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Exploring quasi-Hermitian varieties: properties and applications
Angela Aguglia

Politecnico di Bari

Quasi-polar spaces are combinatorial generalizations of classical polar spaces embedded in finite
Desarguesian projective spaces. In this talk, we focus on the Hermitian case.

A quasi-Hermitian variety is any point set in PG(n,q?), n > 2, that has the same intersection
numbers with hyperplanes as the non-singular Hermitian variety H(n, ¢?). These intersection numbers
are either

(@ + (D" = D" H/ (-1
or
(" +(=D)" D" = (=)
¢>—1

By definition, a non-singular Hermitian variety is a quasi-Hermitian variety, referred to as the classical

+ (_1)n—1qn—1.

quasi-Hermitian variety.

In fact, any point set S C PG(n,¢?) with the same hyperplane intersection numbers as H(n, ¢?)
also has the same number of points as H(n,q?) for n > 2. In the smallest case, n = 2, the point set
S has size either ¢3 + 1 or ¢°> + ¢ + 1, corresponding respectively to a unital or a Baer subplane, two
combinatorial structures playing a fundamental role in finite geometry.

The systematic study of quasi-Hermitian varieties in higher dimensions began in the early 2010s.
We will provide an overview of recent constructions of non-classical quasi-Hermitian varieties, equiva-
lence results, and methodologies that may help to characterize non-singular Hermitian varieties within
the broader class of quasi-Hermitian varieties. These results make use of several mathematical tools,
including algebraic geometry over finite fields, group theory, and combinatorics.

The study of these varieties is motivated not only by their intrinsic geometric interest but also by
their significant applications in areas such as coding theory, graph theory, and cryptography.

This talk is based on several joint works with A. Cossidente, L. Giuzzi, G. Korchmaéros, G. Lon-
gobardi, A. Montinaro and V. Siconolfi.
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g-Systems of Matrix Codes and an Application to the Critical Problem
Eimear Byrne
University College Dublin

(Joint work with John Sheekey)

A matrix code may be represented as a slice space of a 3-tensor, called its generator tensor. We use
the generator tensor of a matrix code to introduce the notion of a g-system associated with the code,
as an extension of the notion of a g-system of an Fym-linear rank metric code. This approach allows
one to describe the parameters of a matrix code in terms of the other slice spaces of its generator
tensor, such as the rank weight of a codeword. Furthermore, the critical exponent of a representable
g-polymatroid can be described in terms of an associated g-system. We use this to derive a new upper
bound on the critical exponent, which is sharp.
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Block-transitive designs admitting multiple invariant partitions
Alice Devillers
University of Western Australia

(Joint work with Seyed Hassan Alavi, Carmen Amarra, Ashraf Daneshkhah, Cheryl Praeger)

Combinatorial designs are incidence structures with points and blocks, where every pair of points
is in a fixed number of blocks. There has been a renewed interest in recent years on designs admitting
a group of automorphisms that is both flag-transitive (or sometimes just block-transitive) and point-
imprimitive. In this talk I will present recent research about such designs which admit multiple
systems of imprimitivity. For instance, for 2 systems of imprimitivity Ci,C2, they can be either in
a chain (each class of C; is a subset of a class of Cg), or grid-like (each class of C; intersects each
class of Cy in a single point). We determined conditions for a design to admit a flag-transitive or
block-transitive group preserving a chain of partitions, and found infinitely many examples for any
chain length. We also determined conditions for a design to admit a block-transitive group preserving
a multi-dimensional grid structure, and found infinitely many examples for 2- and 3-dimensional grids.
We know a single example that is four-dimensional. We also studied more general multiple systems of
imprimitivity (not chains nor grid-like).
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Differential analysis through a double cover of the unit circle in a finite field
Daniel J. Katz
California State University, Northridge

(Joint work with Kathleen R. O’Connor, Kyle Pacheco, and Yakov Sapozhnikov)

Let F be a finite field, let f be a function from F' to F, and let a be a nonzero element of F.
The discrete derivative of f in direction a is A,f: F — F with (A.f)(z) = f(x + a) — f(xz). The
differential spectrum of f is the multiset of cardinalities of all the fibers of all the derivatives A, f
as a runs through F™*. Functions whose derivatives have fibers of small size (for example, planar
and almost perfect nonlinear functions) are of interest in finite geometry and cryptography. If d is
a positive integer, then the power function over F' with exponent d is the function f: FF — F with
f(z) = 2% for every x € F. There is a small number of known infinite families of almost perfect
nonlinear power functions. In this talk, we re-express the exponents for one such family in a more
convenient form. This enables us to give the differential spectra of the functions in the family and,
even more, to give a very precise determination of individual fibers of the derivatives. The key to the
analysis is a double cover of the unit circle in a quadratic extension of a finite field.
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Automorphism groups of algebraic curves in positive characteristic
Maria Montanucci

Technical University of Denmark, Department of Applied Mathematics and Computer Science

Algebraic curves in positive characteristic and their function fields have been a source of great
interest ever since the seminal work of Hasse and Weil in the 1930s and 1940s. Many important and
fruitful ideas have arisen out of this area, where number theory and algebraic geometry meet, including
the famous application to error-correcting codes given by Goppa’s AG codes.

Let X be a projective, geometrically irreducible, non-singular algebraic curve defined over an
algebraically closed field K of positive characteristic p. Let K(X) be the field of rational functions on
X (i.e. the function field of X over K). The K-automorphism group Aut(X) of X is defined as the
automorphism group of K(X) fixing K element-wise. The group Aut(X’) has a faithful action on the
set of points of X.

By a classical result by Schmid (1938), Aut(X) is finite whenever the genus g of X is at least two.
Furthermore it is known that every finite group occurs in this way, since, for any ground field K and
any finite group G, there exists an algebraic curve X defined over K such that Aut(X) = G (see for
example the work of Valentini-Madden, 1982).

This result raised a general problem for groups and curves, namely, that of determining the finite
groups that can be realized as the K-automorphism group of some curve with a given invariant. The
most important such invariant is the genus g of the curve. In positive characteristic, another important
invariant is the so-called p-rank of the curve, which is the integer 0 < v < g such that the Jacobian of
X has p7 p-torsion points.

Several results on the interaction between the automorphism group, the genus and the p-rank of a
curve can be found in the literature. A remarkable example is the work of Nakajima (1987) who showed
that the value of the p-rank deeply influences the order of a p-Sylow subgroup of Aut(X). Extremal
examples with respect to Nakajima’s bound are known from the work of Korchméros-Giulietti (2017)
and Stichtenoth (1973). The following open problem arose naturally:

Open Problem 1: How large can a d-group of automorphisms G of an algebraic curve X of genus
g > 2 be when d # p is a prime number? Is there a method to construct extremal examples as for the
case d = p?

In his work Nakajima also analyzed the case of curves for which the p-rank is the largest possible
(the so-called ordinary curves), namely v = g, proving that they can have at most 84(¢g? — g) auto-
morphisms. Since no extremal examples for this bound were found by Nakajima, also the following
open problem arose naturally:

Open Problem 2: Is Nakajima’s bound |Aut(X)| < 84(¢g? — g), sharp for an ordinary curve X
of genus g > 27

Hurwitz (1893) showed that if X" is defined over C then |Aut(X')| < 84(¢g — 1), which is known as
the Hurwitz bound. This bound is sharp, i.e., there exist algebraic curves over C of arbitrarily high
genus g whose automorphism group has order exactly 84(g — 1). Well-known examples are the Klein
quartic and the Fricke-Macbeath curve.

