4)(x),$$

where $x \in \mathbb{F}_2^n$ and $y_1, y_2 \in \mathbb{F}_2$.

- Subfunctions: $f_1(x) = f(x,0,0), f_2(x) = f(x,0,1), f_3(x) = f(x,1,0)$ and $f_4(x) = f(x,1,1).$
- (IMPORTANT) If f_i are bent then $f = f_1||f_2||f_3||f_4$ is bent IFF $f_1^* \oplus f_2^* \oplus f_3^* \oplus f_4^* = 1$ [1], with the dual bent functions f_i^* given as:

$$f_i^*(a) = \begin{cases} 0 & \text{if } W_{f_i}(a) = +2^{n/2} \\ 1 & \text{if } W_{f_i}(a) = -2^{n/2} \end{cases}$$

• Notation f^a means f(x + a) (used on next 2 slides) !!

- 4日ト4回ト4ミト4ミト ミ かく(^

\mathcal{M} -subspaces of 4-concatenation

Theorem ([7])

Let $f = f_1||f_2||f_3||f_4 \in \mathcal{B}_{n+2}$, where $f_1, \ldots, f_4 \in \mathcal{B}_n$ are arbitrary. Let W be a (k+2)-dim. subspace of \mathbb{F}_2^{n+2} , for $k \in \{0, \ldots, n\}$. Then, W is an M-subspace of f **IFF** W has one of the following forms:

- **1** $W = V \times \{(0,0)\}$, where $V \subset \mathbb{F}_2^n$ is a **common** (k+2)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 .
- **2** $W = \langle V \times \{(0,0)\}, (a,1,0) \rangle$, where V is a **common** (k+1)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_{v}f_{1} + D_{v}f_{2}^{a} = D_{v}f_{3} + D_{v}f_{4}^{a} = 0$$
, for all $v \in V$.

 $W = \langle V \times \{(0,0)\}, (a,0,1) \rangle$, where V is a **common** (k+1)-dimensional M-subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_{v}f_{1} + D_{v}f_{3}^{a} = D_{v}f_{2} + D_{v}f_{4}^{a} = 0$$
, for all $v \in V$.

\mathcal{M} -subspaces of 4-concatenation

Theorem ([7])

Let $f = f_1||f_2||f_3||f_4 \in \mathcal{B}_{n+2}$, where $f_1, \ldots, f_4 \in \mathcal{B}_n$ are arbitrary. Let W be a (k+2)-dim. subspace of \mathbb{F}_2^{n+2} , for $k \in \{0, \ldots, n\}$. Then, W is an M-subspace of f **IFF** W has one of the following forms:

- **1** $W = V \times \{(0,0)\}$, where $V \subset \mathbb{F}_2^n$ is a **common** (k+2)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 .
- **2** $W = \langle V \times \{(0,0)\}, (a,1,0) \rangle$, where V is a **common** (k+1)-dimensional \mathcal{M} -subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_v f_1 + D_v f_2^a = D_v f_3 + D_v f_4^a = 0$$
, for all $v \in V$.

 $W = \langle V \times \{(0,0)\}, (a,0,1) \rangle$, where V is a **common** (k+1)-dimensional M-subspace of f_1, \ldots, f_4 , and $a \in \mathbb{F}_2^n$ is such that

$$D_v f_1 + D_v f_3^a = D_v f_2 + D_v f_4^a = 0$$
, for all $v \in V$.

Corollary ([7]- bent case)

Let $f = f_1||f_2||f_3||f_4 \in \mathcal{B}_{n+2}$, where $f_1, \ldots, f_4 \in \mathcal{B}_n$ and assume that f is bent. Then, f is outside $\mathcal{M}^\#$ if and only if

- ① The functions f_1, \ldots, f_4 do not share a common (n/2 + 1)-dim. \mathcal{M} -subspace (impossible if f_i are bent);
- ① There are no common (n/2)-dim. \mathcal{M} -subspaces $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 s. $t. \exists a \in \mathbb{F}_2^n$ for which

$$\begin{split} &D_{v}f_{1}+D_{v}f_{2}^{a}=D_{v}f_{3}+D_{v}f_{4}^{a}=0, \ \textit{for all } v \in V, \ \textit{or} \\ &D_{v}f_{1}+D_{v}f_{3}^{a}=D_{v}f_{2}+D_{v}f_{4}^{a}=0, \ \textit{for all } v \in V, \ \textit{or} \\ &D_{v}f_{1}+D_{v}f_{4}^{a}=D_{v}f_{2}+D_{v}f_{3}^{a}=0, \ \textit{for all } v \in V. \end{split}$$

