Constructing highly regular expanders from hyperbolic Coxeter groups

Jeroen Schillewaert (joint with Marston Conder, Alex Lubotzky and François Thilmany)

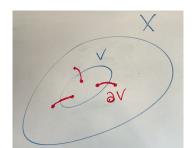
> Department of Mathematics University of Auckland

Expansion

A finite graph X is an ϵ -expander, if

$$h(X) = \min_{\emptyset \subsetneq V \subsetneq X} \frac{|\partial V|}{\min(|V|, |X \setminus V|)}$$

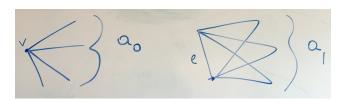
is at least ϵ . (∂V = edge-boundary of V).



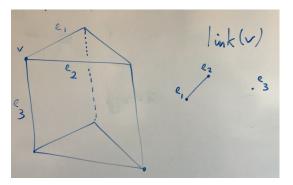
Regularity

X is (a_0, \ldots, a_{n-1}) -regular of level n if

- X is a₀-regular, and
- $\forall v \in X$, the sphere of radius 1 around v is (a_1, \dots, a_{n-1}) -regular.



Connectivity



An (HR) graph with connected links will be called highly regular connected (HRC).

Chapman-Linial-Peled's question

- Chapman, Linial and Peled studied HRC-expander graphs of level 2 and ask whether such HRC-graphs of level 3 exist.
- We answer this question positively, also independently done by Friedgut and Iluz.
- Regularity and connectivity depend on the particular Coxeter diagrams.
- Expansion comes from superapproximation.

Polytopes and symmetry groups

Lemma

Let k be the largest integer for which \mathcal{P} has a k-face which is a simplex, and suppose that $\operatorname{Aut}(\mathcal{P})$ acts transitively on the i-faces of \mathcal{P} for $0 \le i \le n$. Then X (the 1-skeleton of \mathcal{P}) is an $(a_0, \ldots, a_{\min(k,n)})$ -regular graph, where a_i is the number of simplicial (i+1)-faces containing a given i-face of \mathcal{P} . Moreover, X is $(a_0, \ldots, a_{\min(k,n)-1})$ -regular connected.

Coxeter systems

Definition

$$W = \langle S \mid (st)^{m_{st}} = 1 \forall s, t \in S \rangle$$
 where $m_{st} \in \{1, 2, \dots, \infty\}, m_{st} = 1 \text{ only if } s = t.$

- **1 ••** is $W = \langle s, t | s^2 = t^2 = (st)^3 = 1 \rangle$.
- e is $W = \langle s, t, u \mid s^2 = t^2 = u^2 = (st)^3 = (tu)^4 = (su)^2 = 1 \rangle$.

Tits '61: To a string Coxeter system (W, S) one can associate a universal polytope \mathcal{P}_W which is regular and for which $\operatorname{Aut}(\mathcal{P}_W) = W$.

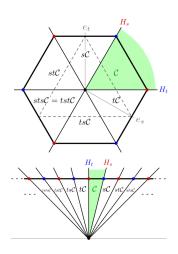
Geometric representation of a Coxeter group

Definition

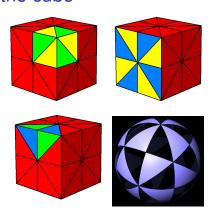
Set $B(e_s, e_t) = -\cos(\pi/m_{st})$. The *geometric* representation of W on $V = \mathbb{R}^S$ is defined by $s(v) = v - 2B(v, e_s)e_s$

- Tits: this representation is faithful.
- Image of W lies in orthogonal group O_B.
- The signature of (W, S) is defined to be the signature of B.

Two classic Coxeter complexes

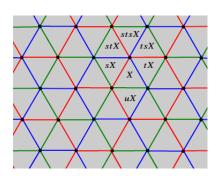


Another spherical example coming from the cube



• EFE = FEF, VEVE = EVEV, VF = FV

A Euclidean Coxeter complex



• $W := \langle s, t, u; s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (su)^3 = 1 \rangle$

Wythoffian polytopes

- They form a class of uniform polytopes,
 i.e. Aut(P) acts transitively on vertices,
 and faces are inductively uniform.
- Not all uniform polytopes are Wythoffian, first counterexample: the grand antiprism (Conway and Guy 1965).
- Kaleidoscopic construction, for example octahedron, cuboctahedron and cube.