Roquette (1970) showed that Hurwitz bound also holds in positive characteristic p, if p does not
divide |Aut(X)|. A general bound in positive characteristic is |Aut(X)| < 16g* with one excep-
tion: the so-called Hermitian curve. This result is due to Stichtenoth (1973). The quartic bound
|Aut(X)| < 16¢* was improved by Henn (1978). Henn’s result shows that if |Aut(X)| > 8¢ then X is
K-isomorphic to one of 4 explicit exceptional curves, all having p-rank equal to zero. A third natural
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open problem arose as a consequence of this result:

Open Problem 3: Is it possible to find a (optimal) function f(g) such that the existence of an
automorphism group G of X with |G| > f(g) implies that X has p-rank zero?

Henn’s result clearly implies that f(g) < 8¢3, but it is pleausible to believe that a quadratic bound
with respect to g could also be found.

In this talk, we will describe our main contributions to the three problems mentioned above and
more generally in understanding the relation between automorphism groups of algebraic curves in
positive characteristic and the other invariants mentioned above. If time allows, applications of these
results in determining isomorphism classes of algebraic curves over finite fields will also be discussed.



Bent functions - five decades later
Enes Pasalic

University of Primorska

(Joint work with S. Kudin, S. Polujan, F. Zhang)

Bent functions form a special class of Boolean functions in an even number of variables, notable
for various combinatorial properties and applications in cryptography. For instance, their Hamming
distance to the set of affine functions is maximal, and the bent property is equivalent to the fact that
its support forms a Hadamard difference set. Moreover, the Cayley graphs constructed from bent
functions are strongly regular.

The notion of bent functions was introduced by Rothaus in the mid sixties, whereas two primary
constructions are due to Maiorana-McFarland [1] and Dillon [2]. In the last decade, a series of articles
considered the design of bent functions that are provably outside the Maiorana-McFarland (M) class.
In this talk, using the notion of M-subspaces, we will survey the most important achievements [12, 8,
5, 4, 10, 6, 3, 9, 7] regarding the design of bent functions that do not belong to the primary classes.
A complete characterization of these objects mainly depends on the properties of so-called bent sets
whose exact specification, especially in terms of induced M-subspaces, remains unanswered.

References
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Constructing highly regular expanders from hyperbolic Coxeter groups
Jeroen Schillewaert
University of Auckland

(Joint work Marston Conder, Alexander Lubotzky and Francois Thilmany)

Expander graphs are sparse graphs with strong connectivity properties. Chapman, Linial and
Peled asked whether there exist families of expander graphs with high levels of regularity, that is
not only the number of edges containing a given vertex needs to be constant but also the number of
triangles containing a given edge etcetera. We answer this question positively constructing families of
expander graphs as quotient graphs of 1-skeleta of infinite polytopes (1-skeleton means only retain the
vertex-edge information of the polytope). The latter are Wythoffian polytopes, which are obtained
from Coxeter groups by decorating the associated Coxeter diagram. The specific higher regularity
properties depend on this diagram. Expansion stems from superapproximation of the Cayley graphs
associated to the Coxeter group, which is a number-theoretic way to study the rate of convergence of
random walks on these graphs. The Cayley graphs and the 1-skeleta are quasi-isometric (that is equal
on a large scale) which implies that one forms an expanding family if and only if the other does.
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On a colouring problem for projective planes
Tamas Sz6nyi
HUN-REN Rényi Institute, E6tvos University and University of Primorska

(Joint work with Aart Blokhuis, Addm Marké, Zsuzsa Weiner)

Determining the chromatic number of a projective plane of order n is an easy exercise. It is 3 for
the Fano plane and 2 for n > 3. In spite of this, there are several interesting problems for colourings
of projective planes, already about 2-colourings. We will mostly be interested in 2-colourings and the
colours we call red and blue. The classical result by Spencer [4] about the discrepancy of projective
planes gives a probabilistic proof of the existence of a 2-colouring so that for every line ¢ the difference
of the number of red and blue points on ¢ is at most K+/n (where K is an absolute constant and n
is the order of the plane). Using the standard equations for the set R of red points it is easy to see
that Z?iirnﬂ(ri —b;)? only depends on the number of red points, where ¢1,...,¢,2 ., is the list of
lines and r; denotes the number of red, b; denotes the number of blue points on ¢;. In particular, the
above sum is at least (n + 1)(n? + 1), which implies that K > 1. It also implies that there must be
lines with r; # b;.

Probably motivated by the above result by Spencer, Erdés asked in the eighties the following
problem: What is the mazimum number of lines that have the same number of red and blue points?
Let us call such a line balanced. It is again an easy exercise to show that there are always at least n+1
unbalanced lines, so the answer to Erdds’ question is n?. In case of equality, the unbalanced lines go
through a point, half of them are entirely red, half of them are entirely blue (except the point itself).
This colouring is called trivial.

It is a natural question to improve on the bound n + 1 if the colouring is not trivial. This question
was considered by Addm Marké [3], who proved that when the number of unbalanced lines is at most
18—371, then the colouring must be trivial. It seems a natural conjecture that the next possible number
of unbalanced lines is 2n + 1, and the corresponding colouring comes from the trivial one by changing
the colour of one point.

In this talk we focus on Galois planes PG(2,¢), so from now on the order of the plane will be
denoted by ¢. In this case we could prove the bound 2¢ + 1 but could not describe the corresponding
colouring.

A natural generalization of the problem is to prescribe the profile of the line (r,0) (r+b=¢q+ 1)
and ask for the maximum number of lines with r red and b blue points. Such lines are called (7, b)-
coloured. Many of our arguments work also in this more general case, if there are lines which have r’
red points for some 7’ # r modulo p, where p is the characteristic of the ground field. Note that if we
colour the lines of a dual hyperoval (¢ even) entirely blue, then every other line will have b = (¢+2)/2
and 7 = ¢/2, so it is a colouring with ¢ 4+ 2 not (r,b)-coloured lines.

Of course, for planes of prime order the above modulo p condition is almost automatical, so we have
the strongest results in this case. Also, in the prime case we can associate a small weight codeword
in the code generated by the lines of the dual plane to a colouring with many (7, b)-coloured lines.
We know a codeword of weight 3p — 3 discovered by Bagchi (and independently by De Boeck and
Vandendriessche), so one might suspect that there should be a colouring, too. Kiss and Somlai [2]
proved that R = {(z,y) : y < 2,0 < x,y < p} Ul is a set in the Erdés case (r = (p+1)/2) such that
the unbalanced lines are the affine lines with slope 0, 1, 0o (with one-one exception for each slope) and
the line at infinity. So, the coordinates are considered as integers in the example. To have a theorem
in this abstract, let us state our result for the prime case (see [1]).

Theorem 1 Consider a colouring of PG(2,p), p > 19 prime, in red and blue. A line is called balanced
if it contains exactly 0 < r < p+ 1 red points. Suppose that there are at most max{3p + 1,4p — 22}
unbalanced lines. Then either the set of red or the set of blue points has one of the following structures:

1. v concurrent lines through a point P, the colour of P can be switched.
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2. The structure described in case (1), with switching the colour of at most two points different
from P.

3. One line together with at most three points outside of it.

4. A set, equivalent, up to affine transformation, with the affine part of the Kiss-Somlai example
or its complement (the points of the line at infinity have the same colour; it can be both red or
blue).

Moreover, all these structures give a colouring with at most max{3p + 1,4p — 22} unbalanced lines.

Finally, if 7 is small (a small constant times ,/p), then we can allow considerably more unbalanced
lines and describe the colouring completely.
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The probabilistic method in finite geometry
Jacques Verstraete

University of California, San Diego

The probabilistic method is a non-constructive existence argument that was pioneered by Paul
Erdos in the middle of the twentieth century. While the impact of the method is felt across all of
mathematics, I will focus on applications in finite geometry in this talk. This includes the topics of
blocking sets, maximal arcs, partial ovoids and spreads, and strong representative systems to mention
a few. We will outline the central tools in this method, and give some simple geometric consequences
as well as open problems.
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Extended field presentations of arcs and ovoids
Kanat Abdukhalikov
UAE University
Arcs and ovoids in finite projective spaces have canonical presentations in homogeneous coordi-
nates. We revisit these presentations and provide their presentations in terms of extensions of basic

fields, or in terms of polar coordinates. We provide constructions of hyperovals, Segre arcs, maximal
arcs, and ovoids in PG(3, q).
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Eigenvalue bounds for the independence number of graph powers and an
application to coding theory

Aida Abiad
Findhoven University of Technology, Vrije Universiteit Brussel
(Joint work with A. Ravagnani and A. Khramova)
In this talk, eigenvalue bounds on the independence number of graph powers will be presented.

