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I’ll NOT talk about ...

chromatic number of graphs associated to geometries, although
there are many nice results about them. Even for large independent
subsets in such graphs (EKR problems).
I can mention almost everyone who is attending the conference.
Results on q-analogues GODSIL, MEAGHER,BLOKHUIS,
BROUWER, CHOWDHURY, FRANKL, MUSSCHE, PATKÓS,
SZT,PEPE, STORME, VANHOVE, DE BEULE, METSCH,
D’HAESELEER, HEERING,....
Probably I forgot several names, I apologize for it. It is a very nice
topic where one can combine combinatorial, geometric, and
algebraic, (in particular, eigenvalue) techniques.
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Aim + Coauthors

In this talk we focus on (hypergraph) colouring problems related to
projective planes., in particular about 2-colourings. The main new
results about a conjecture of Erdős.
We also try to illustrate the difference between Galois planes and
arbitrary ones.
This talk is based on joint work with AART BLOKHUIS, ÁDÁM
MARKÓ, and ZSUZSA WEINER in the new part about Erdős
colouring (that is 2-colourings of proj. planes with many balanced
lines).
I was (partially) supported by Dynasnet European Research Council
Synergy project (ERC-2018-SYG 810115).
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Notation, chromatic number of proj. planes

The Galois plane over the field with q elements (GF(q)): PG(2, q).
An arbitrary proj. plane of order q: Πq.
The chromatic number of Πq is 2 for q > 2, and 3 for q = 2.
A 4-elt. subset either contains a line, or it is the complement of a
line.
For q > 2 the colour classe are a non-trivial blocking set and its
complement.
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How to make colourings of planes interesting?

Consider more general structures (e.g. uniform hypergraphs)
Impose extra conditions on colour class, for example:

1 colour classes are arcs (at most 2 points on a line can have the
same colour)

2 colour classes are blocking sets (each line contains a point of
each colour class)

In other words, modify the notion of chromatic number, e.g. by
forbidding rainbow lines (instead of monochromatic ones),
sometimes changing minimum/maximum no. of colours.
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Property B

ERDŐS-HAJNAL if the number m of edges in an r -uniform
hypergraph satisfies m ≤ 2r−1, then it is 2-colourable
ERDŐS there exists an r -uniform hypergraph with m ≤ cr22r edges
that is not 2-colourable
Notation: m(r) is the minimum number of edges in a
non-2-colourable r -uniform hypergraph
BECK: m(r) > c2r r1/3,
RADHAKRISHNAN-SRINIVASAN: m(r) > c2r (r/ ln r)1/2.
Actual value c = 0.7.
Greedy colourings: PLUHÁR.
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Variants of the previous results

ERDŐS-LOVÁSZ (using the famous Lovász Local Lemma)
If every edge meets ≤ 2r−3 other edges =⇒ H is 2-colourable
If H is linear (two edges meet in at most one point) and

1 if each point has degree ≤ 2r−3/r =⇒ H is 2-colourable
2 n ≤ 2r−4 =⇒ H is 2-colourable
3 m ≤ 4r−4/r3 =⇒ H is 2-colourable

RADHAKRISHNAN-SRINIVASAN: if every edge meets at most
0.172r (r/ ln r)1/2 other edges =⇒ H is 2-colourable.
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Csima-Füredi

CSIMA, FÜREDI for the case when colour classes are arcs: in Πq

one needs at least q + 1 colours, and it is sharp for Galos planes;
PG(2, q) can be partitioned into q conics and a point.
For the case when colour classes are blocking sets ("colourful
colourings")we want many colours; they refer to an unpublished
result by
ERDŐS, T. SÓS saying that χ ≥ q/(2 log q)
and there are other nice results.
Geometrically we want to partition the points in disjoint blocking
sets: (e.g. partition into Baer subplanes). CSIMA, FÜREDI show
that it is optimal. From geometry: BEUTELSPACHER, EUGENI,
BARÁT, MARCUGINI, PAMBIANCO, SzT.
J. Csima, Z. Füredi, Colouring finite incidence structures, Graphs
and Combinatorics 2 (1986), 339-346.
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Alon-Füredi

ALEX ROSA asked for the min. no. of colours, so that different
lines have different colour distributions.