Main result

Theorem

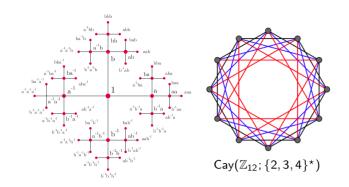
Let (W, S) be a Coxeter system, M a subset of S and $\mathcal{P}_{W,M}$ the associated Wythoffian polytope. Suppose (W, S) is indefinite, $\mathcal{P}_{W,M}$ has finite vertex links, and the 1-skeleton X of $\mathcal{P}_{W,M}$ is (a_0,\ldots,a_n) -regular. Then there exists an infinite collection of finite quotients of X by normal subgroups of W, which form a family of (a_0, \ldots, a_n) -regular expander graphs.

Illustrating the main theorem

 (120, 12, 5, 2)-regular connected expander graphs, quotients of the 1-skeleton of the hyperbolic tessellation with diagram

- For each $m \ge 10$, there is a family of $(2^{m-2}, \frac{(m-1)(m-2)}{2}, 2(m-3))$ -regular connected expanders as quotients of the polytope of type E_m with diagram

Groups and their Cayley graphs



Quasi-isometry

Let X and Y be metric spaces. A map $f: X \to Y$ is a quasi-isometry if there exist constants $A \ge 1$, $B \ge 0$, $C \ge 0$ such that

$$\frac{1}{A}d(x,x') - B \le d(f(x),f(x')) \le Ad(x,x') + B$$
$$\forall y \in Y : \exists x \in X : d(f(x),y) < C$$

From Cay(W, S) to $\mathcal{P}_{W,M}$

Lemma

Let (W, S) be Coxeter system and M a subset of S. The 1-skeleton X of the associated Wythoffian polytope $\mathcal{P}_{W,M}$ and the Cayley graph Cay(W, S) are quasi-isometric if and only if $\mathcal{P}_{W,M}$ has finite vertex links. In this case, the natural W-equivariant surjection $f: Cay(W, S) \rightarrow X$ that sends a chamber to the unique vertex of $\mathcal{P}_{W,M}$ it contains is a nonexpansive quasi-isometry.

Comparing quotients

- Assume $\mathcal{P}_{W.M}$ has finite vertex links.
- Let $\pi_N: W \to W/N$ be the quotient map.
- $\operatorname{Cay}(W, S)/N \cong \operatorname{Cay}(\pi_N(W), \pi_N(S)).$
- There exists quasi-isometries f_N with the same constants as f, in particular independent of N.

$$\begin{array}{ccc} \operatorname{Cay}(W,S) & \xrightarrow{f} & X \\ & & \downarrow & & \downarrow \\ \operatorname{Cay}(\pi_N(W),\pi_N(S)) & \xrightarrow{f_N} & X/N \end{array}$$

Comparing regularity I

- Goal: X/N retains the regularity of X.
- Sufficient condition: X → X/N is injective on the neighbourhood of any vertex of X and creates no new triangles.
- Action of N on X should have minimal displacement (md) at least 4, thus action of N on Cay(W, S) had md at least 5D + 4, i.e. I(n) > 5D + 4, ∀n ≠ 1 ∈ N.
- The elements in W whose lengths are less than 5D + 4 form a finite set T.

Comparing regularity II

- W is a finitely generated linear group, hence residually finite (Malcev 1940).
- Let $\{N_m\}_{m\in I}$ be finite-index normal subgroups of W closed under intersection with $\bigcap_{m\in I}N_m=\{1\}$, and let $I'=\{m\in I\mid T\cap N_m=\{1\}\}$, so that $\bigcap_{m\in I'}N_m=\{1\}$. For $m\in I'$ the graph X/N_m has the same regularity as X.
- If W is infinite then indices of the N_m are unbounded (f.g. groups only have finitely many subgroups of a given finite index).

