Constructing highly regular
expanders from hyperbolic
Coxeter groups

Jeroen Schillewaert
(joint with Marston Conder, Alex Lubotzky
and Frangois Thilmany)

Department of Mathematics
University of Auckland



Expansion

A finite graph X is an e-expander, if

| 1%
0 =i e

is at least . (0V = edge-boundary of V).




Regularity

Xis (ap,-..,an_1)-regular of level n if

@ X is ap-regular, and

@ Vv € X, the sphere of radius 1 around v
is (aq,...,an_1)-regular.




Connectivity

An (HR) graph with connected links will be
called highly regular connected (HRC).



Chapman-Linial-Peled’s question

@ Chapman, Linial and Peled studied
HRC-expander graphs of level 2 and ask
whether such HRC-graphs of level 3 exist.

@ We answer this question positively, also
independently done by Friedgut and lluz.

@ Regularity and connectivity depend on the
particular Coxeter diagrams.

@ Expansion comes from superapproximation.



Polytopes and symmetry groups

Lemma

Let k be the largest integer for which P has a
k-face which is a simplex, and suppose that
Aut(P) acts transitively on the i-faces of P for
0 <i<n. Then X (the 1-skeleton of P) is an
(@0, - - -, @min(k,n)) -regular graph, where a; is
the number of simplicial (i + 1)-faces
containing a given i-face of P. Moreover, X is
(@, - - - » @min(k,n)—1)-regular connected.




Coxeter systems

Definition
W= (S| (st)™t =1Vs,t € S) where
mst € {1,2,...,00}, mgt =1 onlyif s =t

Q —~isW={(st|s?=1t=(st)®=1).
Q e isW=(s,t,u|?=1*=0°=
(st)® = (tu)* = (su)?® = 1).

Tits '61: To a string Coxeter system (W, S)
one can associate a universal polytope Py
which is regular and for which Aut(Py) = W.



Geometric representation of a
Coxeter group

Definition

Set B(es, €t) = — cos(w/mgt). The geometric
representation of W on V = RS is defined by
s(v) =v —2B(v,es)es

@ Tits: this representation is faithful.
@ Image of W lies in orthogonal group Og.

@ The signature of (W, S) is defined to be
the signature of B.



Two classic Coxeter complexes

H,




Another spherical example coming
from the cube

@ EFE = FEF, VEVE = EVEV,VF = FV



A Euclidean Coxeter complex
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o W:=(s,tu;s®?=1=u?=(st)’=
(tu)® = (su)® = 1)



Wythoffian polytopes

@ They form a class of uniform polytopes,
i.e. Aut(P) acts transitively on vertices,
and faces are inductively uniform.

@ Not all uniform polytopes are Wythoffian,
first counterexample: the grand
antiprism (Conway and Guy 1965).

@ Kaleidoscopic construction, for example
octahedron, cuboctahedron and cube.



Main result

Theorem

Let (W, S) be a Coxeter system, M a subset
of S and Pw um the associated Wythoffian
polytope. Suppose (W, S) is indefinite, Py m
has finite vertex links, and the 1-skeleton X
of Pw.m is (ao, - . ., an)-regular. Then there
exists an infinite collection of finite quotients
of X by normal subgroups of W, which form
a family of (ao, . . ., an)-regular expander
graphs.




lllustrating the main theorem

@ (120,12,5,2)-regular connected expander
graphs, quotients of the 1-skeleton of the
hyperbolic tessellation with diagram

@—.—.—.é.

@ (2160,64,21,10)-regular connected
expander graphs from Wythoffian polytope

with diagram

@ For each m > 10, there is a family of
(2m-2, (m=0(m=2) '5(m — 3))-regular
connected expanders as quotients of the
polytope of type E,, with diagram

-—0



Groups and their Cayley graphs
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Quasi-isometry

Let X and Y be metric spaces. A map
f: X — Y is a quasi-isometry if there exist
constants A>1,B > 0, C > 0 such that

%d(x, X') — B < d(f(x), f(x)) < Ad(x,x') + B

VyeVY:Ixe X:d(f(x),y)<C




From Cay(W, S) to Pw.m

Lemma

Let (W, S) be Coxeter system and M a
subset of S. The 1-skeleton X of the
associated Wythoffian polytope Py m and the
Cayley graph Cay(W, S) are quasi-isometric
if and only if Py y has finite vertex links. In
this case, the natural W-equivariant
surjection f : Cay(W, S) — X that sends a
chamber to the unique vertex of Py u it
contains is a nonexpansive quasi-isometry.




Comparing quotients

@ Assume Py y has finite vertex links.
@ Letmy: W — W/N be the quotient map.
o Cay(W,S)/N = Cay(mn(W), mn(S)).
@ There exists quasi-isometries fy with the

same constants as f, in particular
independent of N.

Cay(W,S) — ' X

| |

Cay(mn(W). 7n(S)) —— X/N



Comparing regularity |

@ Goal: X/N retains the regularity of X.

@ Sufficient condition: X — X /N is
injective on the neighbourhood of any
vertex of X and creates no new triangles.

@ Action of N on X should have minimal
displacement (md) at least 4, thus action
of N on Cay(W, S) had md at least
5D+4,ie. I(n)>5D+4,Vn#1 € N.

@ The elements in W whose lengths are
less than 5D + 4 form a finite set T.



Comparing regularity Il

@ W is afinitely generated linear group,
hence residually finite (Malcev 1940).

@ Let {Nn}me/ be finite-index normal
subgroups of W closed under
intersection with (,,c; Nm = {1}, and let
I'={mel| TnNnp={1}}, so that
Nmer Nm = {1}. For m € I the graph
X/Nm has the same regularity as X.