ALON, FÜREDI: the answer is between 5 and 8.

N. Alon, Z. Füredi, Legitimate colorings of projective planes,
Graphs and Combinatorics 5 (1989), 95-106.
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Upper chromatic number

Colour the vertices of a hypergraph H.

A hyperedge is rainbow, if its vertices have pairwise distinct colors.

The upper chromatic number of H, χ̄(H): the maximum number
of colors that can be used without creating a rainbow hyperedge
(V. Voloshin).

For graphs, it gives the number of connected components.
Note that in case of the ordinary chromatic number we wish to
avoid monochromatic hyperedges.
Exercise: The upper chromatic no. of the Fano-plane is 3.
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Trivial coloring

v := q2 + q + 1, the number of points in Πq.

τ2 := the size of the smallest double blocking set in Πq.

Then χ̄(Πq) ≥ v − τ2 + 1.

We call this a trivial coloring. General aim: show that the above
bound is sharp.
In general, the union of colour classes of size at least two is a
double blocking set.
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Projective planes

Theorem (Bacsó, Tuza, 2007)

As q →∞,
χ̄(Πq) ≤ v − (2q +

√
q/2) + o(

√
q);

for q square, χ̄(PG(2, q)) ≥ v − (2q + 2
√
q + 1) = v − τ2 + 1;

χ̄(PG(2, q)) ≤ v − (2q +
√
q) + o(

√
q);

for q non-square, χ̄(PG(2, q)) ≤ v − (2q + Cq2/3) + o(
√
q).

Theorem (Bacsó, Héger, SzT)

Let Πq be an arbitrary projective plane of order q ≥ 4, and let
τ2(Πq) = 2(q + 1) + c(Πq). Then

χ̄(Πq) < q2 − q − 2c(Πq)

3
+ 4q2/3.
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What do we know about double blocking sets?

In general, for any Πq, we have τ2 ≤ 3q, by taking three
non-concurrent lines. For PG(2, q), we have better examples,
except when q is a prime.
The smaller examples come from taking two disjoint blocking sets
(e.g. two disjoint Baer-subplanes).
For q prime, there are double blocking sets in PG(2, q) with 3q − 1
points:
Csajbók, Héger, 2019: q = 13, 19, 31, 37, 43. (The construction
also works for q = 16, 25, 27.)
The first examples for q = 13 were constructed by Braun, Kohnert,
Wassermann, 2005.
Note that for q prime we only know τ2(PG(2, q) ≥ 2q + (q + 5)/2
(Ball).
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Results for small double blocking sets in PG(2, q)

A double blocking set is small, if it has at most 2q + (q + 1)/2
points.
The proof uses that a double blocking set of size at most 3q
contains a unique double blocking set. (see Harrach, SzT).
We also rely on results on small blocking sets, by Blokhuis, Storme,
SzT, and by Blokhuis, Lovász, Storme, SzT. In particular, they
showed that a small minimal double blocking set meets every line in
2 modulo p points, where q is a power of p. There are further
improvements for blocking sets by Sziklai.
Regarding the existence of disjoint blocking sets, see Davydov,
Giulietti, Marcugini, Pambianco, Polverino, Storme, and also the
thesis by Van de Voorde.
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Improvement for projective planes

Theorem (Bacsó, Héger, SzT)

Let v = q2 + q + 1. Suppose that τ2(PG(2, q)) ≤ c0q − 8,
c0 < 8/3, and let q ≥ max{(6c0 − 11)/(8− 3c0), 15}. Then

χ̄(PG(2, q)) < v − τ2 +
c0

3− c0
.

