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Boolean functions

• Boolean mapping f : Fn
2 → F2, F2 = {0, 1}. All such f in Bn.

Definition
The truth table of f - evaluation of f for all possible inputs.

x3 x2 x1 f (x) f (x)↑ x1 Wf (a)

0 0 0 0 0 0
0 0 1 0 1 4
0 1 0 0 0 0
0 1 1 1 0 -4
1 0 0 1 1 4
1 0 1 1 0 0
1 1 0 0 0 4
1 1 1 1 0 0

The truth table gives f (x1, x2, x3) = x1x2 ↑ x2x3 ↑ x3, deg(f ) = 2.
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Walsh transform and research complexity

Walsh (Fourier) transform for f : Fn
2 → F2 defined by

Wf (a) =
∑

x→Fn
2

(↓1)f (x)↑a·x ; a ↔ Fn
2; a · x = a1x1 ↑ · · ·↑ anxn.

Parseval’s equality:
∑

a→Fn
2
Wf (a)2 = 22n, for any f ↔ Bn !

Measures the Hamming distance between f and linear functions a · x
(linear cryptanalysis); covering radius of 1st order Reed-Muller code

COMPLEXITY: The space too large 22
n
to search for suitable ones

to be used in (symmetric-key) cryptography

The research complexity comes from di!erent cryptographic requests:
nonlinearity, alg. degree, resiliency, higher order nonl. ...
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Bent functions - perfect combinatorial objects

Why perfect ??

Walsh spectra is uniform Wf ↔ {±2
n
2 } for bent f ↔ Bn, for even n

only, thus highest nonlinearity (distance to a”ne functions) !!

Take a derivative Daf (x) := f (x ↑ a)↑ f (x) for any nonzero a, then
Daf (x) is a balanced function (#0 = #1 in the truth table) !

Given f , its Cayley graph ((u, v) ↔ Ef IFF f (u ↑ v) = 1) is strongly
regular (SRG) !! ...

Applications ??

cryptography

spread spectrum communications, sequences

coding theory

correspondence to (relative) di!erence sets, design theory
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Di!erence sets of 2-abelian group G = Z2m
2

Combinatorial structure of additive 2-abelian group G = Z2m
2 , with

n = 2m.

In general, a k-subset D of a group G is a (v , k ,ω) di!erence set, if
the following holds:

|G | = v ; |D| = k

g = d ↓ d
→ has exactly ω solutions d , d → ↔ D if g ↗= 0.

FACT: Only di!erence sets in Z2m
2 = F2m

2 = G have parameters

(22m, |D| = 22m↓1 ± 2m↓1, ω = 22m↓2 ± 2m↓1).

EXAMPLE: For n = 2m = 4 di!erence sets of the form (16, 6, 2) exist.

HOW: Take D = {x : f (x) = 1} of a (necessarily) bent function as in
the next example ! E.g. 0001 = 1010 + 1011 (and vice versa)
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Di!erence set - an example

Example f (x , y) = x · y = x1y1 ↑ x2y2, for x = (x1, x2), y = (y1, y2).

y2 y1 x2 x1 f (x , y)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0

0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1

1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1

1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
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Primary classes of bent functions - M class

It turns out that for n ↘ 6, n is even, all bent functions are in the
(completed) Maiorana-McFarland (M) class given by

f (x , y) = x · ε(y) + g(y) x , y ↔ Fn/2
2 ,

where ε is a permutation on Fn/2
2 and g ↔ Bn/2 arbitrary Boolean.

For any fixed y = a, f (x , a) = x · ε(a) + g(a) is a”ne in x .

Introduced in 1973, and Dillon showed in 1976 that f ↔ M# IFF ≃
lin. subspace V with dim(V ) = n/2 s. t. for all a, b ↔ V :

DaDbf (x) = f (x) + f (x + a) + f (x + b) + f (x + a+ b) = 0, ⇐x ↔ Fn
2.

