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Summary of the talk

@ Bent functions and their applications

Primary classes of bent functions

Modifying the M-class

M-subspaces in the design of bent functions, 4-concatenation

@ Bent functions in the GMM class

o Concluding remarks
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Boolean functions

e Boolean mapping f : F§ — Fp, Fo = {0,1}. All such f in B,,.

Definition
The truth table of f - evaluation of f for all possible inputs.

s [ [a [ FO) [ FO)@x | Wia) |
0]0]0] 0 0 0
00 1] 0 1 5
010 0 0 0
011 1 0 ]
100 1 1 7
101 1 0 0
1 1[0 0 0 z
111 1 0 0

The truth table giVES f—(Xl., X2, X3) = X1 X2 D XoX3 D X3, deg(f) =2.
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Walsh transform and research complexity

e Walsh (Fourier) transform for f : F§ — F, defined by

We(a) = Z (—1)f®ax 3RS a.x=ax - B anxs.
x€F3

® Parseval's equality: 3, 5 We(a)? = 22", for any f € B, !
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Walsh transform and research complexity

e Walsh (Fourier) transform for f : F§ — F, defined by

We(a) = Z (—1)f®ax 3RS a.x=ax - B anxs.
x€F3

® Parseval's equality: 3, 5 We(a)? = 22", for any f € B, !

@ Measures the Hamming distance between f and linear functions a - x
(linear cryptanalysis); covering radius of 1st order Reed-Muller code
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Walsh transform and research complexity

e Walsh (Fourier) transform for f : F§ — F, defined by

We(a) = Z (—1)f®ax 3RS a.x=ax - B anxs.
x€F3

® Parseval's equality: 3, 5 We(a)? = 22", for any f € B, !

@ Measures the Hamming distance between f and linear functions a - x
(linear cryptanalysis); covering radius of 1st order Reed-Muller code

e COMPLEXITY: The space too large 22" to search for suitable ones
to be used in (symmetric-key) cryptography

@ The research complexity comes from different cryptographic requests:
nonlinearity, alg. degree, resiliency, higher order nonl. ...
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Bent functions - perfect combinatorial objects

Why perfect 7?7

o Walsh spectra is uniform W; € {+22} for bent f € 9B, for even n
only, thus highest nonlinearity (distance to affine functions) !!

o Take a derivative D,f(x) := f(x & a) @ f(x) for any nonzero a, then
D,f(x) is a balanced function (#0 = #1 in the truth table) !

e Given f, its Cayley graph ((u,v) € Ef IFF f(u @ v) = 1) is strongly
regular (SRG) !l ...
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Bent functions - perfect combinatorial objects

Why perfect 7?7

o Walsh spectra is uniform W; € {+22} for bent f € 9B, for even n
only, thus highest nonlinearity (distance to affine functions) !!

o Take a derivative D,f(x) := f(x & a) @ f(x) for any nonzero a, then
D,f(x) is a balanced function (#0 = #1 in the truth table) !

e Given f, its Cayley graph ((u,v) € Ef IFF f(u @ v) = 1) is strongly
regular (SRG) !l ...
Applications 77

@ cryptography
@ spread spectrum communications, sequences
@ coding theory

correspondence to (relative) difference sets, design theory
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Difference sets of 2-abelian group G = Z3™

Combinatorial structure of additive 2-abelian group G = Z%m, with
n=2m.

@ In general, a k-subset D of a group G is a (v, k, \) difference set, if
the following holds:
o |Gl=v; |D|=k
o g =d — d hasexactly A solutions d,d’ € D if g # 0.
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Difference sets of 2-abelian group G = Z3™

Combinatorial structure of additive 2-abelian group G = 72M with
n=2m.

@ In general, a k-subset D of a group G is a (v, k, \) difference set, if
the following holds:

o |G|=v; |Dl=k
o g =d — d hasexactly A solutions d,d’ € D if g # 0.

e FACT: Only difference sets in Z3™ = F3™ = G have parameters

(22m7 ‘D‘ — 22m71 + 2m71? A\ = 22m72 + 2m71).
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Difference sets of 2-abelian group G = Z3™

Combinatorial structure of additive 2-abelian group G = Z%m, with
n=2m.

