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Expansion

A finite graph X is an ϵ-expander, if

h(X ) = min∅⊊V⊊X
|∂V |

min (|V |, |X \ V |)

is at least ϵ. (∂V = edge-boundary of V ).
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Regularity

X is (a0, . . . ,an−1)-regular of level n if

X is a0-regular, and

∀v ∈ X , the sphere of radius 1 around v
is (a1, . . . ,an−1)-regular.
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Connectivity

An (HR) graph with connected links will be
called highly regular connected (HRC).
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Chapman-Linial-Peled’s question

Chapman, Linial and Peled studied
HRC-expander graphs of level 2 and ask
whether such HRC-graphs of level 3 exist.

We answer this question positively, also
independently done by Friedgut and Iluz.

Regularity and connectivity depend on the
particular Coxeter diagrams.

Expansion comes from superapproximation.
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Polytopes and symmetry groups

Lemma
Let k be the largest integer for which P has a
k-face which is a simplex, and suppose that
Aut(P) acts transitively on the i-faces of P for
0 ≤ i ≤ n. Then X (the 1-skeleton of P) is an
(a0, . . . ,amin(k ,n))-regular graph, where ai is
the number of simplicial (i + 1)-faces
containing a given i-face of P. Moreover, X is
(a0, . . . ,amin(k ,n)−1)-regular connected.
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Coxeter systems

Definition
W = ⟨S | (st)mst = 1∀s, t ∈ S ⟩ where
mst ∈ {1,2, . . . ,∞}, mst = 1 only if s = t .

1 is W = ⟨s, t | s2 = t2 = (st)3 = 1⟩.
2 is W = ⟨s, t , u | s2 = t2 = u2 =

(st)3 = (tu)4 = (su)2 = 1⟩.

Tits ’61: To a string Coxeter system (W ,S)

one can associate a universal polytope PW

which is regular and for which Aut(PW ) = W .
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Geometric representation of a
Coxeter group

Definition
Set B(es, et) = − cos(π/mst). The geometric
representation of W on V = RS is defined by
s(v) = v − 2B(v , es)es

Tits: this representation is faithful.

Image of W lies in orthogonal group OB.

The signature of (W ,S) is defined to be
the signature of B.
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Two classic Coxeter complexes
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Another spherical example coming
from the cube

EFE = FEF , VEVE = EVEV ,VF = FV
Spherical Coxeter complex
Dynkin diagram
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A Euclidean Coxeter complex

W := ⟨s, t , u; s2 = t2 = u2 = (st)3 =

(tu)3 = (su)3 = 1⟩
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Wythoffian polytopes

They form a class of uniform polytopes,
i.e. Aut(P) acts transitively on vertices,
and faces are inductively uniform.

Not all uniform polytopes are Wythoffian,
first counterexample: the grand
antiprism (Conway and Guy 1965).

Kaleidoscopic construction, for example
octahedron, cuboctahedron and cube.
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Main result

Theorem

Let (W ,S) be a Coxeter system, M a subset
of S and PW ,M the associated Wythoffian
polytope. Suppose (W ,S) is indefinite, PW ,M

has finite vertex links, and the 1-skeleton X
of PW ,M is (a0, . . . ,an)-regular. Then there
exists an infinite collection of finite quotients
of X by normal subgroups of W, which form
a family of (a0, . . . ,an)-regular expander
graphs.
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Illustrating the main theorem

(120, 12,5, 2)-regular connected expander
graphs, quotients of the 1-skeleton of the
hyperbolic tessellation with diagram

5

(2160, 64,21, 10)-regular connected
expander graphs from Wythoffian polytope

with diagram

For each m ≥ 10, there is a family of
(2m−2, (m−1)(m−2)

2 , 2(m − 3))-regular
connected expanders as quotients of the
polytope of type Em with diagram
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Groups and their Cayley graphs
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Quasi-isometry

Let X and Y be metric spaces. A map
f : X → Y is a quasi-isometry if there exist
constants A ≥ 1,B ≥ 0,C ≥ 0 such that