EA-equivalence provides completed class M#:

M# = {f (Ax+b)+c ·x+d : f ↔ M,A ↔ GL(n,F2), b, c ↔ Fn
2, d ↔ F2}.
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Showing that V = Fn/2
2 ⇒ {0n/2} is an M-subspace

Any V s.t. DaDbf = 0 for all a, b ↔ V is called an M-subspace.

For f ↔ M the canonical M-subspace is V = Fn/2
2 ⇒ {0n/2} (might

be many more but for any V we have dim(V ) ↘ n/2)

Proof: Consider f (x , y) = x · ε(y) (since g(y) does not matter) and

Let a = (a1, 0n/2), b = (b1, 0n/2) ↔ Fn/2
2 ⇒ {0n/2}. Then,

f (x + a1, y) = (x + a1) · ε(y)
f (x + b1, y) = (x + b1) · ε(y)

f (x + a1 + b1, y) = (x + a1 + b1) · ε(y)

We get f (x , y) + f (x + a1, y) + f (x + b1, y) + f (x + a1 + b1, y) = 0,

for all x , y ↔ Fn/2
2 .
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Primary classes of bent functions - PS class

Also, Partial Spread (PS) class of Dillon 1976 (indicator of a union of
2n/2↓1 (or 2n/2↓1 + 1) of disjoint lin. subspaces of dim. n/2).

PROBLEM (Classification/Enumeration): Both M and PS class
only a tiny portion of all bent functions - find other classes !!

For n = 8, both M# and PS# give only 277 out of 2106 bent
functions

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 10 / 36



Primary classes of bent functions - PS class

Also, Partial Spread (PS) class of Dillon 1976 (indicator of a union of
2n/2↓1 (or 2n/2↓1 + 1) of disjoint lin. subspaces of dim. n/2).

PROBLEM (Classification/Enumeration): Both M and PS class
only a tiny portion of all bent functions - find other classes !!

For n = 8, both M# and PS# give only 277 out of 2106 bent
functions

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 10 / 36



Modifying the M class - the C class

Originally suggested by Dillon in his PhD thesis, developed by C.
Carlet in 1993

The class C is the set of all (bent) Boolean functions of the form

f (x , y) = x · ε(y) + L→(x), x , y ↔ Fm
2

where L is any linear subspace of Fm
2 , L→ is the indicator function of

the space L
↔, and ε is any permutation of Fm

2 such that:

(C ) ϑ(a+ L) is an a”ne subspace, for all a ↔ Fm
2 , with ϑ := ε↓1.

Modification performed for any (x , y) ↔ L
↔ ⇒ Fm

2 !
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Some su”cient conditions for C class

Theorem (F. Zhang, EP, N. Cepak, Y. Wei 2016)

Let n = 2m ⇑ 8 and

f (x , y) = x · ε(y)↑ 1L→(x), x , y ↔ Fm
2

so that (ε, L) has property (C ). If (ε, L) satisfies:

1 dim(L) ⇑ 2;

2 u · ε has no nonzero linear structure for all u ↔ Fm
2 \{0n},

then f does not belong to M#
.

NOTE: Linear structure means that u · ε(y) + u · ε(y + a) = 0/1 !

Using ε(y) = (ε1(y), . . . ,εm(y)) we want to avoid
u1ε1(y) + · · ·+ umεm(y) + u1ε1(y + a) + · · ·+ umεm(y + a) = 0/1.
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An explicit family in C outside M

A few articles on this topic “bent functions in C/D outside M#”, for
instance one result (for large n = 2m) is:

Theorem ([3]- S. Kudin, EP)

Let m, k and t be three integers such that and m ⇑ k ⇑ t + 3 ⇑ 4.

Let S be an arbitrary subset of Et = ⇓ 1, 2, . . . , t⇔ ↖ Fm
2 .

Let ϖS(y) be an arbitrary non-identity permutation of Fm
2 which

fixes elements in Fm
2 \ S , (hence |S | ⇑ 2).

Define f (x , y) = x · ϖS(y) + E→
k
(x), with x , y ↔ Fm

2 , where

Ek = ⇓ 1, 2, . . . , k⇔ ↙ Fm
2 .