Comparing expansion I

Proposition

Let $D \ge 1$ and let $f: Y \to Z$ be a D-quasi-isometry between two finite connected graphs Y and Z. Then there exist constants c, c' > 0 depending only on the quasi-isometry constants of f (or equivalently, on D) and on the maximum degrees of Y and Z, such that if $h(Y) \ge \epsilon$, then $h(Z) \ge \min(c\epsilon, c')$.

Comparing expansion II

Corollary

Let $\{Y_m\}_{m\in J}$ and $\{Z_m\}_{m\in J}$ be two families of graphs of bounded maximum degree, indexed by a set J. Suppose that there is a D-quasi-isometry $f_m: Y_m \to Z_m$ for every $m \in J$. Then $\{Y_m\}_{m\in J}$ is a family of expanders if and only if $\{Z_m\}_{m\in J}$ is.

Why indefinite Coxeter groups?

- Since S is assumed to be finite, W is a discrete subgroup of $O_B(\mathbb{R})$.
- So if (W, S) is semidefinite (resp. definite), then W is virtually abelian (resp. finite).
- Virtually abelian groups are amenable, so there is no hope for expansion phenomena if W is semidefinite.

Proof of the main result

- $\{Cay(\pi_m(W), \pi_m(S))\}_m$ forms a family of expanders for an appropriate family of m's (superapproximation).
- $f_m : \operatorname{Cay}(\pi_m(W), \pi_m(S)) \to X/N_m$ with constants depending only on (W, S).
- $\{X/N_m\}_{m\in I}$ form a family of expanders.
- Let $I' = \{ m \in I \mid X/N_m \text{ same regularity as } X \}$.
- The graphs $\{X/N_m\}_{m\in I'}$ are (a_0,\ldots,a_n) -regular, and form an infinite family of expanders.

The order-5-4-simplex-honeycomb

The automorphism group of \mathcal{P} is the Coxeter group W with diagram $\bullet \bullet \bullet \bullet \bullet^{5} \bullet$, (H_5) .

Let $\varphi = \frac{1+\sqrt{5}}{2} \in \mathbb{R}$ and let $K = \mathbb{Q}(\varphi)$. Then the matrix of B is

$$\frac{1}{2} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -\varphi \\ 0 & 0 & 0 & -\varphi & 2 \end{pmatrix}$$

w.r.t. the canonical basis. B is equivalent over K to $B' = \langle 1, 1, 1, 1, -\varphi \rangle$. Hence $O_B \cong O_{B'}$ as algebraic K-groups.

Two-sheeted hyperbola

- $\{v \in \mathbb{R}^5 \mid B(v,v) = -1\}$ is preserved by O_B . Both sheets \mathcal{H} and \mathcal{H}^- are Minkowski models for hyperbolic 4-space and preserved by W.
- Isom $(\mathcal{H}) = O_B^+(\mathbb{R}) = \{ g \in O_B(\mathbb{R}) \mid g\mathcal{H} = \mathcal{H} \} \xrightarrow{\sim} \mathcal{PO}_B(\mathbb{R}).$
- The images of $\{s_0, \ldots, s_4\}$ of W lie in $O_B^+(\mathcal{O}_K)$. The hyperplanes they generated tessellate \mathcal{H} by compact 4-simplices, and form a geometric representation of the Coxeter complex of W.

The geometry of \mathcal{P}

- The link L of a vertex of P is a hexacosichoron (600-cell) and the link of an edge of P is an icosahedron.
- Hence W is a cocompact lattice in $O_B(\mathbb{R})$, and by Borel density W is Zariski-dense in $O_B(\mathcal{O}_K)$.
- W has finite index in $O_B(\mathcal{O}_K)$ ($O_B(\mathcal{O}_K)$ is a discrete subgroup of $O_B(\mathbb{R})$ containing W).
- String Coxeter diagram, and hence (120, 12, 5, 2)-regular connected expanders.