@ In general, a k-subset D of a group G is a (v, k, \) difference set, if
the following holds:

o |G|=v; |Dl=k
o g =d — d hasexactly A solutions d,d’ € D if g # 0.

e FACT: Only difference sets in Z3™ = F3™ = G have parameters
(22m7 ‘D‘ — 22m71 + 2m71? A\ = 22m72 + 2m71).
EXAMPLE: For n = 2m = 4 difference sets of the form (16, 6, 2) exist.

HOW: Take D = {x : f(x) = 1} of a (necessarily) bent function as in
the next example ! E.g. 0001 = 1010 + 1011 (and vice versa)
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Difference set - an example

@ Example f(x,y) =x -y = x1y1 ® xay2, for x = (x1,x2), y = (y1, y2).

Ly [y loe [[a] fixy) ]
0 [0[O0JO] o0
0o (0[O0 1] o
0O [0 [1 0] o
0o [0 [1 1] o
0O [ 10O o0
0o [1 o 1] 1
0o [1[1] 0] o
o [1[1 1] 1
1J0J0]0] 0
10 01 ] ©
1o [1]0] 1
1o 1] 1] 1
1]1]0]0] 0
11 0] 1] 1
11 1] 0] 1
111 1] 0

Enes Pasalic (University of Primorska, Koper, Bent functions - five decades later IRSEE 2025



Primary classes of bent functions - M class

@ It turns out that for n < 6, n is even, all bent functions are in the
(completed) Maiorana-McFarland (M) class given by

fx,y) = x-7(y) +&ly) x,yeF?

where 7 is a permutation on ng and g € B> arbitrary Boolean.

e For any fixed y = a, f(x,a) = x - m(a) + g(a) is affine in x.
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Primary classes of bent functions - M class

@ It turns out that for n < 6, n is even, all bent functions are in the
(completed) Maiorana-McFarland (M) class given by

fx,y) = x-7(y) +&ly) x,yeF?

where 7 is a permutation on ng and g € B> arbitrary Boolean.

e For any fixed y = a, f(x,a) = x - m(a) + g(a) is affine in x.

e Introduced in 1973, and Dillon showed in 1976 that f € M# IFF 3
lin. subspace V with dim(V) =n/2s. t. for all a,b € V:

D.Dpf(x) = f(x) + f(x + a) + f(x + b) + f(x +a+ b) =0, Vx € F3.
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Primary classes of bent functions - M class

@ It turns out that for n < 6, n is even, all bent functions are in the
(completed) Maiorana-McFarland (M) class given by

2
f(x.y) = x-n(y) +&ly) x.yeF5>
where 7 is a permutation on ng and g € B> arbitrary Boolean.
e For any fixed y = a, f(x,a) = x - m(a) + g(a) is affine in x.

e Introduced in 1973, and Dillon showed in 1976 that f € M# IFF 3
lin. subspace V with dim(V) =n/2s. t. for all a,b € V:

D.Dpf(x) = f(x) + f(x + a) + f(x + b) + f(x +a+ b) =0, Vx € F3.

o EA-equivalence provides completed class M#:

M# = {f(Ax+b)+cx+d : f € M,Ac GL(n,Fz),b,c € F3,d € Fp}.
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Showing that V = Fg/2 X {0,/2} is an M-subspace

o Any V sit. D,Dpf =0 for all a,b € V is called an M-subspace.

e For f € M the canonical M-subspace is V = IF 2 x 10,2} (might
be many more but for any V we have dim(V) < n/2)
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Showing that V = Fg/2 X {0,/2} is an M-subspace

o Any V sit. D,Dpf =0 for all a,b € V is called an M-subspace.

e For f € M the canonical M-subspace is V = IF 2 x 10,2} (might
be many more but for any V we have dim(V) < n/2)

@ Proof: Consider f(x,y) = x-7(y) (since g(y) does not matter) and

o Let a=(a1,0,/2), b= (b1,0,)5) € F ? x {0,/2}. Then,

f(x+a,y) = (x+a1) 7(y)
f(x+b1,y) = (x+b1)-7(y)
f(x+a+b1,y) = (x+a1+b1)- 7(y)
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Showing that V = Iﬁ‘gm X {0,/2} is an M-subspace

o Any V sit. D,Dpf =0 for all a,b € V is called an M-subspace.

e For f € M the canonical M-subspace is V = IF 2 x 10,2} (might
be many more but for any V we have dim(V) < n/2)