Then, f is a bent function in C outside M#
.
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Modifying the M class - the D class

The class D , defined similarly as C by C. Carlet in 1993, is the set of
all Boolean (bent) functions of the form

f (x , y) = x · ε(y) + E1(x) E2(y), x , y ↔ Fm
2 ,

(D) E1,E2 two linear subspaces of Fm
2 such that ε(E2) = E

↔
1 , and

dim(E1) + dim(E2) = m (min. distance between bent functions 2m).

Special case when E1 = 0m and E2 = Fm
2 (called D0 class), then

E1(x) E2(y) = ϱ0(x) =
m∏

i=1

(xi ↑ 1).

Carlet proved that D0 ↗↖ M# and D0 ↗↖ PS#; in the former case
enough that a restriction of ε to any hyperplane is not a!ne !
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D0 outside M# - large degree

Lemma ([3])

Let g ↔ Bn. If there exists an (n ↓ k)-dimensional M-subspace H of Fn
2,

such that DaDbg = 0 for all a, b ↔ H, then deg(g) ↘ k + 1.

Theorem ([3])

Let m be an integer, m ⇑ 4. Let ε be a permutation of Fm
2 with

deg(ε) ⇑ 3. Then,

f (x , y) = x · ε(y) + ϱ0(x) ↔ D0, x , y ↔ Fm
2 ,

is a bent function outside M#
.

The algebraic degree of ε over Fm
2 is deg(ε) = max1↗i↗m deg(εi ).
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D0 outside M# - large degree

Lemma ([3])
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D0 outside M# - quadratic case

Theorem ([3]- complete characterization)

Let ε be a quadratic permutation of Fm
2 , m ⇑ 4. Then,

f (x , y) = x · ε(y) + ϱ0(x) ↔ M#

IFF there is a linear hyperplane of Fm
2 on which ε is a!ne.

The presented results give some explicit families of bent functions
outside M# but we are far away from 2106 (e.g. #D#

0 < #M#).

To handle this, we have taken two di”erent approaches:
concatenation/decomposition method (in terms of M-subspaces)

and the generalized M-M class (GMM)
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M-subspaces of Boolean (bent) functions

Recall, for f ↔ Bn a vector subspace V of Fn
2 is called an

M-subspace of f , if DaDbf = 0, for all a, b ↔ V .

The maximum dimension of any M-subspace V is n/2, for any
bent function f ( dim(V ) = n/2 ∝ f ↔ M#).

Useful to distinguish bent functions {f } w.r.t. the maximal
dimension of M-subspaces, called linearity index of f , ind(f ).

Important, M-subspaces are invariant under EA-equivalence -
meaning that the number of M-subspaces of any fixed dimension is
the same! (A. Polujan, PhD thesis)

IDEA: Much easier to construct f = f1||f2||f3||f4 ↗↔ M# when
fi ↔ M# has a unique M-subspace of dimension n/2.
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Non-unique M-subspace of maximal dimension

Proposition ([5])

Let ε be a permutation of Fm
2 having a non-zero linear structure

s ↔ Fm
2 , i.e., for some v ↔ Fm

2 , i.e.

Dsε(y) = ε(y) + ε(y + s) = v , for all y ↔ Fm
2 .

Then, the bent function f ↔ M

f (x , y) = x · ε(y) + h(y), x , y ↔ Fm
2 ,

has at least two m-dimensional M-subspaces.
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P1 induces uniqueness

Theorem ([5])

Let ε be a permutation of Fm
2 which has the following (P1) property:

DvDwε ↗= 0m for all linearly independent v ,w ↔ Fm
2 . (P1)

(thus ε(y) + ε(y + v) + ε(y + w) + ε(y + v + w) ↗= 0m)

Letting f (x , y) = x · ε(y) + h(y), for all x , y ↔ Fm
2 , then:

1) Permutation ε has no linear structures.

2) The vector space V = Fm
2 ⇒ {0m} is the unique m-dimensional

M-subspace of f .