We will then use such eigenvalue bounds to estimate the maximum size of a code in the sum-rank
metric, illustrating how the spectral method can often improve the state of the art coding bounds.
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Linear complete symmetric rank-distance codes
Nour Alnajjarine
University of Rijeka
(Joint work with Michel Lavrauw)
An Fg-linear code of minimum distance d is said to be complete if it is not contained in any larger
Fg-linear code with the same minimum distance d. In this talk, we demonstrate the existence of 3
(resp. 6) Fy-linear complete symmetric rank-distance (CSRD) codes in M3y 3(F,) with d = 2, up to

equivalence, for ¢ odd (resp. even). Our approach is mainly geometric. We will also present some
contributions of our results toward the classification of nets of conics in PG(2, q).

References

[1] N. Alnajjarine, M. Lavrauw, Linear complete symmetric rank-distance codes , submitted , 2025.
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Stabiliser codes over finite fields, associated geometries and entanglement in
quantum states

Simeon Ball

Universitat Politecnica Catalunya

In this talk I will give a detailed construction of stabiliser codes over finite fields of prime order
using sets of lines in projective spaces. One-dimensional stabiliser codes are known as graph states,
since one can associate to such a stabiliser code a graph whose edges are weighted with elements of I,,.
In this talk I will prove that there is in fact a weighted graph associated to any stabiliser code. I will
then endeavour to broaden the definition of stabiliser codes which will allow us to construct stabiliser
code for mixed dimensional Hilbert spaces. I will also mention applications to entanglement measures
and absolutely maximally entangled states.
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The Kovalevski Configuration of a Quartic Curve over a Finite Field
Anton Betten

Kuwait University

Quartic curves with 28 bitangents may have points outside the curve where 4 bitangents meet. We
call such a point a Kovalevski point. The number of such points is at most 63, but most curves over
finite fields have far fewer such points. What are the possible configurations of Kovalevski points? To
investigate this question, we proceed to classify these curves over small finite fields. This is facilitated
by the relation to cubic surfaces with 27 lines. In particular, we will study the relation between
Kovalevski points on quartic curves and Eckardt points on cubic surfaces. Recall that an Eckardt
point of a cubic surface is a point lying on three lines of the surface.
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The even and odd sets of PG(2,8)

Kris Coolsaet
Ghent University (Belgium)

(Joint work with Arne Botteldoorn and Silvia Pagani)

An even (resp. odd) set in a projective plane is a set of points such that every line of the plane
intersects that plane in an even (resp. odd) number of points.

We obtained, by computer, a full classification up to equivalence of the even and odd sets of the
projective plane of order 8. The generation algorithm is non-standard in that it does not incrementally
add points to previously generated sets but instead starts from a family of ‘reduced’ sets and takes
subsequent symmetric differences with lines.

We give geometric descriptions of some of the resulting sets with the largest automorphism groups.

Even sets can be interpreted as code words in the dual of the binary projective code of the plane.
Our results therefore provide an explicit weight enumerator for that code.
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Graphs from hyperbolic quadrics
Jan De Beule

Vrije Universiteit Brussel

The graph NOT(8,2) is a strongly regular graph with parameters v = 120, k = 63, A = 30, and
p = 36. Its vertex set is the set of points of PG(7,2) not on the quadric Q™ (7,2). Two vertices
are adjacent if and only if the line they span is tangent to the hyperbolic quadric Q*(7,2). In [1],
it is mentioned that a strongly regular graph with the same parameters arises from a rank 7 action
of the symmetric group Sym(7). We provide a description of this graph on the same vertex set as
the graph NO™(8,2), and we explain how the adjacency relation of NO*(8,2) can be modified to
obtain this graph. It turns out that the unique ovoid (and spread) of the quadric Q*(7,2) plays a
central role. Secondly, we consider a strongly regular graph, again with the same parameters, that is
non-isomorphic to NOT(8,2). Its vertices are the points of Q*(7,2) \ II, II a generator of Q*(7,2).
We discuss a geometrical argument why this graph is non-isomorphic with the graph NO™ (8, 2).

The results obtained are joint work with Sam Adriaensen, Robert Bailey, Morgan Rodgers, and
Antonio Cossidente, Giuseppe Marino, Francesco Pavese, and Valentino Smaldore.
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Binary code generated by the hyperbolic quadrics of W(2n — 1,q), ¢ even
Bart De Bruyn
Ghent University

(Joint work with Devjyoti Das, Binod Kumar Sahoo and N. S. Narasimha Sastry)

Consider a vector space of dimension 2n, n > 2, defined over the finite field of order ¢, that is
equipped with a nondegenerate alternating bilinear form f. Denote by PG(2n—1,¢) and W(2n—1,q)
the associated projective space and the symplectic polar space, respectively. For g even, let H denote
the binary linear code spanned by those hyperbolic quadrics of PG(2n — 1, ¢) with quadratic forms s
for which the associated symmetric bilinear form f, equals f, up to a nonzero factor. We characterize
the codewords of minimum and maximum weights in H and its dual code H+. For all ¢, we also

determine the minimum size blocking sets in PG(2n — 1,¢) with respect to the hyperbolic lines of
W(2n—-1,q).
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Cameron-Liebler sets of generators
in the Klein quadric Q" (5, q)

Jozefien D’haeseleer
Ghent University

(Joint work with Jonathan Mannaert and Leo Storme)

In 1982, Cameron and Liebler introduced specific line classes in PG(3,q) when investigating the
orbits of the subgroups of the collineation group of PG(3, ¢). They found that these Cameron-Liebler
sets can be defined in many equivalent ways; some combinatorial, geometrical or algebraic in nature.

A Cameron-Liebler line set £ in PG(3, q) is a set of lines, such that every line spread in PG(3, q)
has the same number of lines in common with L.

The examination of these Cameron-Liebler line sets in PG(3, ¢) started the motivation for defining
and investigating Cameron-Liebler sets in other contexts, including the context of finite classical polar
spaces [1, 2].

In this talk I will focus on Cameron-Liebler sets in these finite classical polar spaces, in particular
in the hyperbolic quadric Q™ (5, ¢). I will present some non-trivial examples of Cameron-Liebler sets
of generators in QT (5, ¢), which were recently found by using the Klein correspondence. This project
is joint work with J. Mannaert and L. Storme [3].
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Codes from the point-hyperplane geometry of PG(V)
Luca Giuzzi
Universita di Brescia
(Joint work with Ilaria Cardinali)
Let V' be a vector space of dimension n + 1 over the finite field F, and I' be the point-hyperplane
geometry of PG(V), i.e. the geometry whose points are pairs (z,¢) € PG(V) ® PG(V*) with z € &.
For any automorphism o of Fy, the map ¢, : I' = PG(V ® V*) sending (z,§) — (27,€) is a projective

embedding. Denote by A, its image, and by C(A,) the projective codes defined by A,. By studying
the interplay between the codes and the geometry, we prove the following.