@ Proof: Consider f(x,y) = x-7(y) (since g(y) does not matter) and

o Let a=(a1,0,/2), b= (b1,0,)5) € F ? x {0,/2}. Then,

f(x+a,y) = (x+a1) 7(y)
f(x+b1,y) = (x+b1)-7(y)
f(x+a+b1,y) = (x+a1+b1)- 7(y)

o We get f(x,y) + f(x+a1,y) + f(x+ b1, y) + f(x + a1+ b1,y) =0,
for all x,y € Fg/z
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Primary classes of bent functions - PS class

@ Also, Partial Spread (PS) class of Dillon 1976 (indicator of a union of
2n/2=1 (or 221 4 1) of disjoint lin. subspaces of dim. n/2).
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Primary classes of bent functions - PS class

@ Also, Partial Spread (PS) class of Dillon 1976 (indicator of a union of
2n/2=1 (or 221 4 1) of disjoint lin. subspaces of dim. n/2).

o PROBLEM (Classification/Enumeration): Both M and PS class
only a tiny portion of all bent functions - find other classes !l

e For n =8, both M# and PS* give only 277 out of 21% bent
functions

Enes Pasalic (University of Primorska, Koper, Bent functions - five decades later IRSEE 2025




Modifying the M class - the C class

@ Originally suggested by Dillon in his PhD thesis, developed by C.
Carlet in 1993

@ The class C is the set of all (bent) Boolean functions of the form
fixy) =x-m(y) + 12(x), x,y € FF

where L is any linear subspace of F', 1,. is the indicator function of
the space L+, and 7 is any permutation of F5" such that:

(C) ¢(a+ L) is an affine subspace, for all a € FJ, with ¢ := 7~ 1.

o Modification performed for any (x,y) € L+ x FJ'!
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Some sufficient conditions for C class

Theorem (F. Zhang, EP, N. Cepak, Y. Wei 2016)

Let n=2m > 8 and

fix,y) =x-7(y) @ 11(x), x,y €Fy
so that (m, L) has property (C). If (w, L) satisfies:
0 dim(L) > 2;

@ u -7 has no nonzero linear structure for all u € F3\{0,},
then f does not belong to M#.
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Some sufficient conditions for C class

Theorem (F. Zhang, EP, N. Cepak, Y. Wei 2016)

Let n=2m > 8 and

fix,y) =x-7(y) @ 11(x), x,y €Fy
so that (m, L) has property (C). If (w, L) satisfies:
0 dim(L) > 2;

@ u -7 has no nonzero linear structure for all u € F3\{0,},
then f does not belong to M#.

e NOTE: Linear structure means that u-7(y)+u-m(y +a)=0/1!

e Using 7(y) = (m1(y), ..., 7™m(y)) we want to avoid
nmi(y)+ -+ ummm(y) + nimi(y +a) + - + ummm(y + a) = 0/1.
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An explicit family in C outside M

A few articles on this topic “bent functions in C/D outside M#", for
instance one result (for large n = 2m) is:

Theorem ([3]- S. Kudin, EP)

@ Let m, k and t be three integers such that and m> k >t +3 > 4.

o Let S be an arbitrary subset of E; = (e1,e2,...,e;) C FJ.

o Let os(y) be an arbitrary non-identity permutation of 5" which
fixes elements in F' \'S, (hence |S| > 2).
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An explicit family in C outside M

A few articles on this topic “bent functions in C/D outside M#", for
instance one result (for large n = 2m) is:

Theorem ([3]- S. Kudin, EP)

@ Let m, k and t be three integers such that and m> k >t +3 > 4.

o Let S be an arbitrary subset of E; = (e1,e2,...,e;) C FJ.

o Let os(y) be an arbitrary non-identity permutation of 5" which
fixes elements in F' \'S, (hence |S| > 2).

@ Define f(x,y) = x-os(y) + I[EkL(X), with x,y € F%', where
Ex = (e1,e2,...,ex) CF.

@ Then, f is a bent function in C outside M#.
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Modifying the M class - the D class

@ The class D, defined similarly as C by C. Carlet in 1993, is the set of
all Boolean (bent) functions of the form

f(X7Y) =X 7T(y) + ]lEl(X)]lEz(y)a X,y € Féna

(D) Ei, E; two linear subspaces of F4 such that 7(E,) = Ei*, and
dim(E;7) + dim(Ez) = m (min. distance between bent functions 2™).
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Modifying the M class - the D class

@ The class D, defined similarly as C by C. Carlet in 1993, is the set of
all Boolean (bent) functions of the form

f(X7Y) =X W(y) + ]lEl(X)]lEz(y)a X,y € Féna

(D) Ei, E; two linear subspaces of F4 such that 7(E,) = Ei*, and
dim(E;7) + dim(Ez) = m (min. distance between bent functions 2™).