In particular, χ̄(PG(2, q)) ≤ v − τ2 + 7.

The above thm is (or can be) relevant for q prime.

Theorem (Bacsó, Héger, SzT)

Let q = ph, p prime. Suppose that either q > 256 is a square, or
h ≥ 3 odd and p ≥ 29. Then χ̄(PG(2, q)) = v − τ2 + 1, and
equality is reached only by trivial colorings.
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The papers on upper chr. no.

G. Bacsó, Zs. Tuza, Upper chromatic number of projective planes,
Journal of Combin. Designs 7 (2007), 39-53.
G. Bacsó, T. Héger, T. Szőnyi, The 2-blocking number and the
upper chromatic number of PG(2, q), Journal of Combin. Designs
21 (2013), 585-602.
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Balanced upper chromatic number

Definition (balanced upper chromatic number)

The balanced upper chromatic number of a hypergraph H is
the largest positive integer N for which H admits a rainbow-free
strict N-coloring so that the color classes have almost the same
size. Denote this number by χb(H). It was introduced by
Araujo-Pardo, Kiss, Montejano.

So, we would like to avoid the situation for trivial colorings: one
large color class, and several one-element classes (but we wish to
have as many colors as possible).
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Known results

Theorem (Araujo-Pardo,Kiss,Montejano, 2015)

All balanced rainbow-free colorings of any projective plane of order
q satisfies that each color class contains at least three points. Thus

χb(Πq) ≤ q2 + q + 1
3

.

Theorem (Araujo-Pardo, Kiss, Montejano, 2015)

Every cyclic projective plane of order q has a balanced rainbow-free
coloring with at least q2+q+1

6 color classes. Thus

χb(Πq) ≥ q2 + q + 1
6

.

Moreover, if q ≡ 1 (mod 3), then χb(Πq) = q2+q+1
3 .

T. Szőnyi colouring planes



Known results

Theorem (Araujo-Pardo,Kiss,Montejano, 2015)

All balanced rainbow-free colorings of any projective plane of order
q satisfies that each color class contains at least three points. Thus

χb(Πq) ≤ q2 + q + 1
3

.

Theorem (Araujo-Pardo, Kiss, Montejano, 2015)

Every cyclic projective plane of order q has a balanced rainbow-free
coloring with at least q2+q+1

6 color classes. Thus

χb(Πq) ≥ q2 + q + 1
6

.

Moreover, if q ≡ 1 (mod 3), then χb(Πq) = q2+q+1
3 .

T. Szőnyi colouring planes



Our results

Theorem (Blázsik, Blokhuis, Miklavič, ZL Nagy, SzT, 2021)

Let PG(2, q) be the desarguesian projective plane of order q. Then

χb(PG(2, q)) =

⌊
q2 + q + 1

3

⌋
.
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What type of results do we use?

It was already observed by Araujo-Pardo, Kiss and Montejano that
it is enough to have a difference set containing 0, 1, 3 and have
color classes consisting of 3 consecutive integers (with one class
possibly consisting of 4 consecutive integers).
A (projective) difference set comes from a primitive polynomial
p(x) of degree three and a subspace of dimension 2. If we take the
subspace generated by 1 and x , and choose a polynomial of the
form p(x) = x−bx − c , then the subspace contains 1 = x0, x = x1,
and x3 = bx + c , hence the difference set will contain 0, 1, 3.
Luckily, S. D. Cohen proved that for q 6= 4,there is such a primitive
polynomial (and q = 4 was done earlier).
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A result for general (non-desarguesian) planes

Theorem (Blázsik, Blokhuis, Miklavič, ZL Nagy, SzT, 2021)

Let Πq be an arbitrary projective plane of order q > 133. Then, its
balanced upper chromatic number can be bounded from below as
follows

χb(Πq) ≥ q2 + q − 16
10

.