Theorem 1 e Ifo =1, then the code C(\1) has parameters [Ny, k1,d1] given by

("' -1)("-1)
(q—1)? ’

1

Ny = k1 = n? 4 2n, dy=¢" 1 —qg" Y

o Ifo # 1, then the code C(\,) has parameters [Ny, kq,ds] given by

("' =1)(¢" - 1)

Ny = k1 =n*+2n+1.
1 (= 1) ; 1=n"+2n+
I - q3—\/§3 if o> =1 and n = 2,
7 Pl - ifo?# 1 orn > 2.

e Forallo € Aut(Fy), the codes C(Ay) are minimal and admit an automorphism group isomorphic
to the central product PSL(n +1,q) - Fy.

We also provide the complete weight list for the code C(A1) and characterize the word of lowest and
second lowest weight for the general codes C(A,).
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Classification of low-degree ovoids
Giovanni Giuseppe Grimaldi
University of Perugia
(Joint work with Daniele Bartoli, Nicola Durante, Marco Timpanella)
An ovoid of a finite classical polar space P is a subset of points meeting any generator of P in
exactly one point. Any such pointset can be parametrized by multivariate polynomials. In this talk,
we provide classification results regarding low-degree ovoids of Q* (5, q), Q(6,q) and QT (7,q), i.e., the

polynomial degrees are low compared to the size of the field. The main tool is the investigation of
absolutely irreducible components of a suitable hypersurface attached to the ovoid.
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The Geometry of Codes for Random Access in DNA Storage
Anina Gruica
Technical University of Denmark

(Joint work with Maria Montanucci and Ferdinando Zullo)

In this talk, we will explore the random access problem in the context of DNA data storage. The
focus is on understanding how many DNA strands need to be read to reliably decode a specific piece
of information requested by the user from a large pool of encoded strands. The information strands
are encoded using an error-correcting code, and the encoded strands are read uniformly at random
during sequencing. One of the key questions is: how many reads are needed, on average, to recover
a particular information strand? We refer to this average as the Random Access Expectation. Since
sequencing is expensive, a major challenge is to design codes for which this expectation is small,
relative to the dimension k of the code.

We introduce new techniques to study this problem for arbitrary codes, highlighting its combina-
torial and geometric nature. These results provide insight into which structural properties help reduce
the random access expectation. Inspired by this, we introduce geometric objects that allow us to
construct codes with improved performance in reducing the random access expectation. In particular,
we present a novel construction for k = 3 that outperforms all previous constructions aiming to reduce
the random access expectation.

37



Erdos-Ko-Rado problems and Uniqueness
Philipp Heering
JLU Giessen (Germany)

(Joint work with Jan De Beule, Jesse Lansdown, Sam Mattheus and Klaus Metsch)

The Erdés-Ko-Rado problem is a cornerstone of extremal combinatorics, given a suitable notion
of “intersection”, it asks the following questions: What is the maximum size of a set of intersecting
objects? What is their structure? We will focus on the latter question. Algebraic methods have
been highly effective in addressing the size question. We discuss an algebraic tool that allows us to
determine the structure in certain cases, even if the underlying association scheme is not commutative.
Our objects will be chambers in finite spherical buildings, in particular finite projective spaces and
finite classical polar spaces and our notion of intersection will be non-oppositeness. We also discuss
cases in which the algebraic approach fails.

References

[1] Jan De Beule, Philipp Heering, Sam Mattheus, Klaus Metsch. The largest sets of non-opposite
chambers in spherical buildings of type B, arXiv:2505.14322, 2025.

[2] Philipp Heering, Jesse Lansdown, Klaus Metsch. Maximum Erdés-Ko-Rado sets of chambers and
their antidesigns in vector-spaces of even dimension, arXiv:2406.00740, 2024.

[3] Philipp Heering, Klaus Metsch. Maximal cocliques and the chromatic number of the Kneser graph
on chambers of PG(3,q), Journal of Combinatorial Designs, 32(7):388-409, 2024.

[4] Philipp Heering. On the largest independent sets in the Kneser graph on chambers of PG(4, q),
Discrete Mathematics, 348(5), 2025.

38



New Distance-Biregular Graphs
Ferdinand Ihringer
SUSTech

(Joint work with Blas Fernandez, Sabrina Lato, Akihiro Munemasa)

Distance-biregular graphs are the bipartite generalization of distance-regular graphs. They include
various well-known objects such as distance-regular graphs, generalized polygons, or quasi-symmetric
designs. Excluding these objects objects which are studied in their own right, no new distance-
biregular graph has been found for over 30 years. Here we present two new constructions using finite
geometry. One based on Mathon’s perp system, one utilizing hyperovals. Furthermore, we will give a
new non-existence condition and some interesting small parameters.
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About Reed-Muller codes RM,(2,2).

Trygve Johnsen
UiT-The Arctic university of Norway
(Joint work with Sudhir Ghorpade, Rati Ludhani, Rakhi Pratihar)
We demonstrate a technique, using homological algebra and matroid theory, for finding both the

usual weight spectra and higher weight spectra of linear codes. We apply this technique to find those
spectra for the Reed-Muller codes RM,(2,2) for all prime powers g.
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The incidence matrix of a g-ary graph
Relinde Jurrius
Netherlands Defence Academy

(Joint work with Michela Ceria)

Ever since the re-discovery of g-matroids from rank-metric codes, the question has been open what
the g-analogue of a graph is and how this object relates to a g-matroid. In this talk we will propose
an answer to this question by discussing a g-ary graph and its incidence matrix, which then can be
viewed as the representation of a g-matroid.

We propose the following definition of a g-ary matroid. Let V' = Fj and let E be a set of 2-
dimensional subspaces of V, the edges. Then (V,E) is a g-ary graph if for all ¢;,co € F, the
g-graph property holds: If (x,y1) and (x,y2) are (adjecent) edges, then (x,c1y1 + coy2) is also an
edge.

This means that a vertex (i.e., a 1-dimensional subspace of V) together with all its adjacent
vertices precisely gives all 1-dimensional subspaces in some subspace of V. This is a generalisation of
k-regular g-ary graphs [1].

The incidence matrix of a g-ary graph is a matrix over the extension field F,» with primitive element
«, such that every column is the representation of an edge. This means that the rank support of the
vector is the edge, hence it has rank weight 2; and the vector is orthogonal to [1, a,o?, ... ,a”_l]T.
To reflect the g-graph property, we furthermore ask that if (x,y1) and (x,y2) are edges represented

by vi and va, then the edge (x,c1y1 + c2y2) is represented by c¢1vi + cova.

By use of examples we will motivate this definition and show some of its nice properties. For
example, it exists, and once for one edge a representation is chosen, the rest of the representations are
fixed up to multiplication by an element of ;. Furthermore we discuss several open questions and
possible research directions, one of them being: what is the geometric interpretation of all this?
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The paired construction
for Boolean functions in the Johnson scheme

Michael Kiermaier
Universitat Bayreuth

(Joint work with Jonathan Mannaert and Alfred Wassermann)

Let V be a finite set of size n. We consider real functions on the slice (Z), which are also known as
functions in the Johnson scheme. For I C J C V, the characteristic function of the set of all K € (Z)
with 1 C K C J is called basic. In this talk, we investigate a construction arising as the sum of two
“opposite” basic functions. In essentially all cases, these paired functions are Boolean.

We will determine the exact degree — regarding a representation by an n-variable polynomial —
of all paired functions. First, we settle the middle layer case n = 2k by identifying and combining
various relations among the degrees involved. Then the general case is reduced to the middle layer
situation by means of derived, reduced, and dual functions, see [1] for the terminology.