@ Special case when E; = 0, and E; = 7 (called Dy class), then

m

1g (x)1g(y) = do(x) = H(Xi ®1).

i=1

Enes Pasalic (University of Primorska, Koper, Bent functions - five decades later IRSEE 2025



Modifying the M class - the D class

@ The class D, defined similarly as C by C. Carlet in 1993, is the set of
all Boolean (bent) functions of the form

f(X7Y) =X W(y) + ]lEl(X)]lEz(y)a X,y € Féna

(D) Ei, E; two linear subspaces of F4 such that 7(E,) = Ei*, and
dim(E;7) + dim(Ez) = m (min. distance between bent functions 2™).

@ Special case when E; = 0, and E; = 7 (called Dy class), then

m

1g (x)1g(y) = do(x) = H(Xi ®1).

i=1

o Carlet proved that Dy ¢ M# and Dy ¢ PS¥; in the former case
enough that a restriction of 7 to any hyperplane is not affine !
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Dy outside M7 - large degree

Lemma ([3])

Let g € B,,. If there exists an (n — k)-dimensional M-subspace H of I,
such that D,Dpg = 0 for all a,b € H, then deg(g) < k + 1.

@ The algebraic degree of m over F7" is deg(m) = maxi<j<m deg(;).
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Dy outside M7 - large degree

Let g € B,,. If there exists an (n — k)-dimensional M-subspace H of FJ,
such that D,Dpg = 0 for all a,b € H, then deg(g) < k + 1.

Let m be an integer, m > 4. Let w be a permutation of 5" with
deg(m) > 3. Then,

f(x,y) =x-7(y) +do(x) € Do, x,y €F3,

is a bent function outside M# .

@ The algebraic degree of m over F7" is deg(m) = maxi<j<m deg(;).
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Dy outside M7 - quadratic case

Theorem ([3]- complete characterization)
Let m be a quadratic permutation of FJ', m > 4. Then,
f(x,y) = x - n(y) + do(x) € M¥

IFF there is a linear hyperplane of ' on which m is affine.
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Dy outside M7 - quadratic case

Theorem ([3]- complete characterization)

Let m be a quadratic permutation of FJ', m > 4. Then,
f(x,y) = x - n(y) + do(x) € M¥

IFF there is a linear hyperplane of ' on which m is affine.

@ The presented results give some explicit families of bent functions
outside M# but we are far away from 219 (e.g. #DI < #M#).

@ To handle this, we have taken two different approaches:
e concatenation/decomposition method (in terms of M-subspaces)

o and the generalized M-M class (GMM)

Enes Pasalic (University of Primorska, Koper, Bent functions - five decades later IRSEE 2025



M-subspaces of Boolean (bent) functions

@ Recall, for f € B, a vector subspace V of ] is called an
M-subspace of f, if D,D,f =0, for all a,b e V.

e The maximum dimension of any M-subspace V is n/2, for any
bent function f ( dim(V) = n/2 & f € M#).

o Useful to distinguish bent functions {f} w.r.t. the maximal
dimension of M-subspaces, called linearity index of f, ind(f).
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M-subspaces of Boolean (bent) functions

@ Recall, for f € B, a vector subspace V of ] is called an
M-subspace of f, if D,D,f =0, for all a,b e V.

e The maximum dimension of any M-subspace V is n/2, for any
bent function f ( dim(V) = n/2 & f € M#).

o Useful to distinguish bent functions {f} w.r.t. the maximal
dimension of M-subspaces, called linearity index of f, ind(f).

@ Important, M-subspaces are invariant under EA-equivalence -
meaning that the number of M-subspaces of any fixed dimension is
the same! (A. Polujan, PhD thesis)

o IDEA: Much easier to construct f = f1|f|||fs € M* when
f; € M¥ has a unique M-subspace of dimension n/2.
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Non-unique M-subspace of maximal dimension

Proposition ([5])

Let m be a permutation of 7' having a non-zero linear structure
s e F7 je., forsomev € FY, ie.

Dsm(y) =n(y)+n(y +s)=v, forall yeFy.