@ If W is infinite then indices of the N, are
unbounded (f.g. groups only have finitely
many subgroups of a given finite index).



Comparing expansion |

Proposition

LetD>1andletf: Y —Zbea
D-quasi-isometry between two finite
connected graphs Y and Z. Then there exist
constants ¢, ¢’ > 0 depending only on the
quasi-isometry constants of f (or equivalently,
on D) and on the maximum degrees of Y and
Z, such that if h(Y) > e, then

h(Z) > min(ce, c’).




Comparing expansion |l

Corollary

Let {Ym}mey and{Zm}mey be two families of
graphs of bounded maximum degree,
indexed by a set J. Suppose that there is a
D-quasi-isometry fy, : Ym — Zny for every

m e J. Then{Ym}mey is a family of
expanders if and only if {Zm}mey iS.




Why indefinite Coxeter groups?

@ Since S is assumed to be finite, Wis a
discrete subgroup of Op(R).

@ Soif (W, S) is semidefinite
(resp. definite), then W is virtually
abelian (resp. finite).

@ Virtually abelian groups are amenable,
so there is no hope for expansion
phenomena if W is semidefinite.



Proof of the main result

@ {Cay(mm(W), mm(S))}m forms a family of
expanders for an appropriate family of m’s
(superapproximation).

@ fr: Cay(mm(W), mm(S)) — X/Npy with
constants depending only on (W, S).

@ {X/Npm}mes form a family of expanders.
@ Let /' ={m e I| X/Ny, same regularity as X}.

@ The graphs {X/Np}mer are
(ao, - . -, an)-regular, and form an infinite
family of expanders.



The order-5-4-simplex-honeycomb

The automorphism group of P is the Coxeter
group W with diagram S, (Hs).

Let o = 1Y% c R and let K = Q(y). Then
the matrix of B is

w.r.t. the canonical basis. B is equivalent
over Kto B'=(1,1,1,1, —¢). Hence
Op = Op as algebraic K-groups.



Two-sheeted hyperbola

@ {veR5|B(v,v) = -1} is preserved by Og.
Both sheets # and H~ are Minkowski
models for hyperbolic 4-space and
preserved by W.

@ Isom(H) = Of(R) = {g € Og(R) | gH =
H} =4 POg(R).

@ The images of {sy, ..., 54} of W lie in
0%(Ok). The hyperplanes they generated
tessellate H by compact 4-simplices, and
form a geometric representation of the
Coxeter complex of W.



The geometry of P

@ Thelink L of a vertex of P is a
hexacosichoron (600-cell) and the link of an
edge of P is an icosahedron.

@ Hence W is a cocompact lattice in Og(R),
and by Borel density W is Zariski-dense in
0p(0k).

@ W has finite index in Og(Ok) (05(Ok) is a
discrete subgroup of Og(R) containing W).

@ String Coxeter diagram, and hence
(120, 12,5, 2)-regular connected expanders.



Arbitrarily high regularity levels

Forany m > 5 let Py be etes 4 ors

The 1-skeleton X, of P is a
(BmM),m?,2(m—1),m—-2,m—3,...,1)-
regular graph. The link of any vertex in P, is
an m-rectified (2m — 1)-simplex, with
diagram +Zs e %5 , and the 1-skeleton
of this link is the Johnson graph J(2m, m).



The work of Friedgut and lluz

@ “Hyper-regular graphs and high
dimensional expanders."

@ They observed Hs leads
(120, 12,5, 2)-regular graphs, and
Friedgut had presented this at MFO in
April 2019, but with no mention of the
expansion of those graphs.

@ They also have a method to show that
HRC(n) and even HRC.,,(N) are
infinite.



Two open problems

Problem A:

HRC,p(n) —— HRCo(n) —— HRC(n)

l l l

HR (1) — HRoo(n) — HR(n)

Are any of these inclusions strict for n > 1?

Problem B: For n > 1 describe the above six
sets as subsets of N”.



Superapproximation

Fix Ny, go € Ng. For m coprime to qo, let
mm = GLn, (Z[1/q0]) — GLny(Z/ MZ).

Theorem (Salehi-Golsefidy)

LetT = (S) where S = S=' C GLn,(Z[1/qo]).
Suppose that T is infinite. Fix My € N. The family
of Cayley graphs {Cay(mm(I'), 7m(S))}m, as m
runs through either {p" | n € N, p prime,p { qo} or
{m e N | gcd(m, qo) = 1, p"+" ¥ m for p prime}, is
a family of expanders if and only if the connected
component G° of the Zariski-closure G of I in
GLy, is perfect.




Welil’s restriction of scalars

@ The entries of the matrix of 2B in the canonical
basis of V are algebraic integers, and so there
exists a number field K, with ring of integers Ok,
over which Og can be defined such that
W C 0(Ok).

@ The restriction of scalars Resx,(Og) is a linear
algebraic Q-group, and as such can be
embedded over Q in GLy, for some Np.

@ Let qo be the Icd of the entries of the image of S.
Then W C GLn,(Z[1/q0]). The Zariski-closure of
W in GLy, is the image of Resx o(Of’), which is
perfect since O} is perfect.



Benoist-de la Harpe

Theorem (Benoist-de la Harpe)

Let (W, S) be an indefinite and irreducible
Coxeter system. Then the Zariski-closure of
W in Og is precisely the kernel O} of the
restriction map Og — Glaq(g) : 9 = 9lrsisy- In
particular, if B is non-degenerate, then W is
Zariski-dense in Opg.




Connected component is perfect

The connected component OF’ of the
Zariski-closure of the indefinite Coxeter group
W is perfect. Indeed, let V' = V/rad(B),
then OF = SOg x V/dimrad(B) ith the latter
being a perfect group because SOg is
simple and V' is an irreducible SOg-module.