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 19 / 36



P1 induces uniqueness

Theorem ([5])

Let ε be a permutation of Fm
2 which has the following (P1) property:

DvDwε ↗= 0m for all linearly independent v ,w ↔ Fm
2 . (P1)

(thus ε(y) + ε(y + v) + ε(y + w) + ε(y + v + w) ↗= 0m)

Letting f (x , y) = x · ε(y) + h(y), for all x , y ↔ Fm
2 , then:

1) Permutation ε has no linear structures.

2) The vector space V = Fm
2 ⇒ {0m} is the unique m-dimensional

M-subspace of f .

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 19 / 36



P2 characterizes uniqueness

Definition

Let ε be a permutation of Fm
2 . Let S ↖ Fm

2 with dim(S) = m ↓ k , with

1 ↘ k ↘ m ↓ 1, such that DaDbε = 0m for all a, b ↔ S . Then, ε satisfies

the property (P2) w.r.t. S if ↗ ≃V ↖ Fm
2 , with dim(V ) = k , such that

v · Daε(y) = 0; for all a ↔ S , all y ↔ Fm
2 , and for all v ↔ V . (P2)

If ε satisfies this property w.r.t. any linear subspace S of Fm
2 of arbitrary

dimension 1 ↘ dim(S) ↘ m ↓ 1, then we simply say that ε satisfies (P2).

Proposition ([5])

Let ε be a non-a!ne permutation of Fm
2 and f (x , y) = x · ε(y) be bent

Then, ε has (P2) IFF the only m-dim. M-subspace of f is Fm
2 ⇒ {0m}.
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P1 and P2 properties - constructions on larger spaces

Proposition ([5])

Let ϖ1 and ϖ2 be two permutations of Fm
2 such that DuDvϖ1 ↗= DuDvϖ2

for any distinct elements u, v ↔ Fm
2
↘
. Define ε : Fm+1

2 → Fm+1
2 by

ε(y , ym+1) = (ϖ1(y) + ym+1(ϖ1(y) + ϖ2(y)), ym+1) , ⇐y ↔ Fm
2 , ym+1 ↔ F2.

Then, ε is a permutation of Fm+1
2 satisfying (P1).

Theorem ([8])

Let ϖ1 and ϖ2 be two permutations of Fm
2 and assume that ϖ1 + ϖ2

satisfies (P2). Then, ε above satisfies (P2).

Proposition ([8])

Let ε be a permutation of Fm
2 . If ε satisfies (P1), then it satisfies (P2).
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ω-optimality - minimal dimension of M-subspaces

Definition

Let f ↔ Bn be bent. If ind(f ) = 1, we say that f is ς-optimal, i.e.,

DaDbf ↗= 0, for any lin. indep. a, b ↔ Fn
2.

Theorem ([8])

Let ε be a permutation of Fm
2 , m ⇑ 4, satisfying (P1). Define

f (x , y) = x · ε(y) + ϱ0(x), x , y ↔ Fm
2 .

Then, ind(f ) ↘ 2 (thus f ↗↔ M#
). Furthermore, ind(f ) = 1, if and only if

ε has no components with linear structures (i.e. u · Daε ↗= 0/1).
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Bent revelation - simple reasoning works

Kept myself asking, how to get closer to 2106 ?!, for n = 8.

One lovely morning (or evening) the revelation came:

FACT: All bent functions in n = 6 variables are in the M class

FACT: A bent function f in n + 2 = 8 variables can be viewed as a
concatenation of 4 functions fi in 6 variables, so that f = f1||f2||f3||f4

FACT -Canteaut-Charpin 2000: These fi can be bent, semi-bent
(Wfi ↔ {0,±2n/2+1) or 5-valued spectra (Wfi ↔ {0,±2n/2,±2n/2+1)

Does it mean that we can concatenate fi ↔ M and get f outside M ?

YES !!
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4-concatenation

Let f = f1||f2||f3||f4 ↔ Bn+2, whose ANF is given by

f (x , y1, y2) = f1(x)+y1(f1+f3)(x)+y2(f1+f2)(x)+y1y2(f1+f2+f3+f4)(x),

where x ↔ Fn
2 and y1, y2 ↔ F2.