1
A

d(x , x ′)− B ≤ d(f (x), f (x ′)) ≤ Ad(x , x ′) + B

∀y ∈ Y : ∃x ∈ X : d(f (x), y) ≤ C
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From Cay(W ,S) to PW ,M

Lemma
Let (W ,S) be Coxeter system and M a
subset of S. The 1-skeleton X of the
associated Wythoffian polytope PW ,M and the
Cayley graph Cay(W ,S) are quasi-isometric
if and only if PW ,M has finite vertex links. In
this case, the natural W-equivariant
surjection f : Cay(W ,S) → X that sends a
chamber to the unique vertex of PW ,M it
contains is a nonexpansive quasi-isometry.
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Comparing quotients

Assume PW ,M has finite vertex links.

Let πN : W → W/N be the quotient map.

Cay(W ,S)/N ∼= Cay(πN(W ), πN(S)).

There exists quasi-isometries fN with the
same constants as f , in particular
independent of N.

Cay(W ,S) X

Cay(πN(W ), πN(S)) X/N

f

πN

fN
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Comparing regularity I

Goal: X/N retains the regularity of X .

Sufficient condition: X → X/N is
injective on the neighbourhood of any
vertex of X and creates no new triangles.

Action of N on X should have minimal
displacement (md) at least 4, thus action
of N on Cay(W ,S) had md at least
5D + 4, i.e. l(n) ≥ 5D + 4 , ∀n ̸= 1 ∈ N.

The elements in W whose lengths are
less than 5D + 4 form a finite set T .
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Comparing regularity II

W is a finitely generated linear group,
hence residually finite (Malcev 1940).

Let {Nm}m∈I be finite-index normal
subgroups of W closed under
intersection with

⋂
m∈I Nm = {1}, and let

I′ = {m ∈ I | T ∩ Nm = {1}}, so that⋂
m∈I′ Nm = {1}. For m ∈ I′ the graph

X/Nm has the same regularity as X .

If W is infinite then indices of the Nm are
unbounded (f.g. groups only have finitely
many subgroups of a given finite index).
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Comparing expansion I

Proposition
Let D ≥ 1 and let f : Y → Z be a
D-quasi-isometry between two finite
connected graphs Y and Z . Then there exist
constants c, c′ > 0 depending only on the
quasi-isometry constants of f (or equivalently,
on D) and on the maximum degrees of Y and
Z , such that if h(Y ) ≥ ϵ, then
h(Z ) ≥ min(cϵ, c′).
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Comparing expansion II

Corollary
Let {Ym}m∈J and {Zm}m∈J be two families of
graphs of bounded maximum degree,
indexed by a set J. Suppose that there is a
D-quasi-isometry fm : Ym → Zm for every
m ∈ J. Then {Ym}m∈J is a family of
expanders if and only if {Zm}m∈J is.
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Why indefinite Coxeter groups?

Since S is assumed to be finite, W is a
discrete subgroup of OB(R).

So if (W ,S) is semidefinite
(resp. definite), then W is virtually
abelian (resp. finite).

Virtually abelian groups are amenable,
so there is no hope for expansion
phenomena if W is semidefinite.
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Proof of the main result

{Cay(πm(W ), πm(S))}m forms a family of
expanders for an appropriate family of m’s
(superapproximation).

fm : Cay(πm(W ), πm(S)) → X/Nm with
constants depending only on (W ,S).

{X/Nm}m∈I form a family of expanders.

Let I′ = {m ∈ I | X/Nm same regularity as X}.

The graphs {X/Nm}m∈I′ are
(a0, . . . ,an)-regular, and form an infinite
family of expanders.
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The order-5-4-simplex-honeycomb

The automorphism group of P is the Coxeter
group W with diagram 5 , (H5).

Let φ = 1+
√

5
2 ∈ R and let K = Q(φ). Then

the matrix of B is

1
2

 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −φ
0 0 0 −φ 2


w.r.t. the canonical basis. B is equivalent
over K to B′ = ⟨1,1, 1, 1,−φ⟩. Hence
OB

∼= OB′ as algebraic K -groups.
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Two-sheeted hyperbola

{v ∈ R5 | B(v , v) = −1} is preserved by OB.
Both sheets H and H− are Minkowski
models for hyperbolic 4-space and
preserved by W .