Remarkably, in certain situations, the degree is strictly smaller than what is guaranteed by the
elementary upper bound for the sum of functions. This makes paired functions good candidates
for fixed-degree Boolean functions of small support size. As it turns out, for n = 2k and even
degree t ¢ {0, k}, paired functions provide the smallest known non-zero Boolean functions, surpassing
the t-pencils, which is the smallest known construction in all other cases.
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Designs of perfect matchings
Lukas Klawuhn
Paderborn University

(Joint work with John Bamberg)

It is well-known that the complete graph Kb, on 2n vertices can always be decomposed into perfect
matchings, called a 1-factorisation. In such a decomposition, every edge of Ky, appears in exactly
1 perfect matching. This was generalised by Jungnickel and Vanstone to hyperfactorisations. These
are sets of perfect matchings such that every pair of disjoint edges of Ko, appears in a constant
number of perfect matchings. Hyperfactorisations are examples of Cameron’s partition systems and
were rediscovered by Stinson who called them hyperresolutions. We generalise all these ideas to A-
factorisations of Ks, and characterise them algebraically as Delsarte designs in an association scheme
using the theory of Gelfand pairs. We use this characterisation to derive divisibility conditions and
non-existence results. Furthermore, we explore a connection to finite geometry, giving rise to explicit
constructions of A-factorisations.
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Additive codes attaining the Griesmer bound
Sascha Kurz

University of Bayreuth

Additive codes may have better parameters than linear codes. However, still very few cases are
known and the explicit construction of such codes is a challenging problem. Here we show that a
Griesmer type bound for the length of additive codes can always be attained with equality if the
minimum distance is sufficiently large. This solves the problem for the optimal parameters of additive
codes when the minimum distance is large and yields many infinite series of additive codes that
outperform linear codes.
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On Intersection Families in Projective Hjelmslev Geometries
Ivan Landjev
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
(Joint work with Emiliyan Rogachev and Assia Rousseva)
Let R be a finite chain ring with |R| = ¢, R/radR = F,, and consider a fixed left R-module pM.
A family F of submodules of R M of the same shape & is called 7T-intersecting if the intersection of

every two submodules from F contains a submodule of shape 7. We consider two classical questions
for T-intersecting families:

(1) What is the maximal size of a 7T-intersecting family of k-subspaces of R M?
(2) What is the structure of a 7-intersecting family of maximal size?

We present results for the special cases where pM = rR", k = mF, 7 = m!.
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Boolean degree t functions in the ¢g-Johnson scheme
Jonathan Mannaert
Vrije Universiteit Brussel

(Joint work with Michael Kiermaier and Alfred Wassermann)

In 1982, Cameron and Liebler investigated certain sets of special line classes in PG(3,¢), and

gave several equivalent characterizations. Due to their interesting geometric and algebraic properties,
these Cameron-Liebler line classes got a lot of attention. This resulted in several generalizations of
this concept. An important tool is the interpretation of the generalizations as Boolean functions in
the Johnson, denoted by J(n,k), and g-Johnson schemes, denoted by Jy(n, k). This interpretation
connects Cameron-Liebler sets to Boolean functions of degree 1 in the proper scheme. Here the degree
of the function is defined by the lowest natural number ¢ for which the function can be written as
a linear combination of the rows of the (t-space)-(k-space) incidence matrix of Jy(n,k) or J(n,k)
respectively.
While, due to its connection with the standard Cameron-Liebler problem, many results are known for
Boolean degree 1 functions, this is not the case for general degree. A natural next step is to investigate
how the well known properties from degree 1 translate to higher degree. This will be the main focus
of the talk. The results that will be discussed can be found in [1].
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On the flag-transitive automorphism groups of 2-designs with A prime
Alessandro Montinaro

University of Salento

A 2-(v,k, \) design D is a pair (P,B) with a set P of v points and a set B of blocks such that
each block is a k-subset of P and each two distinct points are contained in exactly A blocks. An
automorphism of D is a permutation of the point set which preserves the block set. The set of all
automorphisms of D with the composition of permutations forms a group, denoted by Aut(D). For
a subgroup G of Aut(D), G is said to be point-primitive if G acts primitively on P, and said to be
point-imprimitive otherwise. A flag of D is a pair (x, B) where z is a point and B is a block containing
z. If G < Aut(D) acts transitively on the set of flags of D, then we say that G acts flag-transitively
on D.

If A =1, then any flag-transitive automorphism group G of D is also point-primitive by a famous
result of Higman and McLaughlin [5] dating back to 1961, and a classification of the pair (D, G) was
achieved in 1990 by Buekenhout et al. [3], except when v is a power of a prime and G < AI'L;(v).
If A > 1, there are 2-designs admitting a flag-transitive point-imprimitive automorphism group as
shown, for instance, in [4].

In my talk, based on the recent results contained in [1, 2, 6], I will give an overview on the flag-
transitive automorphism groups of 2-designs with A prime, both in the primitive and imprimitive case,
present some constructions, and provide some classification results.
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On the @-polynomial property of bipartite graphs
with a uniform structure

Giusy Monzillo
University Primorska

(Joint work with B. Ferndndez, R. Maleki, S. Miklavic)

Let I" denote a finite, connected graph with vertex set X. Fix z € X and let € > 3 denote the ec-
centricity of . For mutually distinct scalars {6} }5_, define a diagonal matrix A* = A*(6§,07,...,07) €
Matx (R) as follows: for y € X set (A%),, = 0 (z.y)» Where 0 denotes the shortest path-length distance
function of I'. We say that A* is a dual adjacency matriz candidate of I' with respect to x if the
adjacency matrix A € Matx(R) of I and A* satisfy

ABA* — A" AP 4 (B +1)(AA* A% — A2A%A) = y(A2A" — A*A%) + p(AA* — A% A)

for some scalars 8,7, p € R.

Assume now that T' is uniform with respect to = in the sense of Terwilliger [1]. In this talk, we
give sufficient conditions on the uniform structure of I' such that I' admits a dual adjacency matrix
candidate with respect to x. As an application of our results, we show that the full bipartite graphs
of both Hamming and dual polar graphs are @-polynomial in the sense of Terwilliger [2].
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Strongly regular graphs with 2-transitive two-graphs
Gabor P. Nagy
University of Szeged (Hungary)
(Joint work with Robert F. Bailey and Valentino Smaldore)
A two-graph is a pair (V,T), where T is a set of unordered triples of a vertex set V, such that
every (unordered) quadruple from V' contains an even number of triples from 7. Given a simple graph
I' = (V, E), the set of triples T of the vertex set V', whose induced subgraph has an odd number of

edges, forms the associated two-graph of I'. Finite two-graphs with 2-transitive automorphism groups
G have been classified by Taylor [1]:

1) Linear type: G = PXL(2,q), for ¢ =1 (mod 4);

2) Unitary type: G = PTU(3,q), for ¢ > 5 odd;

3) Ree type: G = Ree(q) x Aut(F,), for ¢ = 3%F1 e > 1;
4) Symplectic type: G = Sp(2m,2), m > 3;

5) Sporadic type: G = HS or G = Cos.
)

6) Affine polar type: G = F3™ x Sp(2m, 2).

Theorem 1 Let I' = (V, E) be a strongly regular graph with associated two-graph T = (V,T). Write
H = Aut(T") and G = Aut(T). If G is 2-transitive and H is a transitive mazimal subgroup of G, then
one of the following holds:

(i) T is of affine or symplectic type.
(ii) T is of linear type, ¢ = p*¢, p =3 (mod 4), H = Cq2il X Cle.
(i4i) T is of unitary type, ¢ =5, H = Az.

(iv) T is of sporadic type, G = HS, H = Ma,.

2 2
In case (ii), the graph I is a srg (q +1, qi2\/§, (ﬁfl) -1, (ﬁfl) ) It is known that orthogonal

arrays OA <\/E], \/§2+1) yield graphs with these parameters. We conjecture that I' cannot be obtained
in this way.
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On sets of points of PG(n, ¢) with few intersection numbers
Vito Napolitano

Dipartimento di Matematica e Fisica
Universita degli Studi della Campania Luigi Vanvitelli

Having few intersection sizes with all the members of one (or more than one) prescribed family of
subspaces of PG(n, ¢) is a property common to most of classical objects of finite projective geometry
(such as e.g. algebraic varieties, sets of points of the union of a family of skew lines in PG(3,¢) and
subgeometries), so it is natural to ask if it is possible to reconstruct their structure starting from
assumptions on their intersections sizes with all the members of one (or more than one) family of
subspaces and possibly assuming some extra combinatorial or geometric condition.