Subfunctions: f1(x) = f (x , 0, 0), f2(x) = f (x , 0, 1), f3(x) = f (x , 1, 0)
and f4(x) = f (x , 1, 1).

(IMPORTANT) If fi are bent then f = f1||f2||f3||f4 is bent IFF
f
↘
1 ↑ f

↘
2 ↑ f

↘
3 ↑ f

↘
4 = 1 [1], with the dual bent functions f ↘i given as:

f
↘
i (a) =

{
0 if Wfi (a) = +2n/2

1 if Wfi (a) = ↓2n/2

Notation f
a means f (x + a) (used on next 2 slides) !!
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M-subspaces of 4-concatenation

Theorem ([7])

Let f = f1||f2||f3||f4 ↔ Bn+2, where f1, . . . , f4 ↔ Bn are arbitrary. Let W be
a (k + 2)-dim. subspace of Fn+2

2 , for k ↔ {0, . . . , n}. Then, W is an

M-subspace of f IFF W has one of the following forms:

a) W = V ⇒ {(0, 0)}, where V ↖ Fn
2 is a common (k + 2)-dimensional

M-subspace of f1, . . . , f4.

b) W = ⇓V ⇒ {(0, 0)}, (a, 1, 0)⇔, where V is a common
(k + 1)-dimensional M-subspace of f1, . . . , f4, and a ↔ Fn

2 is such that

Dv f1 + Dv f
a
2 = Dv f3 + Dv f

a
4 = 0, for all v ↔ V .

c) W = ⇓V ⇒ {(0, 0)}, (a, 0, 1)⇔, where V is a common
(k + 1)-dimensional M-subspace of f1, . . . , f4, and a ↔ Fn

2 is such that

Dv f1 + Dv f
a
3 = Dv f2 + Dv f

a
4 = 0, for all v ↔ V .

d) W = ⇓V ⇒ {(0, 0)}, (a, 1, 1)⇔, where V is a common
(k + 1)-dimensional M-subspace of f1, . . . , f4, and a ↔ Fn

2 is such that

Dv f1 + Dv f
a
4 = Dv f2 + Dv f

a
3 = 0, for all v ↔ V .

e) W = ⇓V ⇒ {(0, 0)}, (a, 0, 1), (b, 1, 0)⇔, where V is a common
k-dimensional M-subspace of f1, . . . , f4, and a, b ↔ Fn

2 are such that

Dv f1 + Dv f
a
3 = Dv f2 + Dv f

a
4 = Dv f1 + Dv f

b
2 = Dv f3 + Dv f

b
4 =

0, for all v ↔ V , and

f1(x) + f2(x + b) + f3(x + a) + f4(x + a+ b) = 0, for all x ↔ Fn
2.
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Corollary ([7]- bent case)

Let f = f1||f2||f3||f4 ↔ Bn+2, where f1, . . . , f4 ↔ Bn and assume that f is

bent. Then, f is outside M#
if and only if

a) The functions f1, . . . , f4 do not share a common (n/2 + 1)-dim.

M-subspace (impossible if fi are bent);

b) There are no common (n/2)-dim. M-subspaces V ↖ Fn
2 of f1, . . . , f4

s. t. ≃a ↔ Fn
2 for which

Dv f1 + Dv f
a
2 = Dv f3 + Dv f

a
4 = 0, for all v ↔ V , or

Dv f1 + Dv f
a
3 = Dv f2 + Dv f

a
4 = 0, for all v ↔ V , or

Dv f1 + Dv f
a
4 = Dv f2 + Dv f

a
3 = 0, for all v ↔ V .

c) There are no common (n/2↓ 1)-dim. M-subspaces V ↖ Fn
2 of

f1, . . . , f4 s. t. ≃a, b ↔ Fn
2 (including a = b), for which

Dv f1 + Dv f
a
3 = Dv f2 + Dv f

a
4 = Dv f1 + Dv f

b
2 = Dv f3 + Dv f

b
4 = 0, and

f1(x) + f2(x + b) + f3(x + a) + f4(x + a+ b) = 0, for all x ↔ Fn
2.
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Satisfying the conditions

Corollary ([7])

Let h, g ↔ Bn be arbitrary bent functions.