Then, the bent function f € M

f(x,y) =x-7m(y) + h(y), x,y€Fy,

has at least two m-dimensional M-subspaces.
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P: induces uniqueness

Let  be a permutation of F5' which has the following (P1) property:

D,Dym # 0,  for all linearly independent v,w € F75'. (P1)

(thus w(y) + 7(y +v) +7(y + w) + 7(y + v+ w) # 0m)
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P: induces uniqueness

Let  be a permutation of F5' which has the following (P1) property:

D,Dym # 0,  for all linearly independent v,w € F75'. (P1)
(thus 7(y) +7(y +v) + 7y + w) + 7(y + v+ w) # 0m)
Letting f(x,y) = x-w(y) + h(y), for all x,y € FZ', then:
1) Permutation m has no linear structures.

2) The vector space V =TF5 x {0} is the unique m-dimensional
M-subspace of f.
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P, characterizes uniqueness

Definition

Let  be a permutation of F'. Let S C FY with dim(S) = m — k, with
1< k< m-—1, such that D,Dpm = 0,,, for all a,b € S. Then, 7 satisfies
the property (P>) w.r.t. S if AV C FJ', with dim(V) = k, such that

v-D,m(y)=0; forallae S, ally e F',and forallve V. (P2)

If  satisfies this property w.r.t. any linear subspace S of F3' of arbitrary
dimension 1 < dim(S) < m — 1, then we simply say that 7 satisfies (P2).
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P, characterizes uniqueness

Definition

Let  be a permutation of F'. Let S C FY with dim(S) = m — k, with
1< k< m-—1, such that D,Dpm = 0,,, for all a,b € S. Then, 7 satisfies
the property (P>) w.r.t. S if AV C FJ', with dim(V) = k, such that

v-D,m(y)=0; forallae S, ally e F',and forallve V. (P2)

If  satisfies this property w.r.t. any linear subspace S of F3' of arbitrary
dimension 1 < dim(S) < m — 1, then we simply say that 7 satisfies (P2).

Proposition ([5])

Let m be a non-affine permutation of FJ' and f(x,y) = x - m(y) be bent
Then, © has (P2) IFF the only m-dim. M-subspace of f is FJ' x {Op}.
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P; and P, properties - constructions on larger spaces

Proposition ([5])

Let o1 and oo be two permutations of F5' such that D,D,01 # D,D, 02
for any distinct elements u,v € F§'*. Define 7: F3"! — FI by

(Y, Ymt1) = (01(y) + Ymy1(o1(y) + 02(y)), Yms1) , Yy € FY, ymy1 € Fa.

Then, 7 is a permutation of F3'"! satisfying (P1).

™ = T
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P; and P, properties - constructions on larger spaces

Proposition ([5])

Let o1 and oo be two permutations of F5' such that D,D,01 # D,D, 02
for any distinct elements u,v € F§'*. Define 7: F3"! — FI by

(Y, Ymt1) = (01(y) + Ymy1(o1(y) + 02(y)), Yms1) , Yy € FY, ymy1 € Fa.

Then, 7 is a permutation of F3'"! satisfying (P1).

\

Theorem ([8])

Let 01 and oo be two permutations of F5' and assume that o1 + 02
satisfies (P2). Then, m above satisfies (Py).

\
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P; and P, properties - constructions on larger spaces
Proposition ([5])

Let o1 and oo be two permutations of F5' such that D,D,01 # D,D, 02
for any distinct elements u,v € FJ'*. Define w: T3 — T+ py

(Y, Ymt1) = (01(y) + Ymy1(o1(y) + 02(y)), Yms1) , Yy € FY, ymy1 € Fa.

Then, 7 is a permutation of F3'"! satisfying (P1).

Theorem ([8])

Let o1 and oo be two permutations of FJ' and assume that o1 4 o2
satisfies (P2). Then, m above satisfies (Py).

Proposition ([8])

Let m be a permutation of FY'. If m satisfies (P1), then it satisfies (P>).

— = = = ot
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(-optimality - minimal dimension of M-subspaces

Definition
Let f € By, be bent. Ifind(f) = 1, we say that f is (-optimal, i.e.,
D,Dpf # 0, for any lin. indep. a, b € 5.

Theorem ([8])
Let w be a permutation of FY', m > 4, satisfying (P1). Define
f(x,y) =x-m(y) + do(x), x,y € F3.

Then, ind(f) < 2 (thus f ¢ M*). Furthermore, ind(f) = 1, if and only if
7 has no components with linear structures (i.e. u- Dym #0/1).