Arbitrarily high regularity levels

For any $m \geq 5$ let \mathcal{P}_m be $\stackrel{m-1}{\longleftarrow} \stackrel{\emptyset}{\longleftarrow} \stackrel{m-1}{\longleftarrow}$

The 1-skeleton X_m of \mathcal{P}_m is a $(\binom{2m}{m}, m^2, 2(m-1), m-2, m-3, \ldots, 1)$ -regular graph. The link of any vertex in \mathcal{P}_m is an m-rectified (2m-1)-simplex, with diagram $\stackrel{m-1}{\longleftarrow} \stackrel{m-1}{\longleftarrow}$, and the 1-skeleton of this link is the Johnson graph J(2m, m).

The work of Friedgut and Iluz

- "Hyper-regular graphs and high dimensional expanders."
- They observed H₅ leads
 (120, 12, 5, 2)-regular graphs, and
 Friedgut had presented this at MFO in April 2019, but with no mention of the expansion of those graphs.
- They also have a method to show that $HRC_{\infty}(n)$ and even $HRC_{\exp}(n)$ are infinite.

Two open problems

Problem A:

Are any of these inclusions strict for n > 1?

Problem B: For n > 1 describe the above six sets as subsets of \mathbb{N}^n .

Superapproximation

Fix $N_0, q_0 \in \mathbb{N}_0$. For m coprime to q_0 , let $\pi_m = \operatorname{GL}_{N_0}(\mathbb{Z}[1/q_0]) \to \operatorname{GL}_{N_0}(\mathbb{Z}/m\mathbb{Z})$.

Theorem (Salehi-Golsefidy)

Let $\Gamma = \langle S \rangle$ where $S = S^{-1} \subset \operatorname{GL}_{N_0}(\mathbb{Z}[1/q_0])$. Suppose that Γ is infinite. Fix $M_0 \in \mathbb{N}$. The family of Cayley graphs $\{\operatorname{Cay}(\pi_m(\Gamma), \pi_m(S))\}_m$, as m runs through either $\{p^n \mid n \in \mathbb{N}, p \text{ prime}, p \nmid q_0\}$ or $\{m \in \mathbb{N} \mid \gcd(m, q_0) = 1, p^{M_0+1} \nmid m \text{ for } p \text{ prime}\}$, is a family of expanders if and only if the connected component G° of the Zariski-closure G of Γ in GL_{N_0} is perfect.

Weil's restriction of scalars

- The entries of the matrix of 2B in the canonical basis of V are algebraic integers, and so there exists a number field K, with ring of integers O_K, over which O_B can be defined such that W ⊂ O_B(O_K).
- The restriction of scalars Res_{K/Q}(O_B) is a linear algebraic ℚ-group, and as such can be embedded over ℚ in GL_{N₀} for some N₀.
- Let q₀ be the lcd of the entries of the image of S. Then W ⊂ GL_{N₀}(Z[1/q₀]). The Zariski-closure of W in GL_{N₀} is the image of Res_{K/Q}(O^{1o}_B), which is perfect since O^{1o}_B is perfect.

Benoist-de la Harpe

Theorem (Benoist-de la Harpe)

Let (W,S) be an indefinite and irreducible Coxeter system. Then the Zariski-closure of W in O_B is precisely the kernel O_B^1 of the restriction map $O_B \to \operatorname{GL}_{\operatorname{rad}(B)} : g \mapsto g_{|_{\operatorname{rad}(B)}}$. In particular, if B is non-degenerate, then W is Zariski-dense in O_B .

Connected component is perfect

The connected component $O_B^{1\circ}$ of the Zariski-closure of the indefinite Coxeter group W is perfect. Indeed, let $V' = V/\operatorname{rad}(B)$, then $O_B^{1\circ} \cong \operatorname{SO}_{B'} \ltimes V'^{\dim\operatorname{rad}(B)}$, with the latter being a perfect group because $\operatorname{SO}_{B'}$ is simple and V' is an irreducible $\operatorname{SO}_{B'}$ -module.