Moreover, every set of points of PG(n,q) with few intersection sizes with respect to the family
of the hyperplanes of PG(n,q) is the geometric counterpart of a class of linear codes, whose weight
distribution is associated with the distribution of the intersection sizes of the given set.

Thus, there is a wide literature devoted to sets of points of PG(n,q) with few intersection ”num-
bers” with all the subspaces of PG(n,q) of one (or more than one) prescribed dimension, mainly
consisting of characterization results as well as of classification and existence results.

In this talk, I will survey some recent results on these sets and I will present a result on sets
of points of PG(n,q) with exactly two intersection sizes with all the hyperplanes of PG(n,q) and a
(combinatorial) characterization of the complement of the set of points of a hyperbolic quadric in
PG(3,q).

50



The Second Minimum Size of a Finite Subspace Partition
Esmeralda Nastase
Xavier University

(Joint work with Papa Sissokho)

Let V = V(d, q) denote the vector space of dimension d over F,. A subspace partition P of V, also
known as a vector space partition, is a collection of nonempty subspaces of V' such that each nonzero
vector of V' is in exactly one subspace of P. Motivated by applications of minimum blocking sets and
mazximal partial t-spreads, Beutelspacher [3] proved a simple (yet useful) lemma which states that the
minimum possible size over all (nontrivial) subspace partition of V' is d4(d) = g2 £ 1ifd>2. An
interesting extension of this lemma consists of determining the (first) minimum size o4(d,t) of any
subspace partition of V' in which the largest subspace has dimension ¢, with 1 < t < d. The exact
value of 04(d,t) has been determined in [1],[2],[4],[5].

In the quest for additional and more refined structural information, we extend Beutelspacher’s
lemma and determine the second minimum size a(’](d, t) of any subspace partition of V', when r = 0,
t +ris even, or d < 2t, where r =d (mod ¢) and 0 < r < t.
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Combinatorics of Ferrers diagrams in the Etzion-Silberstein conjecture
Alessandro Neri
University of Naples Federico 11

(Joint work with Hugo Sauerbier Couvée)

In 2009 Etzion and Silberstein [1] provided a combinatorial upper bound on the largest dimension
of a space of matrices over a finite field whose nonzero matrices are supported on a given Ferrers
diagram and all have rank lower bounded by a fixed positive integer r. In the same paper, they also
conjectured that such an upper bound is always tight. Since then, their conjecture has been verified in
a number of cases, but as of today it still remains widely open. In this work, we investigate the notion
of reducibility of Ferrers diagrams: a diagram D reduces to D’ if an optimal matrix space supported
on D can be obtained by shortening and/or inclusion of an optimal matrix space supported on D’.
This gives a natural notion of irreducibility of Ferrers diagrams, and the validity of the conjecture
for irreducible diagrams implies the validity of the full conjecture. Moreover, following this notion,
we can provide the Hasse diagram of Young’s lattice with an orientation, producing a directed graph
in which sources correspond to irreducible diagrams. Using combinatorial arguments, we show that
these irreducible diagrams can be fully characterized as the integer points of a convex polytope.
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Intersection of irreducible curves and the Hermitian curve
Jonathan Niemann
Technical University of Denmark

(Joint work with Peter Beelen, Mrinmoy Datta and Maria Montanucci)

Serensens conjecture, as proven in [1], gives an upper bound on the number of [Fj2-rational inter-
section points of a Hermitian surface in P3 and a surface of degree d. Moreover, it states that the
upper bound is reached only when the surface is a union of d planes, i.e., when the surface is (highly)
reducible. Based on this, one might think that something similar holds for the Hermitian curve #,
in P2. Bézout’s theorem gives an upper bound on the number of [F2-rational intersection points of
H, and a plane curve Cy4 of degree d, and a natural guess could be that this bound is reached only
when Cy is reducible. A computer search reveals that this is true for (¢,d) € {(2,2), (3,2),(2,3)}, but
it turns out to be false in general.

The case d = 1 is trivial, and it follows from the work in [2], that there exists an irreducible curve
of degree d intersecting the Hermitian curve in d(q + 1) distinct Fj2-rational points for d = 2 and
q > 4. In this talk, we will show that such a curve also exists for g < d < ¢®> —q+1,d=[(g+1)/2]
and d = 3 with ¢ > 3, as well as for other small values of d compared to q.
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On line-parallelisms of PG(3, q)
Francesco Pavese
Polytechnic University of Bari

(Joint work with Paolo Santonastaso)

Let PG(3, q) denote the three-dimensional projective space over the finite field with g elements. A
line-spread of PG(3,q) is a collection § of mutually skew lines such that every point of PG(3, q) lies
on exactly one line of S. A parallelism of PG(3, q) is a set II of mutually skew line-spreads of PG(3, ¢)
such that every line of PG(3, ¢) is contained in precisely one line-spread of II. A regulus of PG(3,q) is
the set of transversals to three pairwise skew lines, and consists of ¢ + 1 pairwise skew lines. A spread
S is regular or Desarguesian if each line not in § meets S in the lines of a regulus. A Hall spread is
obtained from a Desarguesian spread by switching a regulus with its opposite regulus. Infinite families
of parallelisms of PG(3, ¢) consisting of regular spreads were constructed by Penttila and Williams in
1998 in the case when ¢ = 2 (mod 3). Most of the other known infinite families lie in the class of
parallelisms that have one Desarguesian spread D and admit an elementary abelian group E of order
¢ which stabilizes a line of D. Other examples are obtained from parallelisms in this class by means
of a derivation process. In the case when ¢ is even, the parallelisms in the previous class comprise
one Desarguesian spread D and ¢? + ¢ Hall spreads, which are constructed by switching the ¢ + ¢
reguli through the fixed line of D. In this talk I will present a characterization of the parallelisms of
PG(3,q) admitting £ as an automorphism group and having one Desarguesian spread D and ¢ + ¢
Hall spreads, which are obtained by switching the ¢? + ¢ reguli through a fixed line of D.
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Characterising the natural embedding of the twisted triality hexagons
Sebastian Petit
University of Canterbury

(Joint work with Geertrui Van de Voorde)

Generalised polygons play an important role in incidence geometry, building theory and graph
theory. A (weak) generalised n-gon can be defined as a point-line geometry such that the incidence
graph has diameter n and girth 2n. Here, we want to focus on generalised hexagons. Up to duality,
only two classes of finite thick generalised hexagons are known: the split Cayley hexagons of order
(q,q) and the twisted triality hexagons of order (¢3,q). In [1], Thas and Van Maldeghem characterised
the natural embedding of the split Cayley hexagons in PG(6,¢) using intersection numbers. Later,
this was improved slightly by Ihringer in [2].

In this talk we investigate the twisted triality hexagon, learn more about its natural embedding
and obtain similar results. In particular we prove the following;:

A set of lines satisfies a list of properties (such as for example (Sd) every solid is incident with
either 0, 1, ¢+ 1 or 2q+ 1 lines of the set) if and only if it is the set of lines of a naturally embedded
twisted triality hexagon.
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Additive Codes and Projective Geometries
Tabriz Popatia
Universidad Politécnica de Cataluna

(Joint work with Simeon Ball and Michel Lavrauw)

In this talk, I will describe the relationship between additive codes and projective geometries,
and discuss some new results we have obtained by viewing additive codes through this geometric
perspective. The results of this talk can be found in [1] and [2].