Enes Pasalic (University of Primorska, Koper, Bent functions - five decades later IRSEE 2025



Bent revelation - simple reasoning works

o Kept myself asking, how to get closer to 2% ?! for n = 8.

@ One lovely morning (or evening) the revelation came:
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Bent revelation - simple reasoning works

o Kept myself asking, how to get closer to 2% ?! for n = 8.
@ One lovely morning (or evening) the revelation came:

o FACT: All bent functions in n = 6 variables are in the M class

o FACT: A bent function f in n+4 2 = 8 variables can be viewed as a
concatenation of 4 functions f; in 6 variables, so that f = fi||f]||f||f

o FACT -Canteaut-Charpin 2000: These f; can be bent, semi-bent
(W € {0,42"/2+1) or 5-valued spectra (Wy € {0,42"/2, 42n/2+1)
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Bent revelation - simple reasoning works

o Kept myself asking, how to get closer to 2% ?! for n = 8.
@ One lovely morning (or evening) the revelation came:

o FACT: All bent functions in n = 6 variables are in the M class

o FACT: A bent function f in n+4 2 = 8 variables can be viewed as a
concatenation of 4 functions f; in 6 variables, so that f = fi||f]||f||f

o FACT -Canteaut-Charpin 2000: These f; can be bent, semi-bent
(W € {0,42"/2+1) or 5-valued spectra (Wy € {0,42"/2, 42n/2+1)

e Does it mean that we can concatenate f; € M and get f outside M 7

e YES !
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4-concatenation

o Let f = fi||h||f]||fa € Bpi2, whose ANF is given by
(X, y1,¥2) = L) +y1(A+5)(X)+y2(fi+R)(X)+yye(fi+h+i+h)(x),

where x € IF5 and yi, y» € [F».

@ Subfunctions: fi(x) = f(x,0,0), (x) = f(x,0,1), 3(x) = f(x,1,0)
and fa(x) = f(x,1,1).

IRSEE 2025
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4-concatenation

o Let f = fi||h||f]||fa € Bpi2, whose ANF is given by
(X, y1,¥2) = L) +y1(A+5)(X)+y2(fi+R)(X)+yye(fi+h+i+h)(x),

where x € IF5 and yi, y» € [F».

@ Subfunctions: fi(x) = f(x,0,0), (x) = f(x,0,1), 3(x) = f(x,1,0)
and fa(x) = f(x,1,1).

o (IMPORTANT) If f; are bent then f = fi||f2||f3]|fs is bent IFF
i@y ®f @f =1][1], with the dual bent functions f* given as:

ern [ O if We(a) =+2"2
f (a)_{ 1 if Wy(a) = —27/2

o Notation f? means f(x + a) (used on next 2 slides) !!
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M-subspaces of 4-concatenation

Let f = fi||f||B||fa € Bpia, where fi,. .., fs € B, are arbitrary. Let W be
a (k + 2)-dim. subspace of "2, for k € {0,...,n}. Then, W is an
M-subspace of f IFF W has one of the following forms:
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M-subspaces of 4-concatenation

Theorem ([7])

Let f = fi||f||B||fa € Bpia, where fi,. .., fs € B, are arbitrary. Let W be
a (k + 2)-dim. subspace of "2, for k € {0,...,n}. Then, W is an
M-subspace of f IFF W has one of the following forms:

@ W=V x{(0,0)}, where V C F3 is a common (k + 2)-dimensional
M-subspace of fi, ..., 1.

@ W=(Vx{(0,0)},(a1,0)), where V is a common
(k + 1)-dimensional M-subspace of fi, ..., fa, and a € Fj is such that

D,fi + D ff = D,fs+ D,f7 =0, forallv € V.

@ W =(Vx{(0,0)},(a,0,1)), where V is a common
(k + 1)-dimensional M-subspace of fi, ..., fa, and a € Fj is such that

D,fi+ D ff = Db+ D,f7 =0, forallv e V.
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Corollary ([7]- bent case)
Let f = fi||fa||B]|fa € Bpya, where f1,. .., fs € B, and assume that f is
bent. Then, f is outside M7 if and only if

@ The functions fi, ..., fy do not share a common (n/2 + 1)-dim.
M-subspace (impossible if f; are bent);
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Corollary ([7]- bent case)

Let f = fi||fa||B]|fa € Bpya, where f1,. .., fs € B, and assume that f is
bent. Then, f is outside M7 if and only if

Q

Q

The functions fi, ..., fs do not share a common (n/2 + 1)-dim.
M-subspace (impossible if f; are bent);

There are no common (n/2)-dim. M-subspaces VC F) of fi,... 14
s. t. da € IF5 for which

D,f + D,f3 = D,z + D,ff =0, forallveV, or
DA+ D,ff =D,Hh+ D, =0, forallveV, or
D,fi + D,f¢ = Dyf, + D,ff =0, forallv e V.