Isom(H) = O+
B (R) = {g ∈ OB(R) | gH =

H} ∼−→ POB(R).

The images of {s0, . . . , s4} of W lie in
O+

B (OK ). The hyperplanes they generated
tessellate H by compact 4-simplices, and
form a geometric representation of the
Coxeter complex of W .
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The geometry of P

The link L of a vertex of P is a
hexacosichoron (600-cell) and the link of an
edge of P is an icosahedron.

Hence W is a cocompact lattice in OB(R),
and by Borel density W is Zariski-dense in
OB(OK ).

W has finite index in OB(OK ) (OB(OK ) is a
discrete subgroup of OB(R) containing W ).

String Coxeter diagram, and hence
(120, 12,5, 2)-regular connected expanders.
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Arbitrarily high regularity levels

For any m ≥ 5 let Pm be
m − 1 m − 1

The 1-skeleton Xm of Pm is a
(
(2m

m

)
,m2, 2(m − 1),m − 2,m − 3, . . . , 1)-

regular graph. The link of any vertex in Pm is
an m-rectified (2m − 1)-simplex, with

diagram
m − 1 m − 1

, and the 1-skeleton
of this link is the Johnson graph J(2m,m).
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The work of Friedgut and Iluz

“Hyper-regular graphs and high
dimensional expanders."

They observed H5 leads
(120, 12,5, 2)-regular graphs, and
Friedgut had presented this at MFO in
April 2019, but with no mention of the
expansion of those graphs.

They also have a method to show that
HRC∞(n) and even HRCexp(n) are
infinite.
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Two open problems

Problem A:

HRCexp(n) HRC∞(n) HRC(n)

HRexp(n) HR∞(n) HR(n)

Are any of these inclusions strict for n > 1?

Problem B: For n > 1 describe the above six
sets as subsets of Nn.
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Superapproximation

Fix N0, q0 ∈ N0. For m coprime to q0, let
πm = GLN0(Z[1/q0]) → GLN0(Z/mZ).

Theorem (Salehi-Golsefidy)
Let Γ = ⟨S⟩ where S = S−1 ⊂ GLN0(Z[1/q0]).
Suppose that Γ is infinite. Fix M0 ∈ N. The family
of Cayley graphs {Cay(πm(Γ), πm(S))}m, as m
runs through either {pn | n ∈ N,p prime, p ∤ q0} or
{m ∈ N | gcd(m, q0) = 1, pM0+1 ∤ m for p prime}, is
a family of expanders if and only if the connected
component G◦ of the Zariski-closure G of Γ in
GLN0 is perfect.
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Weil’s restriction of scalars

The entries of the matrix of 2B in the canonical
basis of V are algebraic integers, and so there
exists a number field K , with ring of integers OK ,
over which OB can be defined such that
W ⊂ OB(OK ).

The restriction of scalars ResK/Q(OB) is a linear
algebraic Q-group, and as such can be
embedded over Q in GLN0 for some N0.

Let q0 be the lcd of the entries of the image of S.
Then W ⊂ GLN0(Z[1/q0]). The Zariski-closure of
W in GLN0 is the image of ResK/Q(O

1◦
B ), which is

perfect since O1◦
B is perfect.
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Benoist-de la Harpe

Theorem (Benoist-de la Harpe)

Let (W ,S) be an indefinite and irreducible
Coxeter system. Then the Zariski-closure of
W in OB is precisely the kernel O1

B of the
restriction map OB → GLrad(B) : g 7→ g|rad(B)

. In
particular, if B is non-degenerate, then W is
Zariski-dense in OB.
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Connected component is perfect

The connected component O1◦
B of the

Zariski-closure of the indefinite Coxeter group
W is perfect. Indeed, let V ′ = V/ rad(B),
then O1◦

B
∼= SOB′ ⋉ V ′ dim rad(B), with the latter

being a perfect group because SOB′ is
simple and V ′ is an irreducible SOB′-module.
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