① There are no common (n/2-1)-dim. \mathcal{M} -subspaces $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 s. t. $\exists a, b \in \mathbb{F}_2^n$ (including a = b), for which

$$D_V f_1 + D_V f_3^a = D_V f_2 + D_V f_4^a = D_V f_1 + D_V f_2^b = D_V f_3 + D_V f_4^b = 0$$
, and $f_1(x) + f_2(x+b) + f_3(x+a) + f_4(x+a+b) = 0$, for all $x \in \mathbb{F}_2^n$.

Corollary ([7]- bent case)

Let $f = f_1||f_2||f_3||f_4 \in \mathcal{B}_{n+2}$, where $f_1, \ldots, f_4 \in \mathcal{B}_n$ and assume that f is bent. Then, f is outside $\mathcal{M}^\#$ if and only if

- **1** The functions f_1, \ldots, f_4 do not share a common (n/2 + 1)-dim. \mathcal{M} -subspace (impossible if f_i are bent);
- ① There are no common (n/2)-dim. \mathcal{M} -subspaces $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 s. t. $\exists a \in \mathbb{F}_2^n$ for which

$$D_v f_1 + D_v f_2^a = D_v f_3 + D_v f_4^a = 0$$
, for all $v \in V$, or $D_v f_1 + D_v f_3^a = D_v f_2 + D_v f_4^a = 0$, for all $v \in V$, or $D_v f_1 + D_v f_4^a = D_v f_2 + D_v f_3^a = 0$, for all $v \in V$.

① There are no common (n/2-1)-dim. \mathcal{M} -subspaces $V \subset \mathbb{F}_2^n$ of f_1, \ldots, f_4 s. t. $\exists a, b \in \mathbb{F}_2^n$ (including a = b), for which

$$D_V f_1 + D_V f_3^a = D_V f_2 + D_V f_4^a = D_V f_1 + D_V f_2^b = D_V f_3 + D_V f_4^b = 0$$
, and $f_1(x) + f_2(x+b) + f_3(x+a) + f_4(x+a+b) = 0$, for all $x \in \mathbb{F}_2^n$.

Satisfying the conditions

Corollary ([7])

- Let $h, g \in \mathcal{B}_n$ be arbitrary bent functions.
- Define $f_1 = f_3 = g$ and $f_2 = f_4 + 1 = h$
- Then, $f = f_1||f_2||f_3||f_4 = g||h||g||h+1 \in \mathcal{B}_{n+2}$ (or g||g||h||h+1 if you want) is **bent** and $f \in \mathcal{M}^\#$ **IFF** g and h have a **common** (n/2)-dim. \mathcal{M} -subspace; so $g, h \in \mathcal{M}^\#$.
- How to avoid sharing an $\mathcal{M}^{\#}$ -subspace of dimension n/2?
- E.g. take g or h outside $\mathcal{M}^{\#}$! We want $g, h \in \mathcal{M}^{\#}$ and $f \notin \mathcal{M}^{\#}$
- **Solution:** $g(x,y) = x \cdot \pi(y)$ and (swap variables) $h(x,y) = y \cdot \pi(x)$ For instance, if π satisfies (P_1) (or (P_2)) then the unique $\mathcal{M}^\#$ -subspace of dim. n/2 for g and h are $\mathbb{F}_2^{n/2} \times \{0_{n/2}\}$ and $\{0_{n/2}\} \times \mathbb{F}_2^{n/2}$, respectively!