There are no common (n/2 — 1)-dim. M-subspaces V C Ff of
fi,....fas. t. Ja,b € F} (including a = b), for which

D,f + D,ff = D,f, + D,f§ = D,fy + D,£ = D,fs + D,f? = 0, and
fi(x) + f(x+ b) + (x + a) + fa(x+ a+ b) =0, for all x € F5.
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Satisfying the conditions

Corollary ([7])

@ Let h,g € B, be arbitrary bent functions.
@ Definefi=f=gandh=1f+1=h
o Then, f = f||f||fs]/fa = gl|hllg|lh + 1 € Bny2 (or gllgllhllh+1 if

you want) is bent and f € M# IFF g and h have a common
(n/2)-dim. M-subspace; so g, h € M*.
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Satisfying the conditions

Corollary ([7])

@ Let h,g € B, be arbitrary bent functions.

@ Definefi=f=gandh=1f+1=h

o Then, f = f||f||fs]/fa = gl|hllg|lh + 1 € Bny2 (or gllgllhllh+1 if
you want) is bent and f € M# IFF g and h have a common
(n/2)-dim. M-subspace; so g, h € M*.

@ How to avoid sharing an M#-subspace of dimension n/2 ?

o E.g. take g or h outside M# | We want g, h € M# and f ¢ M#
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Satisfying the conditions

Corollary ([7])

@ Let h,g € B, be arbitrary bent functions.

@ Definefi=f=gandh=1f+1=h

o Then, f = f||f||fs]/fa = gl|hllg|lh + 1 € Bny2 (or gllgllhllh+1 if
you want) is bent and f € M# IFF g and h have a common
(n/2)-dim. M-subspace; so g, h € M*.

@ How to avoid sharing an M#-subspace of dimension n/2 ?
o E.g. take g or h outside M# | We want g, h € M# and f ¢ M#

@ Solution: g(x,y) = x - m(y) and (swap variables) h(x,y) =y - w(x).
For instance, if 7 satisfies (P1) (or (Pz)) then the unique
M7 -subspace of dim. n/2 for g and h are IF 2 % {0,/2} and

{02} x ]F2/ , respectively !
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Corollary ([7])

Let g € B, be an arbitrary bent function n > 6. Then, there exists a bent
function f € By,y2 outside M* such that g(x) = f(x,0,0), for all x € F3.

For n > 6, the number of bent functions outside M# in n+ 2 variables is
always strictly greater than the number of all bent functions in n variables.

e Many other results in [2]- [7] and quite large families of bent
functions outside M#, still not close to 219°.
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The GMM class

Let n = 2m be an even positive integer and 0 < k < m — 1. The set

f(x,y) = x-6(y) + h(y), x € FF~ y e FP+k,

is called the strict GMM ik class, with ¢: FYTK — FI=K and h € By
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The GMM class

Let n = 2m be an even positive integer and 0 < k < m — 1. The set

f(x,y) = x-6(y) + h(y), x € FF~ y e FP+k,

is called the strict GMM ik class, with ¢: FYTK — FI=K and h € By

@ For k =0, this class corresponds to M when ¢ permutes F7'.
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The GMM class

Let n = 2m be an even positive integer and 0 < k < m — 1. The set

f(x,y) = x-6(y) + h(y), x € FF~ y e FP+k,

is called the strict GMM ik class, with ¢: FYTK — FI=K and h € By

@ For k =0, this class corresponds to M when ¢ permutes F7'.
@ For k = m—1, any Boolean function is in GMM,_4!

o Indeed, x € Fy and y € F57%, and for fixed y* we have
f(x,y*) = x1 - o(y*) + h(y*) which can be made 0 or 1 via ¢ and h.
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The GMM,,.1 class

Theorem (X- [2])
Let n=2m and let f € GMM 41 (thus k = 1) so that
fx,y) =x-¢(y) + h(y), x €F3 ",y e Fg, (1)

where ¢: 7 — F7=1 and h: FI™1 — F,. Then, f is bent IFF
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The GMM,,.1 class