Let I, denote the finite field with ¢ elements. An additive code of length n over F n is a subset
C of (F,n)" that is closed under addition. Such an additive code is linear over the subfield F; and
therefore has size ¢" for some r. The notation [n,r/ h,d]g is used to denote such an additive code
with minimum distance d. We show that any [n,r/h, d]g additive code is equivalent to a projective
h-(n,r,d), system, which is defined as a multiset S of n subspaces of PG(r — 1,¢q) of dimension at
most h — 1, such that each hyperplane of PG(r — 1, q) contains at most n — d elements of S, and some
hyperplane contains exactly n — d elements.

Using this correspondence, we prove several new bounds for additive codes. In particular, we
establish two analogs of the classical Griesmer bound for linear codes, extending these results to
the additive case. Our Griesmer-type bound allows us to derive new restrictions on the length and
dimension of additive maximum distance separable (MDS) codes. Notably, these bounds permit
slightly longer codes than their linear counterparts.

Finally, we present several constructions of additive codes that leverage the relationship with
projective geometries. These include families of MDS additive codes that meet our new bounds, as
well as a new construction of an additive code with integral parameters that exceeds the parameters
of the best-known linear codes.
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Cameron-Liebler sets of generators in polar spaces with rank d > 3
Morgan Rodgers
RPTU Kaiserslautern-Landau (Germany) — Faculty of Mathematics

(Joint work with Maarten De Boeck, Jozefien D’haesseleer)

Cameron-Liebler sets in projective and polar spaces are collections of subspaces having interesting
regularity properties, which arise from their close relation to the eigenspaces of the corresponding
association schemes, see [1, 2]. In this talk, we will look at the definitions of Cameron-Liebler sets
of generators in the finite classical polar spaces. There are a limited number of non-trivial examples
that have recently been constructed, see [3]. For some polar spaces Q with rank d > 3, examples can
be constructed by considering certain regular sets of (d — 3)-spaces in an embedded polar space Q' of
rank d — 1. Such methods have been used to construct Cameron-Liebler sets in Q(8, ¢) for all odd g;
for Q% (7,q) when ¢ is odd, or when ¢ = 22"*! > 8: and for Q% (9,q) for all odd q. We will describe
these construction methods, and outline some strategies to hopefully in the future construct examples
in higher dimensional spaces.
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On the Reducibility of Minihypers 8nd the Extension Problem for Arcs and
odes

Assia Rousseva
Faculty of Mathematics and Informatics, Sofia University
(Joint work with Ivan Landjev and Leo Storme)

An (n,w)-minihyper F in PG(r, ¢) is called reducible if it can be represented as a sum F = F'+xr,
where yr is the characteristic function of a j-dimensional subspace, and F’ is a minihyper with
parameters (n — vj41,w — vj). Here v, = (¢* — 1)/(¢ — 1). The results by Hill [1], Hill and Lizak
[2], Maruta[3] on the extendabilty of linear codes and ars can be viewed as reducibility theorems for

minihypers. In this talk, we present the following result which can be viewed as a generalization of
some of the known extension theorems.

Theorem 1 Let F be an (n,w)-minihyper in PG(r,q), ¢ = p", with w =n — ¢’ (mod ¢/*1),j > 0.
Assume F has the following properties:
(1) F(H)=n—¢ orn (mod ¢Z*1) for every hyperplane H in PG(r,q);

(2) for every hyperplane H with F(H) =n — ¢’ (mod ¢/™Y), Flg = F1 + xs for a unique (j — 1)-
dimensional subspace S and a divisible minihyper Fi with divisor ¢’ ;

(3) for every hyperplane H with F(H) =n (mod ¢/*1), F|g is divisible with divisor ¢’.

Then F is a reducible minihyper and the subspace of reduction T is uniquely determined.
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Intersecting codes in the rank metric
Martin Scotti
Université Paris 8 - LAGA

(Joint work with Daniele Bartoli, Martino Borello, and Giuseppe Marino)

In this talk we introduce and investigate rank-metric intersecting codes, a new class of linear codes
in the rank-metric context, inspired by the well-studied notion of intersecting codes in the Hamming
metric [1, 2].

A rank-metric code is said to be intersecting if any two nonzero codewords have supports inter-
secting non trivially. We explore this class from both a coding-theoretic and geometric perspective,
highlighting its relationship with minimal codes, MRD codes, and Hamming-metric intersecting codes.

We derive structural properties, sufficient conditions based on minimum distance, and geometric
characterizations in terms of 2-spannable g-systems. We establish upper and lower bounds on code
parameters and show some constructions, which leave a range of unexplored parameters.

Finally, we connect rank-intersecting codes to other combinatorial structures such as (2, 1)-separating
systems and frameproof codes.
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Design switching on graphs
Robin Simoens
Ghent University & Universitat Politecnica de Catalunya
(Joint work with Ferdinand Ihringer)

A switching method is a local transformation, used to obtain cospectral graphs (graphs with the
same adjacency spectrum). It needs a switching set with some conditions. Abiad and Haemers [2]
found a switching method that uses a switching set of size seven. I present a new combinatorial
description of this switching method, based on the Fano plane, as described in [1].

The operation can in fact be generalized to a switching method based on any combinatorial design.

This also generalizes other previously known switching methods such as the one in [3, Section 7.1],
when applied to the point-hyperplane design of a projective space.
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Goppa codes from a Singer cycle
Valentino Smaldore
Universita degli Studi di Padova

(Joint work with Gabor Korchmaros and Federico Romaniello)

Let C be a non-singular plane curve defined over a finite field. A linear code arises from any two
disjoint subsets of points of C, say D and G, as follows: Take a divisor G with support G, where G
is a formal sum a points of G with integer coefficients, and let £(G) be the Riemann-Roch space of
C associated with G, and fix an order (Py,..., Py) of the points in D, and assume D UG be the set
of all points of C. Then evaluating the functions f € £(G) on D = (P1, P, ..., Py) produces a linear
code of length N and dimension dim(£(G)) which is called an AG (algebraic geometry) code. From
previous work it has emerged that the best choice for C in order to obtain well performing AG-codes
is the Hermitian curve of equation Y7 + Y — X9t = 0 over F,2. Interesting cases occur when G
is an orbit of a large subgroup I' in the automorphism group PGU(3,q) of C. So far, the following
cases have been worked out: the 1-point stabilizer [1], the chord stabilizer, I' = PGL(2,q) [5], and
I = PSU(3,qo) for ¢ = ¢3, [4]. In this talk, we consider the case where G is an orbit of a Singer cycle
of PG(2,q?) of length ¢®> — ¢+ 1.
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Erdés-Ko-Rado sets on the hyperbolic quadric QF(4n + 1, q)
Leo Storme
Ghent University

(Joint work with Laure Schelfhout)

The hyperbolic quadric QT (4n + 1,q) is the non-singular quadric in PG(4n + 1, ¢), with standard
equation XoX1 + XoX3 + -+ + X4pnXynt+1 = 0. This quadric contains points, lines, planes, ..., 2n-
spaces. The 2n-spaces contained in the hyperbolic quadric Q" (4n + 1,q) are called the generators.

The set of generators of the quadric Q1 (4n + 1, ¢q) can be partitioned into two equivalence classes,
called the class of the Latin and the class of the Greek generators. Two generators of O (4n + 1,q)
belong to the same equivalence class if and only if they intersect in even dimension.

An Erdés-Ko-Rado set S of the quadric Q1 (4n+1,q) is a set of generators which pairwise intersect
in at least one point.

The largest Erdés-Ko-Rado sets of the hyperbolic quadric Q1 (4n + 1, q) are the class of the Latin
and the class of the Greek generators.

M. De Boeck classified the second-largest maximal Erdés-Ko-Rado sets of the hyperbolic quadric
QT (4n + 1,q). They are, up to equivalence, the set of Latin generators intersecting a fixed Greek
generator in at least one point, with the fixed Greek generator included [1].