Satisfying the conditions

Corollary ([7])

- Let $h, g \in \mathcal{B}_n$ be arbitrary bent functions.
- Define $f_1 = f_3 = g$ and $f_2 = f_4 + 1 = h$
- Then, $f = f_1||f_2||f_3||f_4 = g||h||g||h+1 \in \mathcal{B}_{n+2}$ (or g||g||h||h+1 if you want) is **bent** and $f \in \mathcal{M}^\#$ **IFF** g and h have a **common** (n/2)-dim. \mathcal{M} -subspace; so $g, h \in \mathcal{M}^\#$.
- How to avoid sharing an $\mathcal{M}^{\#}$ -subspace of dimension n/2 ?
- E.g. take g or h outside $\mathcal{M}^{\#}$! We want $g, h \in \mathcal{M}^{\#}$ and $f \notin \mathcal{M}^{\#}$
- **Solution:** $g(x,y) = x \cdot \pi(y)$ and (swap variables) $h(x,y) = y \cdot \pi(x)$ For instance, if π satisfies (P_1) (or (P_2)) then the unique $\mathcal{M}^\#$ -subspace of dim. n/2 for g and h are $\mathbb{F}_2^{n/2} \times \{0_{n/2}\}$ and $\{0_{n/2}\} \times \mathbb{F}_2^{n/2}$, respectively!

Satisfying the conditions

Corollary ([7])

- Let $h, g \in \mathcal{B}_n$ be arbitrary bent functions.
- Define $f_1 = f_3 = g$ and $f_2 = f_4 + 1 = h$
- Then, $f = f_1||f_2||f_3||f_4 = g||h||g||h+1 \in \mathcal{B}_{n+2}$ (or g||g||h||h+1 if you want) is **bent** and $f \in \mathcal{M}^\#$ **IFF** g and h have a **common** (n/2)-dim. \mathcal{M} -subspace; so $g, h \in \mathcal{M}^\#$.
- How to avoid sharing an $\mathcal{M}^{\#}$ -subspace of dimension n/2?
- E.g. take g or h outside $\mathcal{M}^{\#}$! We want $g, h \in \mathcal{M}^{\#}$ and $f \notin \mathcal{M}^{\#}$
- **Solution:** $g(x,y) = x \cdot \pi(y)$ and (swap variables) $h(x,y) = y \cdot \pi(x)$. For instance, if π satisfies (P_1) (or (P_2)) then the unique $\mathcal{M}^\#$ -subspace of dim. n/2 for g and h are $\mathbb{F}_2^{n/2} \times \{0_{n/2}\}$ and $\{0_{n/2}\} \times \mathbb{F}_2^{n/2}$, respectively!

Corollary ([7])

Let $g \in \mathcal{B}_n$ be an arbitrary bent function $n \geq 6$. Then, there exists a bent function $f \in \mathcal{B}_{n+2}$ outside $\mathcal{M}^\#$ such that g(x) = f(x,0,0), for all $x \in \mathbb{F}_2^n$.

Theorem ([7])

For $n \ge 6$, the number of bent functions outside $\mathcal{M}^{\#}$ in n+2 variables is always strictly greater than the number of all bent functions in n variables.

• Many other results in [2]- [7] and quite large families of bent functions outside $\mathcal{M}^{\#}$, still not close to 2^{106} .

The \mathcal{GMM} class

Definition

Let n = 2m be an even positive integer and $0 \le k \le m - 1$. The set

$$f(x,y) = x \cdot \phi(y) + h(y), \quad x \in \mathbb{F}_2^{m-k}, y \in \mathbb{F}_2^{m+k},$$

is called the strict \mathcal{GMM}_{m+k} class, with $\phi\colon \mathbb{F}_2^{m+k}\to \mathbb{F}_2^{m-k}$ and $h\in \mathcal{B}_{\frac{n}{2}+k}$

- For k=0, this class corresponds to $\mathcal M$ when ϕ permutes $\mathbb F_2^m$.
- For k = m 1, any Boolean function is in \mathcal{GMM}_{n-1} !
- Indeed, $x \in \mathbb{F}_2$ and $y \in \mathbb{F}_2^{n-1}$, and for fixed y^* we have $f(x, y^*) = x_1 \cdot \phi(y^*) + h(y^*)$ which can be made 0 or 1 via ϕ and h.