Define f1 = f3 = g and f2 = f4 + 1 = h

Then, f = f1||f2||f3||f4 = g ||h||g ||h + 1 ↔ Bn+2 (or g ||g ||h||h + 1 if

you want) is bent and f ↔ M# IFF g and h have a common
(n/2)-dim. M-subspace; so g , h ↔ M#

.

How to avoid sharing an M#-subspace of dimension n/2 ?

E.g. take g or h outside M# ! We want g , h ↔ M# and f ↗↔ M#

Solution: g(x , y) = x · ε(y) and (swap variables) h(x , y) = y · ε(x).
For instance, if ε satisfies (P1) (or (P2)) then the unique

M#-subspace of dim. n/2 for g and h are Fn/2
2 ⇒ {0n/2} and

{0n/2}⇒ Fn/2
2 , respectively !
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Corollary ([7])

Let g ↔ Bn be an arbitrary bent function n ⇑ 6. Then, there exists a bent

function f ↔ Bn+2 outside M#
such that g(x) = f (x , 0, 0), for all x ↔ Fn

2.

Theorem ([7])

For n ⇑ 6, the number of bent functions outside M#
in n + 2 variables is

always strictly greater than the number of all bent functions in n variables.

Many other results in [2]- [7] and quite large families of bent
functions outside M#, still not close to 2106.
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The GMM class

Definition

Let n = 2m be an even positive integer and 0 ↘ k ↘ m ↓ 1. The set

f (x , y) = x · ϑ(y) + h(y), x ↔ Fm↓k
2 , y ↔ Fm+k

2 ,

is called the strict GMMm+k class, with ϑ : Fm+k
2 → Fm↓k

2 and h ↔ B n
2+k

For k = 0, this class corresponds to M when ϑ permutes Fm
2 .

For k = m ↓ 1, any Boolean function is in GMMn↓1!

Indeed, x ↔ F2 and y ↔ Fn↓1
2 , and for fixed y

↘ we have
f (x , y↘) = x1 · ϑ(y↘) + h(y↘) which can be made 0 or 1 via ϑ and h.

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 29 / 36



The GMM class

Definition

Let n = 2m be an even positive integer and 0 ↘ k ↘ m ↓ 1. The set

f (x , y) = x · ϑ(y) + h(y), x ↔ Fm↓k
2 , y ↔ Fm+k

2 ,

is called the strict GMMm+k class, with ϑ : Fm+k
2 → Fm↓k

2 and h ↔ B n
2+k

For k = 0, this class corresponds to M when ϑ permutes Fm
2 .

For k = m ↓ 1, any Boolean function is in GMMn↓1!

Indeed, x ↔ F2 and y ↔ Fn↓1
2 , and for fixed y

↘ we have
f (x , y↘) = x1 · ϑ(y↘) + h(y↘) which can be made 0 or 1 via ϑ and h.

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 29 / 36



The GMM class

Definition

Let n = 2m be an even positive integer and 0 ↘ k ↘ m ↓ 1. The set

f (x , y) = x · ϑ(y) + h(y), x ↔ Fm↓k
2 , y ↔ Fm+k

2 ,

is called the strict GMMm+k class, with ϑ : Fm+k
2 → Fm↓k

2 and h ↔ B n
2+k

For k = 0, this class corresponds to M when ϑ permutes Fm
2 .

For k = m ↓ 1, any Boolean function is in GMMn↓1!

Indeed, x ↔ F2 and y ↔ Fn↓1
2 , and for fixed y

↘ we have
f (x , y↘) = x1 · ϑ(y↘) + h(y↘) which can be made 0 or 1 via ϑ and h.