In other words, the result says that we could show the existence of
a coloring with colour classes of size 10 and 11, and without
rainbow lines. The proof uses the probabilistic method (random
coloring / recoloring and careful estimates for the number of
rainbow lines) and also HAEMERS’ incidence bound.
For q ≤ 133, one can find, using a computer, a colouring with
colour classes of size 11 and 12, without rainbow lines.
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The papers on balanced upper chr. no

G. Araujo-Pardo, Gy. Kiss, A. Montejano, On the balanced upper
chromatic number of cyclic projective planes and projective spaces,
Discrete Math. 338 (2015), 2562-2571.
Z. L. Blázsik, A. Blokhuis, Š. Miklavič, Z. L. Nagy, T. Sz onyi, On
the balanced upper chromatic number of finite projective planes,
Discrete Math. 344 (2021), 112266.
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Discrepancy

2-colouring: a function f : V → {−1,+1}
discrepancy of an edge E : is |

∑
x∈E f (x)| = disc(E ).

discrepancy of f : max{disc(E ) : E ∈ H}.
discrepancy of H: minf max{disc(E ) : E ∈ H}.
ERDŐS: disc(H) ≤

√
2n log(2m), where |V | = n, and the

hypergraph has m edges
SPENCER: For m = n, disc(H) < 6

√
n.√

n is the right order of magnitude: Hadamard-designs

T. Szőnyi colouring planes



Discrepancy of projective planes = motivation for Erdős’
colouring problem

Let P denote the set of red points, |P| > (q2 + q)/2. List the lines
Li and let ri = |Li ∩ P|. Then∑

ri = |P|(q + 1), and∑
ri (ri − 1) = |P|(|P| − 1).

Now disc(Li ) = |q + 1− 2ri |. and from the standard eqns we can
compute

∑
disc(Li )

2. This gives

disc(Πq) >
√
q.

On the other hand, SPENCER proved that disc(Πq) ≤ c ′
√
q.

J. Spencer, Coloring the projective plane, Discrete Math. 73
(1988-89), 213-220.
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Erdős’ colouring problem

Colour the pts of Πq with two colours. A line is balanced it it has
the same no. of red/blue pts (q odd). Unbalanced = not balanced
What is the max. no. of balanced lines?
(From discrepancy lower bound we see that there are unbalanced
lines.)
We aim at a lower bound for the no. of unbalanced lines.
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Special directions: motivation 2 for Erdős’ colouring problem

RÉDEI’s direction problem: take a set U ⊂ AG(2, q) of size q.
Then there are determined directions (D) and non-determined
directions (N).
From the points of N the set looks the same: one point on each line
GHIDELLI’s generalization: Let U have nq points. The analogue of
N is the set of infinite points, so the each line contains n points of
U. Remaining dir.: analogue of D, called special directions
Ghidelli obtained nice results about the size of special dirs.
1 special dir.: parallel lines, 2 specials dirs: not possible, 3 special
dirs? (next slide)
L. Ghidelli, On rich and poor directions ..., Discr. Math. 343
(2020), 111811.
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The Kiss-Somlai example

Theorem (Kiss, Somlai)

Let p > 2 be a prime. Then the set

S = {(x , y) ∈ F2
p : y < x}

has exactly three special directions, namely (0), (1) and (∞). Here
the elements are integers between 0 and p − 1 and < is the usual
one.
Let M be a point set in AG(2, p). Let (d) be a non-special
direction. If M admits at most three special directions, then M is
either a union of r parallel lines or, up to an affine transformation,
it is equivalent to S or its complement in the previous theorem.