The \mathcal{GMM} class

Definition

Let n = 2m be an even positive integer and $0 \le k \le m - 1$. The set

$$f(x,y) = x \cdot \phi(y) + h(y), \quad x \in \mathbb{F}_2^{m-k}, y \in \mathbb{F}_2^{m+k},$$

is called the strict \mathcal{GMM}_{m+k} class, with $\phi \colon \mathbb{F}_2^{m+k} \to \mathbb{F}_2^{m-k}$ and $h \in \mathcal{B}_{\frac{n}{2}+k}$

- For k=0, this class corresponds to \mathcal{M} when ϕ permutes \mathbb{F}_2^m .
- For k = m 1, any Boolean function is in \mathcal{GMM}_{n-1} !
- Indeed, $x \in \mathbb{F}_2$ and $y \in \mathbb{F}_2^{n-1}$, and for fixed y^* we have $f(x, y^*) = x_1 \cdot \phi(y^*) + h(y^*)$ which can be made 0 or 1 via ϕ and h.

The \mathcal{GMM} class

Definition

Let n = 2m be an even positive integer and $0 \le k \le m - 1$. The set

$$f(x,y) = x \cdot \phi(y) + h(y), \quad x \in \mathbb{F}_2^{m-k}, y \in \mathbb{F}_2^{m+k},$$

is called the strict \mathcal{GMM}_{m+k} class, with $\phi \colon \mathbb{F}_2^{m+k} \to \mathbb{F}_2^{m-k}$ and $h \in \mathcal{B}_{\frac{n}{2}+k}$

- For k=0, this class corresponds to \mathcal{M} when ϕ permutes \mathbb{F}_2^m .
- For k = m 1, any Boolean function is in \mathcal{GMM}_{n-1} !
- Indeed, $x \in \mathbb{F}_2$ and $y \in \mathbb{F}_2^{n-1}$, and for fixed y^* we have $f(x, y^*) = x_1 \cdot \phi(y^*) + h(y^*)$ which can be made 0 or 1 via ϕ and h.

(ロ) (型) (重) (重) (Q)

The \mathcal{GMM}_{m+1} class

Theorem (X-[2])

Let n=2m and let $f\in\mathcal{GMM}_{m+1}$ (thus k=1) so that

$$f(x,y) = x \cdot \phi(y) + h(y), \quad x \in \mathbb{F}_2^{m-1}, y \in \mathbb{F}_2^{m+1},$$
 (1)

where $\phi: \mathbb{F}_2^{m+1} \to \mathbb{F}_2^{m-1}$ and $h: \mathbb{F}_2^{m+1} \to \mathbb{F}_2$. Then, f is bent IFF

- the collection $\{\phi^{-1}(a) \mid a \in \mathbb{F}_2^{m-1}\}$ is a partition of \mathbb{F}_2^{m+1} into 2-dim. affine subspaces (where $\phi^{-1}(a) = \{y \in \mathbb{F}_2^{m+1} \mid \phi(y) = a\}$), and
- for every $a \in \mathbb{F}_2^{m-1}$, the restriction of h on $\phi^{-1}(a)$ has odd weight.

The \mathcal{GMM}_{m+1} class

Theorem (X-[2])

Let n=2m and let $f\in\mathcal{GMM}_{m+1}$ (thus k=1) so that

$$f(x,y) = x \cdot \phi(y) + h(y), \quad x \in \mathbb{F}_2^{m-1}, y \in \mathbb{F}_2^{m+1},$$
 (1)

where $\phi: \mathbb{F}_2^{m+1} \to \mathbb{F}_2^{m-1}$ and $h: \mathbb{F}_2^{m+1} \to \mathbb{F}_2$. Then, f is bent IFF

- the collection $\{\phi^{-1}(a) \mid a \in \mathbb{F}_2^{m-1}\}$ is a partition of \mathbb{F}_2^{m+1} into 2-dim. affine subspaces (where $\phi^{-1}(a) = \{y \in \mathbb{F}_2^{m+1} \mid \phi(y) = a\}$), and
- for every $a \in \mathbb{F}_2^{m-1}$, the restriction of h on $\phi^{-1}(a)$ has odd weight.

The \mathcal{GMM}_{m+1} class

Corollary ([2])

Let f be a bent function defined by Eq. (1). Then, the Hamming weight of h satisfies $2^{m-1} \le wt(h) \le 3 \cdot 2^{m-1}$.