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 29 / 36



The GMMm+1 class

Theorem (X- [2])

Let n = 2m and let f ↔ GMMm+1 (thus k = 1) so that

f (x , y) = x · ϑ(y) + h(y), x ↔ Fm↓1
2 , y ↔ Fm+1

2 , (1)

where ϑ : Fm+1
2 → Fm↓1

2 and h : Fm+1
2 → F2. Then, f is bent IFF

the collection
{
ϑ↓1(a) | a ↔ Fm↓1

2

}
is a partition of Fm+1

2 into 2-dim.
a!ne subspaces (where ϑ↓1(a) = {y ↔ Fm+1

2 | ϑ(y) = a}), and

for every a ↔ Fm↓1
2 , the restriction of h on ϑ↓1(a) has odd weight.
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The GMMm+1 class

Corollary ([2])

Let f be a bent function defined by Eq. (1). Then, the Hamming weight

of h satisfies 2m↓1 ↘ wt(h) ↘ 3 · 2m↓1
.

Corollary ([2])

Let ϑ : Fm+1
2 → Fm↓1

2 be a 4-to-1 mapping s. t.
{
ϑ↓1(a) | a ↔ Fm↓1

2

}
is a

partition of Fm+1
2 into 2-dim. flats. Then, there are exactly 23·2

m↑1

functions h : Fm+1
2 → F2 s.t. f defined by

f (x , y) = x · ϑ(y) + h(y), x ↔ Fm↓1
2 , y ↔ Fm+1

2 ,

is bent.
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A counterintuitive result

Before, we were interested in going outside M# using f1, . . . , f4 ↔ M#.
However, we can end up in M# using fi ↗↔ M# !

Corollary ([2])

For every even n ⇑ 8, there exist bent functions on Fn+2
2 that belong to

M#
, whose restrictions to Fn

2 ⇒ {(0, 0)} are bent functions outside M#
.

Enes Pasalic (University of Primorska, Koper, SloveniaJoint work with S. Kudin, A. Polujan and F. Zhang)Bent functions - five decades later IRSEE 2025 32 / 36



Bent functions in GMMm+1 that belong to M#

Proposition ([2])

Let n = 2m and let f ↔ Bn be a bent function in GMMm+1, thus

satisfying Theorem X, defined by

f (x , y) = x · ϑ(y) + h(y), x ↔ Fm↓1
2 , y ↔ Fm+1

2 .

Assume there is v ↔ Fm+1
2

↘
, such that, for all z ↔ Fm↓1

2 , we have

v ↔ wz + ϑ↓1(z), for some wz ↔ ϑ↓1(z).

Then, f is in M#
.

For instance, splitting Fm+1
2 = ′2m↑1

i=1 (wi +A) is not good as f ↔ M#.
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Proper partitions

A proper partitioning of Fm+1
2 is needed!

However, even a simple algorithm given below works:

1 Select A1 = {0m+1, a0, b0, a0 + b0}, a linear subspace of Fm+1
2 .

2 Select a1, b1, c1 ↔ Fn
2 \ A1; define

A2 = a1 + {0m+1, b1 + a1, c1 + a1, b1 + c1}

which is an a”ne 2-dim. subspace of Fm+1
2 .

3 Continue with selecting ai , bi , ci from Fm+1
2 \ ′i

j=1Aj and defining
Ai+1 = {ai , bi , ci , ai + bi + ci}
For n = 2m = 8, we found 4 960 di!erent decompositions of F5

2 out
of which 3 785 were “proper”. These proper partitions (up to
permutations of 2-dim. blocks) along with di!erent h resulted in 279

di!erent bent functions outside M# (larger than #M# ′ PS#) !
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Concluding remarks

Currently, we are investigating GMMm+2, more di”cult when ϑ is a
16-to-1 mapping (a proper partition ????).

Notice that GMMm+k1 ↖ GMMm+k2 if k1 < k2, therefore we need
to find bent functions in GMMm+2 that are not in GMMm+1.

Finally, more clarity is required about:
How do we distinguish classes of di!erence sets corresponding to e.g.
2106 bent functions for n = 8 ?

Even more important is the question about vectorial bent functions
F : Fn

2 → Fr
2 (with r ↘ n/2) and their classification (partial di!erence

sets).
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