Theorem (X- [2])
Let n=2m and let f € GMM 41 (thus k = 1) so that

f(x,y) =x-¢(y) +h(y), x €FS~ 1y e Py, (1)
where ¢: 7 — F7=1 and h: FI™1 — F,. Then, f is bent IFF

o the collection {¢(a) | a € Fy'~'} is a partition of F3'* into 2-dim.
affine subspaces (where ¢~1(a) = {y € FJ'" | 4(y) = a}), and

o for every a € Fy'™1, the restriction of h on ¢~*(a) has odd weight.

v
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The GMM,,.1 class

Corollary ([2])

Let f be a bent function defined by Eq. (1). Then, the Hamming weight
of h satisfies 2™~1 < wt(h) < 3.2m1

\

Corollary ([2])

Let ¢: FITE — F~1 be a 4-to-1 mapping s. t. {¢p7'(a) | a € FJ~ 1} is a
partition ofIFmJrl into 2-dim. flats. Then, there are exactly 9 2"' '
functions h: IE""H — T, s.t. f defined by

f(x,y) =x-¢(y) + h(y), xeFy 1 yeFIt

is bent. y
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A counterintuitive result

Before, we were interested in going outside M# using fi,...,fs € M#.
However, we can end up in M# using f; ¢ M# |

Corollary ([2])

For every even n > 8, there exist bent functions on Fg” that belong to
M7, whose restrictions to T3 x {(0,0)} are bent functions outside M.

Enes Pasalic (University of Primorska, Koper, Bent functions - five decades later IRSEE 2025



Bent functions in GMM,, 1 that belong to M7

Proposition ([2])

Let n=2m and let f € B, be a bent function in GMM 11, thus
satisfying Theorem X, defined by

f(x,y) = x-6(y) + h(y), x €Fy~",y e F*L.
Assume there is v € FT1" such that, for all z € F3'~*, we have

v Ew, + ¢ 1(z2), for some w, € ¢ 1(2).

Then, f is in M#,

2m—1

o For instance, splitting T3 = U2" " (w; + A) is not good as f € M#.
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Proper partitions

@ A proper partitioning of ]Fg”r1 is needed!

@ However, even a simple algorithm given below works:

© Select A1 = {Om+1, a0, bo, a0 + bo}, a linear subspace of IFg’H.
@ Select a1, by, c; € F \ Ay; define

Ay =a1 +{Omt1, b1 +a1,c0 + a1, b1+ }

which is an affine 2-dim. subspace of F'Z"H.

© Continue with selecting a;, b;, ¢; from FQ"H \ U}::1Aj and defining
Aiv1 = {ai, b, ci,ai + b + ¢i}
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Proper partitions

@ A proper partitioning of ]Fg”r1 is needed!

@ However, even a simple algorithm given below works:

© Select A1 = {Om+1, a0, bo, a0 + bo}, a linear subspace of IFg’H.
@ Select a1, by, c; € F \ Ay; define

Ay =a1 +{Omt1, b1 +a1,c0 + a1, b1+ }

which is an affine 2-dim. subspace of F'Z"H.

© Continue with selecting a;, b;, ¢; from FQ"H \ U}::1Aj and defining
Aiy1 = {a,-, b;, ci,a; + b; + C,'}

e For n =2m = 8, we found 4960 different decompositions of F3 out
of which 3785 were “proper”. These proper partitions (up to
permutations of 2-dim. blocks) along with different h resulted in 279
different bent functions outside M# (larger than #M# U PS#) |
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Concluding remarks

@ Currently, we are investigating G MM 12, more difficult when ¢ is a
16-to-1 mapping (a proper partition ?777).

@ Notice that GMM 144y C GMM ik, if ki < ko, therefore we need
to find bent functions in GMM 1> that are not in GMM 1.
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Concluding remarks

@ Currently, we are investigating G MM 12, more difficult when ¢ is a
16-to-1 mapping (a proper partition ?777).

@ Notice that GMM iy 4y C GMM ik, if ki < ko, therefore we need
to find bent functions in GMM 1> that are not in GMM 1.

@ Finally, more clarity is required about:

e How do we distinguish classes of difference sets corresponding to e.g.
2106 hent functions for n =8 ?

e Even more important is the question about vectorial bent functions
F : F5 — F5 (with r < n/2) and their classification (partial difference
sets).
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