Corollary ([2])

Let $\phi\colon \mathbb{F}_2^{m+1} \to \mathbb{F}_2^{m-1}$ be a 4-to-1 mapping s. t. $\left\{\phi^{-1}(a) \mid a \in \mathbb{F}_2^{m-1}\right\}$ is a partition of \mathbb{F}_2^{m+1} into 2-dim. flats. Then, there are exactly $2^{3\cdot 2^{m-1}}$ functions $h\colon \mathbb{F}_2^{m+1} \to \mathbb{F}_2$ s.t. f defined by

$$f(x,y) = x \cdot \phi(y) + h(y), \ \ x \in \mathbb{F}_2^{m-1}, y \in \mathbb{F}_2^{m+1},$$

is bent.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久で

A counterintuitive result

Before, we were interested in going outside $\mathcal{M}^{\#}$ using $f_1, \ldots, f_4 \in \mathcal{M}^{\#}$. However, we can end up in $\mathcal{M}^{\#}$ using $f_i \notin \mathcal{M}^{\#}$!

Corollary ([2])

For every even $n \geq 8$, there exist bent functions on \mathbb{F}_2^{n+2} that belong to $\mathcal{M}^\#$, whose restrictions to $\mathbb{F}_2^n \times \{(0,0)\}$ are bent functions outside $\mathcal{M}^\#$.

Bent functions in \mathcal{GMM}_{m+1} that belong to $\mathcal{M}^{\#}$

Proposition ([2])

Let n=2m and let $f\in\mathcal{B}_n$ be a bent function in \mathcal{GMM}_{m+1} , thus satisfying Theorem X, defined by

$$f(x,y) = x \cdot \phi(y) + h(y), \ \ x \in \mathbb{F}_2^{m-1}, y \in \mathbb{F}_2^{m+1}.$$

Assume there is $v \in \mathbb{F}_2^{m+1^*}$, such that, for all $z \in \mathbb{F}_2^{m-1}$, we have

$$v \in w_z + \phi^{-1}(z)$$
, for some $w_z \in \phi^{-1}(z)$.

Then, f is in $\mathcal{M}^{\#}$.

• For instance, splitting $\mathbb{F}_2^{m+1} = \bigcup_{i=1}^{2^{m-1}} (w_i + A)$ is not good as $f \in \mathcal{M}^\#$.

4 D > 4 P > 4 B > 4 B > 3

Proper partitions

- A proper partitioning of \mathbb{F}_2^{m+1} is needed!
- However, even a simple algorithm given below works:
- $\bullet \text{ Select } A_1 = \{0_{m+1}, a_0, b_0, a_0 + b_0\}, \text{ a linear subspace of } \mathbb{F}_2^{m+1}.$
- ② Select $a_1, b_1, c_1 \in \mathbb{F}_2^n \setminus A_1$; define

$$A_2 = a_1 + \{0_{m+1}, b_1 + a_1, c_1 + a_1, b_1 + c_1\}$$

which is an affine 2-dim. subspace of \mathbb{F}_2^{m+1} .

- **③** Continue with selecting a_i, b_i, c_i from $\mathbb{F}_2^{m+1} \setminus \bigcup_{j=1}^i A_j$ and defining $A_{i+1} = \{a_i, b_i, c_i, a_i + b_i + c_i\}$
- For n=2m=8, we found 4960 different decompositions of \mathbb{F}_2^5 out of which 3785 were "proper". These **proper** partitions (up to permutations of 2-dim. blocks) along with different h resulted in 2^{79} different bent functions outside $\mathcal{M}^\#$ (larger than $\#\mathcal{M}^\# \cup \mathcal{PS}^\#$)!

Proper partitions

- A proper partitioning of \mathbb{F}_2^{m+1} is needed!
- However, even a simple algorithm given below works:
- **1** Select $A_1 = \{0_{m+1}, a_0, b_0, a_0 + b_0\}$, a linear subspace of \mathbb{F}_2^{m+1} .
- ② Select $a_1, b_1, c_1 \in \mathbb{F}_2^n \setminus A_1$; define

$$A_2 = a_1 + \{0_{m+1}, b_1 + a_1, c_1 + a_1, b_1 + c_1\}$$

which is an affine 2-dim. subspace of \mathbb{F}_2^{m+1} .