G. Kiss, G. Somlai, Special directions on the finite affine plane,
Designs, Codes and Cryptography 92 (2024), 2587-2597.
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Extension to multisets

ADRIAENSEN, WEINER: instead of points below Y = X , the
studied points below the parabola Y = X 2. They showed that the
infinite points look the same combinatorially (except Y∞) but the
set has no symmetries.
Extension of the 1, 2, . . . , q/p, q = ph, h > 1 special directions
results to multisets: ADRIAENSEN, SzT, WEINER
Note that for multisets, the weights are modulo p (sometimes
integers between 0 and p − 1, sometimes integers between
−(p − 1)/2 and (p − 1)/2, sometimes field element).
S. Adriaensen, T. Szőnyi, Zs. Weiner, Multisets with few special
directions and small weight codewords in Desarguesian planes,
arXiv:2411.19201
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Erdős’ colouring question

In the eighties ERDŐS proved posed (via J. LEHEL the following
question: colour the pts of Πq with two colours. A line is balanced
it it has the same no. of red/blue pts (q odd).
What is the max. no. of balanced lines?
(From discrepancy lower bound we see that there are unbalanced
lines.) We want a lower bound for the no. of unbalanced lines.
Easy: there are at least q + 1 unbalanced lines. If less, then there is
a pt which not on unbalanced lines, say it is red. Then the no. of
red pts is (q2 + 1)/2. There is also a point which is on exactly 1
unbalanced line. It cannot be red, and if it is blue, then the no. of
red pts. is at least q(q + 1)/2, contradiction.
A slight refinement shows that for q + 1 unbalanced lines they have
to have a common point and the lines through this point are
monochromatic (except perhaps this point).
We are still checking our manuscript, so corrections may be
necessary (and in the worst case, parts of the proofs may collapse).
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A natural generalization

Definition
Colour the points of PG(2, q) with red and blue and fix an integer
0 ≤ r ≤ q + 1. Let b = q + 1− r and assume that r ≤ b The line `
in PG(2, q) is (r , b)-coloured, if the number of red points on ` is r ,
while the number of blue points is b.

(r , b)-coloured lines are balanced lines and all other lines are
unbalanced lines. Erdős’ original question r = b.
Then previous proof can be copied for the more general case if
r > 1. Trivial colouring: r lines through a point P are entirely red,
b lines entirely blue (except P).
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Stability version

What is the next possible number of unbalanced lines? (assuming
the colouring non-triv.)
Combinatorially (that is for Πq):
MARKÓ: at least 13

8 q (in case of the Erdős version)
at least 4

3q in the general case (if r > 1) with two exceptions (lines
of a dual hyperoval are completely blue, or one line of the dual
hyperoval is blue, the rest of the remaining lines of the hyperoval
are red).
Next easy example: change the colour of one point in the triv. col.
(in this case there are 2q + 1 unbalanced lines).
We try to prove this bound for PG(2, q) (for general r , b),
sometimes under extra conditions.
Á. Markó, Nonuniform lines in finite projective planes, Art of Discr.
and Appl. Math., accepted
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There is a 0-point: i.e. with only balanced lines

In this case we need to assume that there is a line with 6= r mod p
red points. So, choose such a line as the line at infty, identify
AG(2, q) with GF(q2). Using the nucleus polynomial (cf.
BLOKHUIS, WILBRINK)

F (X ) =
∑
a∈R′

(X − a)q−1 + aq−1
1 + . . . aq−1

k ,

(where R ′ is the set of red pts in AG(2, q), and a1, . . . , ak are the
red pts on the line at infty. Using this, we can show that there are
few (at most q − 1) 0-points. Through the other points there are
at least 2 unbalanced lines, so we are already close to 2q
unbalanced lines. With some extra work, we can show that there
have to be at least 2q + 2 unbalanced lines in this case.
Remark: In the original Erdős case, the mod p condition is either
satisfied automatically, or we can show that there are more than
2q + 2 unbalanced lines.
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Case 2: Unbalanced lines form a dual blocking set

Theorem

Colour the points of the plane PG(2, q) either red or blue. A line is
balanced if it contains r red and b blue points, where
0 < r ≤ b < q + 1. Assume unbalanced lines form a dual blocking
set and there are less than 2q + 1. Then, the red points form one
of the following structures:

(1) a line and a point not on the line (r = 1),
(2) r concurrent lines,
(3) r concurrent lines minus their intersection,
(4) a Baer subplane (r = 1).
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Very short sketch of the proof

Proof uses old results by TALLINI SCAFATI on bl. sets of type
(1, n). Also the fact that a bl. set of size ≤ 2q contains a unique
minimal bl. set HARRACH, SzT.
Note that there are non-trivial colourings with 2q + 1 unbalanced
lines, for example take a Baer subplane and at one of its points
r − 1 tangents and colour them red. If r =

√
q or
√
q + 1, then this

example gives 2q −√q unbalanced lines, showing that the above
mod p condition is necessary (if there is a 0-point).
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The prime case

Of course, when p is prime, then the above mod p condition is
automatical.
We can also use the results of the paper
T. Szőnyi, Zs. Weiner, Stability of k mod p multisets and small
weight codewords of the code generated by the lines of PG(2, q), J.
Combin. Theory Ser. A 157 (2018), 321–333
to guarantee that the not r mod p lines go through some points (if
there are not too many of them). It also indicates the connection
with small weight codewords.

T. Szőnyi colouring planes



Connection with codewords

Consider a red point. It is a line of the dual plane. Add up the
characteristic vectors of these lines of the dual plane (corresponding
to red points). What is the coordinate corresponding to a point of
the dual plane, of this sum? The point of the dual plane
corresponds to a line and the coordinate is the size of intersection
of this line and the red points. So, for balanced lines, it is r .
Subtract r j (the all-1 vector). Then we get a vector in the code
generated by lines of the dual plane, which is zero many times. Its
weight is the number of unbalanced lines.
For example, the Kiss-Somlai example corresponds to a Bagchi type
codeword (whose support is contained in the union of 3 concurrent
lines). See also the Adriaensen, SzT, Weiner manuscript on arXiv,
where we use the term "‘odd codeword" instead of Bagchi type
codeword. This connection can also be found there.
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The BAGCHI codeword

BAGCHI: constructed a codeword of weight 3p − 3 explicitly. Its
support is contained in the union of 3 lines and it is also in the dual
code.
Found independently by DE BOECK and VANDENDRIESSCHE.
They also described it as a linear combination, which roughly
speaking corresponds to finding a multiset in the original plane such
that the above procedure gives the codeword. In general, it is not
obvious when such a multiset is a set.
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The prime case II

Consider a coloring of the points of PG(2, p), where p ≥ 19, into
red and blue. A line is called balanced if it contains exactly
0 < r < p + 1 red points. Suppose that there are at most
max{3p + 1, 4p − 22} unbalanced lines. Then either the set of red
points or the set of blue points has one of the following structures:
(1) r concurrent lines through a point P , the color of P might be

switched (but not necessarily).
(2) The structure described in case (1), with switching the color of

at most two points different from P .
(3) One line along with three points outside of it.
(4) A set equivalent, up to an affine transformation, to S or its

complement in Example 6, union with a subset (which may be
empty or the entire set) of the directions {(0), (1), (∞)}.

(5) a triangle, where the vertices have arbitrary colours (for
r = 3).

Also, all the listed structure yields a coloring with at most
max{3p + 1, 4p − 22} unbalanced lines.
Case (5) was missing from the abstract.T. Szőnyi colouring planes



r small

Theorem

Colour the points of PG(2, p), p prime, red and blue. We say that
a line is balanced if it contains exactly r red points. Suppose that
r < c

√
p and the number of unbalanced lines, δ, is less than

d
√
p(p + 1), where c , d > 0 and 8d(c + d) + 20c+28d√

p + 19
p < 1

hold. Then we can change the color of at most dd√pe points so
that the coloring we obtain contains r completely red lines and all
other points are blue. Furthermore, the size of the union of the set
of recolored points and the intersection points of the r red lines is
at most dd√pe.
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Thank you

Thank you for your attention!
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