In this talk, we present the classification of the third-largest maximal Erdos-Ko-Rado sets of the
hyperbolic quadric Q" (4n + 1, q) [2].

Theorem 1 Select a particular (2n — 2)-space Q contained in the hyperbolic quadric Q (4n + 1,q).
Select the set S of all Greek generators through € and all Latin generators intersecting Q) in at least
one point.

All third-largest maximal Erdés-Ko-Rado sets on the hyperbolic quadric Qt(4n + 1,q) are, up to
equivalence, equal to such a set S.
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On line parallelisms in PG(n, 2)
Vladislav Taranchuk
Ghent University

(based on joint work with Philipp Heering)

In this talk, we show how certain APN functions can be used to construct line parallelisms in

PG(n,2). These parallelisms can be seen as a generalization of the parallelisms given by Baker [1] and
of Johnson and Montinaro [2].
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On the minimum weight of some geometric codes
Rocco Trombetti

Department of Mathematics and Applications ”Renato Caccioppoli” University of Naples Federico 11
Napoli, Italy, 80126

(Joint work with: B. Csajbdk, G. Longobardi and G. Marino)

Assume p is a prime and m, h are two positive integers. Let ¥ = PG(m, ¢) be the m-dimensional
projective space over the Galois field F, where ¢ = p", and denote by the symbol Dsx.(m,q) the
qm+1_1

1

2 — (v,q+1,1) design of points and lines of ¥; hence, with v = . The p-ary code C = Cx(m, q)
associated with such a design is the IF,,-subspace generated by the incidence vectors of the blocks of the
corresponding design. Also, the dual C* of C is the Fj-subspace of vectors of [y which are orthogonal
to all vectors of C (under the standard inner product). These are particular examples of so called
geomelric codes.

Unlike for codes derived from the designs of points and subspaces of 3, the situation regarding the
minimum weight of geometric codes is not as clear, and therefore its study is more challenging. In
[3] the authors reduced this problem to the above mentioned case of points and lines of a projective
space of suitable dimension. In [1] Bagchi and Inamdar proven that the minimum weight of Cs:(m, q)

is bounded from below by the value 2 (q;r:_ll (1 - %) + 1%)

This type of problem in coding theory can be quite naturally translated into one concerning with the
cardinality of sets or multi-sets of points in projective or affine space with special intersection properties
with respect to certain subspaces, as shown for instance in [2]. Using this geometrical approach and
exploiting properties of certain kind of polynomial, in this talk, we will show a significant improvement
of the bound stated in 2002 by Bagchi and Inamdar, in the case when A > 1, and m,p > 2.
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Anzahl theorems for formed spaces
Geertrui Van de Voorde
University of Canterbury

(Joint work with Maarten De Boeck)

Glasby, Niemeyer and Praeger [4, 5| (and later Glasby, Ihringer and Mattheus [3]) derived lower
bounds for the probability of spanning a non-degenerate classical space by two non-degenerate sub-
spaces. This problem is motivated by algorithms to recognise classical groups.

More precisely, given a vector space V and a quadratic, symplectic, or unitary form f on V,
these authors determine lower bounds on the proportion of pairs (U, U’) of non-degenerate subspaces
U,U’ with respect to f, such that U and U’ are trivially intersecting and (U,U’) is a non-degenerate
subspace of V' among all such pairs of non- degenerate subspaces (U,U’). In recent work, together
with Maarten De Boeck, we have improved on those results by deriving the exact formulae for this
proportion for symplectic, hermitian [1] and odd characteristic quadratic forms [2]. In this talk, I’ll
present the main ideas behind the results along with some comments on the even characteristic case.
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Relative Difference Sets from Almost Perfect Nonlinear Functions
Zeying Wang

American University

In this talk we will show that the image set of certain Almost Perfect Nonlinear (APN) functions is
a relative difference set. Examples include relative difference sets arising from APN functions described
in [1].

References

[1] L. Kolsch, B. Kriepke, G. M. Kyureghyan,
Image sets of perfectly nonlinear maps,
Designs, Codes and Cryptography, 91 (2023), 1-27.

66



Existence of t-designs in polar spaces for all ¢

Charlene Weif3

University of Amsterdam

A finite classical polar space of rank n consists of the totally isotropic subspaces of a finite vector
space over F, equipped with a nondegenerate form such that n is the maximal dimension of such a
subspace. A t-(n,k,\) design in a finite classical polar space of rank n is a collection Y of totally
isotropic k-spaces such that each totally isotropic t-space is contained in exactly A members of Y.
Nontrivial examples are currently only known for ¢ < 2. We show that ¢-(n, k, ) designs in polar
spaces exist for all ¢ and g provided that k£ > %t and n is sufficiently large enough. The proof is based
on a probabilistic method by Kuperberg, Lovett, and Peled, and it is thus nonconstructive.
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Regular fat linearized polynomials
Corrado Zanella
Universita degli Studi di Padova

(Joint work with Valentino Smaldore and Ferdinando Zullo)

Let U be an F,-subspace of the vector space Fyi.. The F-linear (or simply linear) set associated
with U is the subset Ly = {(v)p.: v € U, v # 0} of PG(m —1,¢"). If f € Fyn[X] is an F,-linearized
polynomial, then Ly = Ly, C PG(1,¢"), where Uy = {(z, f(z)): © € Fgn}. The weight of a point
P = (v)r,» in a linear set Ly is defined as dimp, ((v)r,» N U). Particular interest has been shown in
F4-linear sets in the projective line PG(1,¢") in which the number r of points with weight greater
than one is small. If r = 0, we call them scattered linear sets. In the case » = 1 and there is a point
of weight ¢ > 1, then the set is called an i-club. A regular (r,7)-fat linear set is one that has precisely
r points with weight greater than one, and all of these points have weight ¢. Therefore, scattered
linear sets and clubs are special types of regular fat linear sets. A regular (r,i)-fat polynomial is an
F4-linearized polynomial f such that L; is regular (r,7)-fat. For » > 1 and ¢ > 2, few examples or
results are found in the literature. In this talk I will describe some properties and provide examples
of such regular fat linear sets. Some of these sets are also R-q'-partially scattered, as defined in [1].
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New maximal additive d-codes on symmetric matrices over finite fields
Yue Zhou
National University of Defense Technology
(Joint work with Wei Tang)
Let g be an odd prime power and let X (n,q) denote the set of symmetric matrices over F,. A

subset C of X (n,q) is called a d-code if the rank of A — B is at least d for any distinct A and B in C.
It has been proved by Schmidt [1, 2] that if C is additive, then

ol < qn(nfdJrZ)/Q7 ) | n—d;
’ | - q(nJrl)(nch»l)/Q7 2)(,” —d.

Additive d-codes meeting the bounds above are called mazimal. There are very few known construc-
tions of maximal additive d-codes in X (n, ¢). In this talk, we summarize the known constructions and
present a new family of them.
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(Joint work with Gianira Alfarano, Martino Borello, Relinde Jurrius, Alessandro Neri and Olga
Polverino)

g-Matroids, the g-analogue of matroids, have been intensively investigated in recent years in coding
theory due to their close connection with rank metric codes. Indeed, in 2018 it was shown by Jurrius
and Pellikaan that a rank metric code induces a g-matroid that captures many of the code’s invariants.
In this talk we will deal with the direct sum of ¢g-matroids, a concept recently introduced by Ceria and
Jurrius, with a particular focus on the question of representability. We will show that representing the
direct sum of ¢ uniform g-matroids is equivalent to constructing special linear sets which are almost
scattered with respect to the hyperplanes. In addition, we will give explicit constructions of such
linear sets, implying as a byproduct that the direct sum of uniform g-matroids is always representable
over a certain extension of F,. We conclude the talk by discussing about the smallest field extension
of IF, over which such a representation exists.
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