- **3** Continue with selecting a_i, b_i, c_i from $\mathbb{F}_2^{m+1} \setminus \bigcup_{j=1}^i A_j$ and defining $A_{i+1} = \{a_i, b_i, c_i, a_i + b_i + c_i\}$
- For n=2m=8, we found 4960 different decompositions of \mathbb{F}_2^5 out of which 3785 were "proper". These **proper** partitions (up to permutations of 2-dim. blocks) along with different h resulted in 2^{79} different bent functions outside $\mathcal{M}^\#$ (larger than $\#\mathcal{M}^\# \cup \mathcal{PS}^\#$)!

Concluding remarks

- Currently, we are investigating \mathcal{GMM}_{m+2} , more difficult when ϕ is a 16-to-1 mapping (a proper partition ????).
- Notice that $\mathcal{GMM}_{m+k_1} \subset \mathcal{GMM}_{m+k_2}$ if $k_1 < k_2$, therefore we need to find bent functions in \mathcal{GMM}_{m+2} that are not in \mathcal{GMM}_{m+1} .
- Finally, more clarity is required about:
 - How do we distinguish classes of difference sets corresponding to e.g. 2^{106} bent functions for n = 8?
 - Even more important is the question about vectorial bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^r$ (with $r \leq n/2$) and their classification (partial difference sets).

Concluding remarks

- Currently, we are investigating \mathcal{GMM}_{m+2} , more difficult when ϕ is a 16-to-1 mapping (a proper partition ????).
- Notice that $\mathcal{GMM}_{m+k_1} \subset \mathcal{GMM}_{m+k_2}$ if $k_1 < k_2$, therefore we need to find bent functions in \mathcal{GMM}_{m+2} that are not in \mathcal{GMM}_{m+1} .
- Finally, more clarity is required about:
 - How do we distinguish classes of difference sets corresponding to e.g. 2^{106} bent functions for n = 8 ?
 - Even more important is the question about vectorial bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^r$ (with $r \leq n/2$) and their classification (partial difference sets).

- S. Hodzic, E. Pasalic, Y. Wei. A general framework for secondary constructions of bent and plateaued functions. *Des. Codes Cryptogr.* vol. 88(10): 2007–2035 (2020)
- S. Kudin, E. Pasalic, A. Polujan, F. Zhang and H. Zhao. Almost Maiorana-McFarland bent functions. url=https://arxiv.org/abs/2508.14265, 2025
- S. Kudin, E. Pasalic. A complete characterization of $\mathcal{D}_0 \cap \mathcal{M}^\#$ and a general framework for specifying bent functions in \mathcal{C} outside $\mathcal{M}^\#$. Des. Codes Cryptogr., vol. 90(8), pp. 1783–1796. (2022).
- S. KUDIN, E. PASALIC, N. CEPAK, F. ZHANG. Permutations without linear structures inducing bent functions outside the completed Maiorana-McFarland class. *Cryptogr. Commun.*, vol. 14(1), pp. 101–116, (2022).
- E. PASALIC, A. POLUJAN, S. KUDIN, AND F. ZHANG. Design and analysis of bent functions using *M*-subspaces. *IEEE Trans. Inf. Theory*, vol. 70(6), pp. 4464–4477, 2024.
- A. POLUJAN, E. PASALIC, S. KUDIN, AND F. ZHANG. Bent functions satisfying the dual bent condition and permutations with the (A_m) property. *Cryptogr. Commun.*, vol. 16, pp. 1235–1256, 2024.
 - S. Kudin, E. Pasalic, A. Polujan, and F. Zhang. The algebraic characterization of *M*-subspaces of bent concatenations and its application. *IEEE Trans. Inf. Theory*, vol. 71, no. 5, pp. 3999–4011, May 2025.
 - S. KUDIN, E. PASALIC, A. POLUJAN, AND F. ZHANG. Permutations satisfying (P_1) and (P_2) properties and ℓ -optimal bent functions. *submitted*, 2025.